

M62371GP

3 V Type 8-bit 36ch Selector SW Built-in D/A Converter with Buffer Amplifiers

REJ03D0880-0201 Rev.2.01 Dec 27, 2007

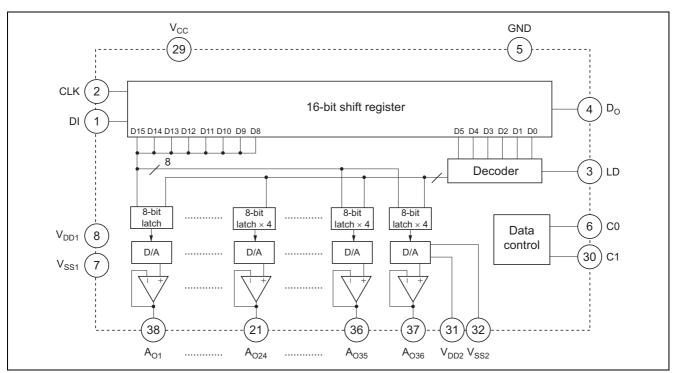
Description

The M62371GP is a CMOS semiconductor IC, containing 36 channels of 8-bit D/A converters. It is operable with a low supply voltage between 2.7 to 3.6 V, and is easy to use due to serial data input, and 3-pin (DI, CLK, LD) connection with microcomputer.

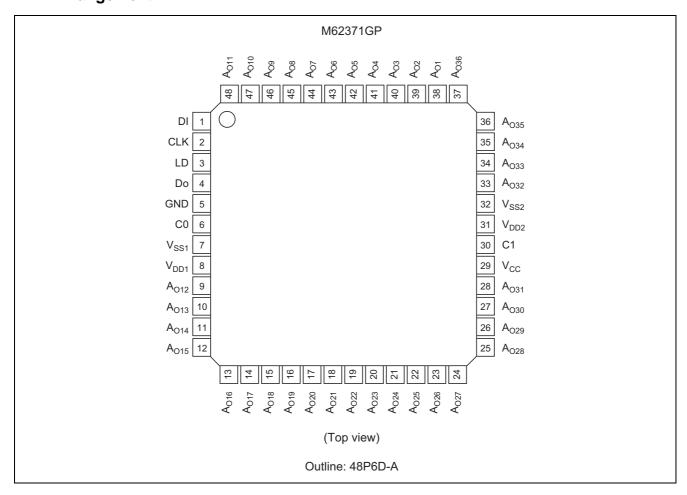
The IC also contains D_0 pin terminal, enabling cascade connection, and therefore is suitable for automatic control in combination with a microcomputer.

(M62371GP is an advanced product of M62370GP on its buffer amp. drivability.)

Features

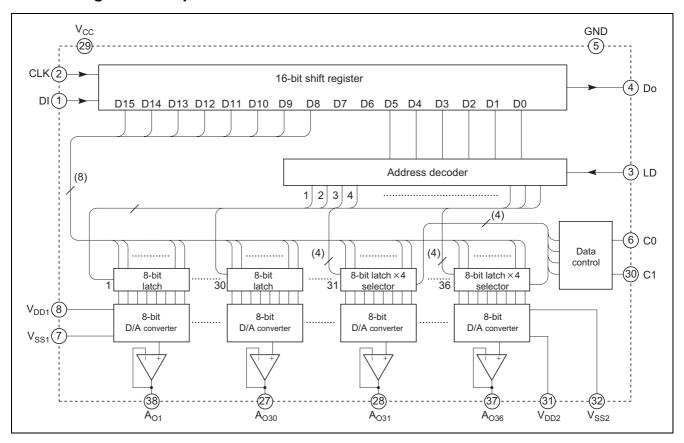

- Operable with a low voltage between 2.7 to 3.6 V
- 16-bit serial data input (connected via 3 pins: DI, CLK, LD)
- 36 channels built-in of 8-bit D/A converter
- 6 channels of D/A converters capable of selecting and outputting 4 data stored in each converter, through 2 control terminals

Application


Digital/analog conversion in industrial or home-use electronic equipment.

Automatic control in combination with EEPROM and microcomputer (Substitute for conventional semi-fixed resistor).

Block Diagram


Pin Arrangement

Pin Description

Pin No.	Pin Name	Function
1	DI	Serial data input terminal to input 16-bit long serial data
4	Do	Terminal to output MSB data of 16-bit shift register
2	CLK	Shift clock input terminal. Input signal at DI pin is input to 16-bit shift register at rise of shift clock pulse
3	LD	When H-level signal is input to this terminal, the value stored in 16-bit shift register is loaded in decoder and D/A converter output register.
38 to 48	A _{O1} to A _{O11}	8-bit D/A converter output terminal
9 to 28	A _{O12} to A _{O31}	
33 to 37	A _{O32} to A _{O36}	
29	V _{CC}	Power supply terminal
5	GND	GND terminal
6	C0	Data select signal input terminal 1 for channel No.31 through 36
30	C1	Data select signal input terminal 2 for channel No.31 through 36
8	V_{DD1}	Upper reference voltage input terminal and power supply to operational amplifier for channel No.1 through 24
7	V _{SS1}	Lower reference voltage input terminal for channel No.1 through 24
31	V_{DD2}	Upper reference voltage input terminal and power supply to operational amplifier for channel No.25 through 36
32	V _{SS2}	Lower reference voltage input terminal for channel No.25 through 36

Block Diagram for Explanation of Terminals

Absolute Maximum Ratings

(Ta = 25°C, unless otherwise noted.)

Item	Symbol	Ratings	Unit	Conditions
Supply voltage	V _{CC}	-0.3 to +7.0	V	
Output voltage	Vo	-0.3 to $V_{CC} + 0.3$	V	
Power dissipation	Pd	400	mW	
Thermal derating	Κθ	4	mW/°C	Ta ≤ 25°C
Operating temperature	Topr	-20 to +85	°C	
Storage temperature	Tstg	-40 to +125	°C	

Electrical Characteristics

<Digital Part>

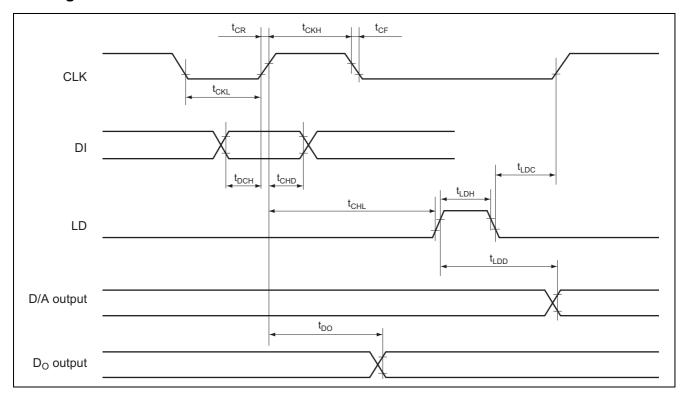
(V_{CC} = +3 V \pm 10%, V_{CC} = V_{DD}, Ta = -20 to +85°C, unless otherwise noted.)

			Limits			
Item	Symbol	Min	Тур	Max	Unit	Conditions
Supply voltage	Vcc	2.7	3.0	5.5	V	
Circuit current	Icc	_	1.0	_	mA	CLK = 1 MHz operation,
						$V_{CC} = 3 \text{ V}, I_{AO} = 0 \mu\text{A}$
Input leak current	I _{ILK}	-10	_	10	μА	
Input low voltage	V _{IL}	_	_	0.6	V	
Input high voltage	V _{IH}	2.4	_	_	V	
Output low voltage	V _{OL}	_	_	0.4	V	I _{OL} = 2.5 mA
Output high voltage	V _{OH}	V _{CC} - 0.4	_	_	V	$I_{OH} = -400 \mu A$

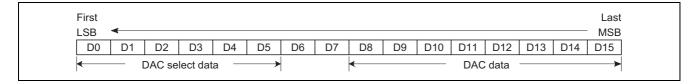
Note: Standard value is at Ta = 25°C

<Analog Part>

(V_{CC} = +3 V \pm 10%, V_{CC} = V_{DD}, Ta = -20 to +85°C, unless otherwise noted.)


	1	(, cc .		· cc · bb,		<u>, , , , , , , , , , , , , , , , , , , </u>
			Limits			
Item	Symbol	Min	Тур	Max	Unit	Conditions
Current dissipation	I _{DD}	_	8.0	12.0	mA	
D/A converter upper	V_{DD}	2.7	3.0	5.5	V	
reference voltage range						
D/A converter lower	Vss	GND	_	V _{DD} – 2	V	
reference voltage range						
Buffer amplifier output	V _{AO}	0.1	_	V _{DD} – 0.1	V	$I_{AO} = \pm 0.5 \text{ mA}$
voltage range		0.2	_	V _{DD} - 0.2	V	$I_{AO} = \pm 1.0 \text{ mA}$
Buffer amplifier output	I _{AO}	-1.5	_	1.5	mA	Upper saturation voltage = 0.4 V
driving range						Lower saturation voltage = 0.4 V
Differential nonlinearity	S _{DL}	-1.0	_	1.0	LSB	V _{CC} = 2.700 V
error						V _{DD} = 2.700 V
Nonlinearity error	SL	-1.5	_	1.5	LSB	V _{SS} = 0.050 V
Zero code error	S _{ZERO}	-2	_	2	LSB	No load $(I_{AO} = \pm 0)$
Full scale error	S _{FULL}	-2	_	2	LSB	
Output capacitive load	Co	_	_	0.1	μF	
Buffer amplifier output impedance	Ro	_	50	_	Ω	

AC Characteristics


 $(V_{CC} = V_{DD}, Ta = -20 \text{ to } +85^{\circ}\text{C}, \text{ unless otherwise noted.})$

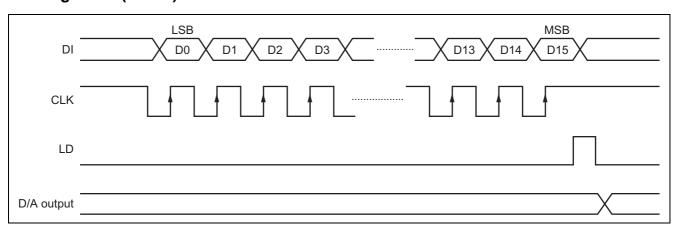
			Limits			
ltem	Symbol	Min	Тур	Max	Unit	Conditions
Clock "L" pulse width	t _{CKL}	200	_	_	ns	
Clock "H" pulse width	t _{CKH}	200	_	_	ns	
Clock rise time	t _{CR}	_	_	200	ns	
Clock fall time	t _{CF}	_	_	200	ns	
Data setup time	t _{DCH}	30	_	_	ns	
Data hold time	t _{CHD}	60	_	_	ns	
LD setup time	t _{CHL}	200	_	_	ns	
LD hold time	t _{LDC}	100	_	_	ns	
LD "H" pulse duration time	t _{LDH}	100	_	_	ns	
Data output delay time	t _{DO}	70	_	350	ns	C _L = 100 pF
D/A converter output setting	t _{LDD}	_	_	100	μS	$C_L \le 100 \text{ pF}, \text{ V}_{AO}: 0.3 \text{ V} \leftrightarrow 2.7 \text{ V}$
time						This time until the output becomes the final value of ± 2 LSB

Timing Chart

Digital Data Format

DAC Data

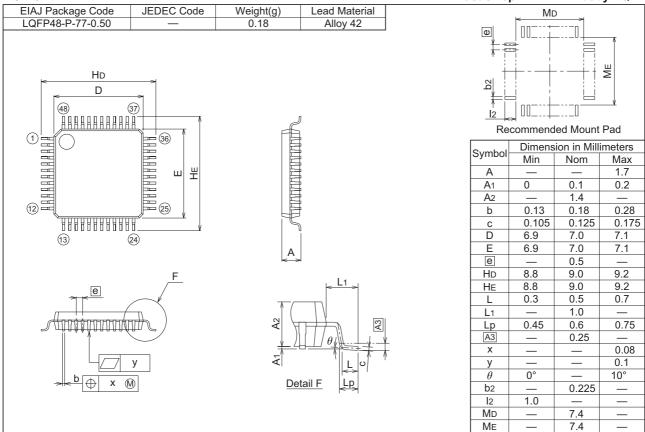
D8	D9	D10	D11	D12	D13	D14	D15	D/A Output
0	0	0	0	0	0	0	0	(VrefU – VrefL) / 256 × 1 + VrefL
1	0	0	0	0	0	0	0	(VrefU – VrefL) / 256 × 2 + VrefL
0	1	0	0	0	0	0	0	(VrefU – VrefL) / 256 × 3 + VrefL
1	1	0	0	0	0	0	0	(VrefU – VrefL) / 256 × 4 + VrefL
:	:	:	:	:	:	:	:	:
0	1	1	1	1	1	1	1	(VrefU – VrefL) / 256 × 255 + VrefL
1	1	1	1	1	1	1	1	VrefU


Note: $VrefU = V_{DD1}, V_{DD2}, VrefL = V_{SS1}, V_{SS2}$

DAC Select Data

D5	D4	D3	D2	D1	D0	DAC Selection
0	0	0	0	0	0	Don't care
0	0	0	0	0	1	A _{O1} selection
0	0	0	0	1	0	A _{O2} selection
:	:	:	:	:	:	:
0	1	1	1	1	0	A _{O30} selection
0	1	1	1	1	1	A _{O31 (0)} selection
1	0	0	0	0	0	A _{O32 (0)} selection
:	:	:	:	:	:	:
1	0	0	1	0	0	A _{O36 (0)} selection
1	0	0	1	0	1	A _{O31 (1)} selection
:	:	:	:	:	:	:
1	0	1	0	1	0	A _{O36 (1)} selection
1	0	1	0	1	1	A _{O31 (2)} selection
:	:	:	:	:	:	:
1	1	0	0	0	0	A _{O36 (2)} selection
1	1	0	0	0	1	A _{O31 (3)} selection
:	:	:	:	:	:	:
1	1	0	1	1	0	A _{O36 (3)} selection
1	1	0	1	1	1	Don't care
:	:	:	:	:	:	:
1	1	1	1	1	1	Don't care

CO	C1	A _{O31} Through A _{O36} Data Selected
0	0	Address 0 selected
0	1	Address 1 selected
1	0	Address 2 selected
1	1	Address 3 selected


Timing Chart (Model)

Package Dimensions

48P6D-A

Plastic 48pin $7 \times 7mm$ body LQFP

Renesas Technology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Renesas lechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Notes:

 1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warrantes or representations with respect to the accuracy or completeness of the information in this document nor grants any license to any intellectual property girbs to any other rights of representations with respect to the information in this document in this document of the purpose of the respect to the information in this document in the product data, diagrams, charts, programs, algorithms, and application circuit examples.

 3. You should not use the products of the technology described in this document for the purpose of military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations, and procedures required to change without any plan protein. Before purchasing or using any Renesas products listed in this document, in the disclosed by Renesas as substance to change without any plan protein products are not designed and regulations of the disclosed by Renesas and the regulation of the products for any particular of such information to the in

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510