Bi-CMOS IC

For Mini Component, receiver 1-chip Tuner IC Incorporating PLL

Overview

The LV23014T is a Single-chip tuner IC with built-in PLL for mini component, receiver.

Functions

- AM tuner
- FM tuner
- MPX stereo decoder
- PLL frequency synthesizer

Specifications

Maximum Ratings at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	$\mathrm{V}_{\text {CC }}$ max	V_{CC}	7.0	V
Maximum input voltage	$\mathrm{V}_{\text {IN }} 1$ max	CE, CI, CL	7.0	V
	$\mathrm{V}_{\text {IN }}{ }^{\text {max }}$	XIN	*1 Vreg2+0.3	V
Maximum output voltage	$\mathrm{V}_{\mathrm{O}} 1$ max	DO	7.0	V
	$\mathrm{V}_{\mathrm{O}} 2$ max	XOUT, PD	Vreg2+0.3	V
	$\mathrm{V}_{\mathrm{O}} 3$ max	B01, AOUT	12.0	V
Allowable power dissipation	Pd max	$\mathrm{Ta} \leq 70^{\circ} \mathrm{C} * 2$	400	mW
Operating temperature	Topr		-20 to +70	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg		-40 to +125	${ }^{\circ} \mathrm{C}$

*1 Vreg2 : 21 pin output voltage (Reference voltage of PLL) Reference value ($3.0 \mathrm{~V} \pm 0.2 \mathrm{~V}$)
*2 Specified board : $114.3 \mathrm{~mm} \times 76.1 \mathrm{~mm} \times 1.6 \mathrm{~mm}$, glass epoxy board.

- CCB is a registered trademark of SANYO Electric Co., Ltd.
- CCB is SANYO Semiconductor's original bus format. All bus addresses are managed by SANYO Semiconductor for this format.
\square Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment (home appliances, AV equipment, communication device, office equipment, industrial equipment etc.). The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for applications outside the standard applications of our customer who is considering such use and/or outside the scope of our intended standard applications, please consult with us prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.
■ Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

Operating Condition at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Recommended supply voltage	V_{CC}		5.0	V
Operating supply voltage range	$\mathrm{V}_{\text {CC }}$ op		4.0 to 6.0	V

PLL block Allowable Operating Range at $\mathrm{Ta}=-20^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}$ SS $=0 \mathrm{~V}$

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
Input high level voltage	V_{IH}	CE, CL, DI	0.7Vreg2		6.0	V
Input low level voltage	$\mathrm{V}_{\text {IL }}$	CE, CL, DI	0		0.3Vreg2	V
Output voltage	$\mathrm{V}_{\mathrm{O}} 1$	DO	0		6.0	V
	$\mathrm{V}_{\mathrm{O}} 2$	B01, AOUT	0		10	V
Operating frequency	fin^{1}	XIN ; $\mathrm{V}_{\text {IN }}{ }^{1}$		4.5		MHz
	fin^{2}	FMIN ; VIN ${ }^{2}$	10		160	MHz
	fin^{3}	AMIN (SNS = 1) ; $\mathrm{V}_{1} 3$	2		40	MHz
	fin^{4}	AMIN (SNS = 0) ; $\mathrm{V}_{\text {IN }} 4$	0.5		10	MHz

Note : The XIN pin has extremely high input impedance, so that due care must be taken to prevent leakage.
Operating Characteristics at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$, for the specified test circuit.

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
FM-FE characteristics : $\mathrm{fc}=98 \mathrm{MHz}, \mathrm{fm}=1 \mathrm{kHz}, 22.5 \mathrm{kHzdev}$.						
3 dB sensitivity	-3dB LS	$60 \mathrm{~dB} \mu \mathrm{~V}, 22.5 \mathrm{kHzdev}$ output reference, -3dB input		5		$\begin{gathered} \mathrm{dB} \mu \mathrm{~V} \\ \mathrm{EMF} \end{gathered}$
Practical sensitivity	QS	$\mathrm{S} / \mathrm{N}=$ Input at $\mathrm{S} / \mathrm{N}=30 \mathrm{~dB}$		8		$\mathrm{dB} \mu \mathrm{V}$ EMF
FM-EF stereo characteristics : $\mathrm{fc}=98 \mathrm{MHz}, \mathrm{fm}=1 \mathrm{kHz}, 75 \mathrm{kHzdev}, \mathrm{L}+\mathrm{R}=90 \%$, Pilot $=10 \%, \mathrm{~V}_{\text {IN }}=60 \mathrm{~dB} \mu \mathrm{VEMF}$						
Stereo ON bandwidth	ST-BW	ST-ON frequency bandwidth, 18pin (DO) output				kHz
FM-IF monaural characteristics : $\mathrm{fc}=10.7 \mathrm{MHz}, \mathrm{fm}=1 \mathrm{kHz}, 75 \mathrm{kHzdev}$.						
Demodulation output	V_{O}	$100 \mathrm{~dB} \mu \mathrm{~V}$, 12pin output	750	1000	1200	mVrms
Channel balance	CB	$100 \mathrm{~dB} \mu \mathrm{~V}$, 12pin output	-1.0	0	+1.0	dB
Signal to noise ratio	S/N	$100 \mathrm{~dB} \mu \mathrm{~V}$, 12pin output	68	74		dB
AM suppression ratio	AMR	$70 \mathrm{~dB} \mu \mathrm{~V}$ input 12pin output reference, FM $=$ no-mod, $A M=1 \mathrm{kHz}-30 \% \mathrm{mod}$, 12pin output	40	50		dB
Total harmonic distortion (monaural)	THD	$100 \mathrm{~dB} \mu \mathrm{~V}$, 12pin output		0.6	1.5	\%
3 dB sensitivity	3 dB LS	$100 \mathrm{~dB} \mu \mathrm{~V}, 75 \mathrm{kHzdev}$ output reference, -3dB input		38	44	$\mathrm{dB} \mu \mathrm{V}$
IF count sensitivity	IF-C3	SDC0 $=1, \mathrm{SDC} 1=0,18 \mathrm{pin}(\mathrm{DO})$ output	38	46	54	$\mathrm{dB} \mu \mathrm{V}$
Mute attenuation	Mute-Att	$100 \mathrm{~dB} \mu \mathrm{~V}$, 12pin output	60	70		dB
FM-IF stereo characteristics : $\mathrm{fc}=10.7 \mathrm{MHz}, \mathrm{fm}=1 \mathrm{kHz}$, Pilot $=10 \%$						
Separation	SEP	$100 \mathrm{~dB} \mu \mathrm{~V}, \mathrm{~L}+\mathrm{R}=90 \%, \mathrm{~L}-\mathrm{mod},$ 12pin output/13pin output	28	38		dB
Total harmonic distortion (main)	THD-ST	$100 \mathrm{~dB} \mu \mathrm{~V}, \mathrm{~L}+\mathrm{R}=90 \%$, Main-mod, 12pin output		1.0	2.0	\%
Total harmonic distortion (L only)	THD-L	$100 \mathrm{~dB} \mu \mathrm{~V}, \mathrm{~L}+\mathrm{R}=90 \%$, L-mod, 12pin output		0.6	2.0	\%
Stereo ON sensitivity	ST-ON	$100 \mathrm{~dB} \mu \mathrm{~V}, \mathrm{~L}+\mathrm{R}=90 \%$, 18 (DO) pin output	0.6		6.5	\%
AM characteristics : $\mathrm{fc}=1000 \mathrm{kHz}, \mathrm{fm}=1 \mathrm{kHz}, 30 \% \mathrm{mod}$						
Detection output 1	$\mathrm{V}_{\mathrm{O}} 1$	$23 \mathrm{~dB} \mu \mathrm{~V}$, 12pin output	60	120	240	mV rms
Detection output 2	$\mathrm{V}_{\mathrm{O}} 2$	$80 \mathrm{~dB} \mu \mathrm{~V}, 12$ pin output	220	330	440	mVrms
Signal to noise ratio 1	S/N1	$23 \mathrm{~dB} \mu \mathrm{~V}$, 12pin output	15	20		dB
Signal to noise ratio 2	S/N2	$80 \mathrm{~dB} \mu \mathrm{~V}, 12$ pin output	47	54		dB
Total harmonic distortion	THD	$80 \mathrm{~dB} \mu \mathrm{~V}, 12$ pin output		1.2	2.5	\%
IF count sensitivity	IF-C	18pin (DO) output	16	26	36	$\mathrm{dB} \mu \mathrm{V}$
Mute attenuation	Mute-Att	80dB $\mu \mathrm{V}$, 12pin output	54	65		dB

Continued from preceding page.

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
Current drain						
FM tuner	${ }^{\text {I CCFM }}$	No input at FM	25	35	45	mA
AM tuner	${ }^{\text {I CCAM }}$	No input at AM	11	22	33	mA
PLL characteristics						
Built-in return resistor	Rf	XIN		8		$\mathrm{M} \Omega$
Built-in output resistor	Rd	XOUT		250		$\mathrm{k} \Omega$
Hysteresis width	$\mathrm{V}_{\mathrm{HIS}}$	CE, CL, DI		0.1Vreg2		V
Output high level voltage	V_{OH}	$\mathrm{PD} ; \mathrm{l} \mathrm{O}=-1 \mathrm{~mA}$	Vreg2-1.0			V
Output low level voltage	$\mathrm{V}_{\mathrm{OL}}{ }^{2}$	$\mathrm{BO} 1 ; \mathrm{IO}=1 \mathrm{~mA}$			0.25	V
		BO 1 ; $\mathrm{O}=5 \mathrm{~mA}$			1.25	V
	$\mathrm{V}_{\mathrm{OL}}{ }^{3}$	$\mathrm{DO} ; \mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA}$			0.25	V
	$\mathrm{V}_{\mathrm{OL}}{ }^{4}$	AOUT ; $\mathrm{I}=1 \mathrm{~mA}, \mathrm{~A}_{\text {IN }}=2.0 \mathrm{~V}$			0.5	V
Input high level current	${ }_{1+1}{ }^{1}$	CE, CL, DI ; $\mathrm{V}_{\mathrm{I}}=6.0 \mathrm{~V}$			5.0	$\mu \mathrm{A}$
	${ }_{1 H^{2}}$	XIN ; $\mathrm{V}_{\mathrm{l}}=\mathrm{V}_{\mathrm{DD}}$	0.16		0.9	$\mu \mathrm{A}$
	${ }_{1 H^{3}}$	AIN ; $\mathrm{V}_{1}=6.0 \mathrm{~V}$			200	nA
Input low level current	IIL^{1}	CE, CL, DI ; $\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$			5.0	$\mu \mathrm{A}$
	$\mathrm{I}_{\text {IL }}{ }^{\text {IL }}$	XIN ; $\mathrm{V}_{\mathrm{l}}=0 \mathrm{~V}$	0.16		0.9	$\mu \mathrm{A}$
	$\mathrm{I}_{\text {IL }}{ }^{\text {a }}$	AIN $; \mathrm{V}_{\mathrm{l}}=0 \mathrm{~V}$			200	nA
Output off-leak current	IOFF1	AOUT, BO1; $\mathrm{V}_{\mathrm{O}}=10 \mathrm{~V}$			5.0	$\mu \mathrm{A}$
	lofF2	DO; $\mathrm{V}_{\mathrm{O}}=6.0 \mathrm{~V}$			5.0	$\mu \mathrm{A}$

Package Dimensions

unit : mm (typ)
3253B

Composition of DI control data (serial data input)

(1) IN mode

(2) IN2 mode

Description of DI control Data

No.	Control/data	Description					Related data
(1)	Programmable divider data P0 to P15 DVS, SNS	- Data to set the numb LSB varies dependin * LSB : P0 to P3 invalid - Selection of the signa frequency.	of div LSB P0 P0 P4 hen L	ns of program and SNS. is P 4 . N, AMIN) to Input FMIN AMIN AMIN	e divider B ogrammab	ry value using P15 as MSB. divider and switching of the input (*: don't care) Operation frequency range $\begin{aligned} & 10 \text { to } 160 \mathrm{MHz} \\ & 2 \text { to } 40 \mathrm{MHz} \\ & 0.5 \text { to } 10 \mathrm{MHz} \end{aligned}$	
(2)	Reference divider data R0 to R3	- Data to select the reference frequency. * PLL INHIBIT - Programmable divider and IF counter blocks stop, FMIN, AMIN, and IFIN inputs enter the pull-down state (GND), and the charge pump has high impedance.					
(3)	IF counter control data CTE GT0, GT1	- IF counter measurement start data $\text { CTE = } 1: \text { Count start }$ $\text { = } 0 \text { : Count reset }$ - Determines the universal counter measurement time.					IFS
(4)	MUTE IF count output SD time constant changeover control data IFSW	- Data to determine the output of the output port IFSW, controlling the MUTE function, IF count output (*1), and SD time constant changeover circuit (*2). "Data" $=0$: MUTE, IF count output, SD time constant changeover circuit-OFF (during normal reception) 1 : MUTE, IF count output, SD time constant changeover circuit-ON (during search of the desired station) *1 : IF counter buffer output entered in the IF counter circuit of the PLL logic block *2 : The rise time of AM-AGC voltage is shortened through rapid charge to the pin-25 external capacity when IFSW has been set to 1 .					
(5)	FM/AM BAND switch control data BDSW	- Data to determine the output of the output port BDSW, controlling switching of BAND.$\begin{array}{r} \text { "Data" = } 0 \text { : AM } \\ 1: \text { FM } \end{array}$					

Continued from preceding page.

Continued from preceding page.

No.	Control block data	Description	Related data
(14)	Forced monaural control data STSW	- Data to determine the output of the output port STSW, controlling the forced monaural stereo function $\begin{array}{rl} \text { "Data" }=0 & 0: \text { MONO } \\ & 1: \text { STEREO } \end{array}$	
$\begin{aligned} & (15) \\ & (16) \end{aligned}$	SD sensitivity adjustment data SDC0 SDC1	- Data to determine the output of output ports SDC0 and SDC1, setting the SD sensitivity $\begin{aligned} \text { "Data" }= & \text { SDC0 }: 0, \text { SDC1 }: 0 \rightarrow \text { SD sensitivity }=37 \mathrm{~dB} \mu \mathrm{~V}(\mathrm{Typ}) \\ & \text { SDC0 }: 0, \text { SDC1 }: 1 \rightarrow \text { SD sensitivity }=40 \mathrm{~dB} \mu \mathrm{~V}(\mathrm{Typ}) \\ & \text { SDC0 }: 1, \text { SDC1 }: 0 \rightarrow \text { SD sensitivity }=46 \mathrm{~dB} \mu \mathrm{~V}(\mathrm{Typ}) \\ & \text { SDC0 }: 1, \text { SDC1 }: 1 \rightarrow \text { SD sensitivity }=51 \mathrm{~dB} \mu \mathrm{~V}(\mathrm{Typ}) \end{aligned}$	

Composition of the DO control data (serial data output)

(1) OUT mode

Description of DO output data

No.	Control/data	Description	Related data
(1)	Stereo indicator SD indicator Control data STIND, SDIND	- Data latching stereo indicator and SI indicator states. Latch made at a time of the data output mode (OUT mode). STIND \leftarrow Stereo indicator state 0 : ST ON, 1 : ST OFF SDIND \leftarrow SD indicator state 0 : SD ON, 1 : SD OFF	
(2)	PLL unlock data UL	- Data latching the content of the unlock detection circuit $\mathrm{UL} \leftarrow 0$: At unlock 1 : At lock or detection stop mode	ULO UL1
(3)	IF counter Binary counter C19 to C0	- Data latching the content of IF counter (20 bit binary counter) C19 \leftarrow MSB of binary counter CO \leftarrow LSB of binary counter	$\begin{aligned} & \text { CTE } \\ & \text { GT0 } \\ & \text { GT1 } \end{aligned}$

Serial data input (IN1/IN2) tSU, tHD, tEL, tES, $\mathrm{tEH} \geq 0.75 \mu \mathrm{~s} \quad \mathrm{tLC}<0.75 \mu \mathrm{~s}$
(1) CL : normal Hi

(2) CL: normal Low

Serial data output (OUT) tSU, tHD, tEL, tES, $\mathrm{tEH} \geq 0.75 \mu \mathrm{~s}$ tDC, $\mathrm{tDH}<0.35 \mu \mathrm{~s}$

Note : The DO pin is an Nch open drain pin, so that the data change time (tDC, tDH) changes depending on the pull-up resistance and substrate capacity.

Serial data timing

$\ll C L$ stopped at "L" level >>

<< CL stopped at "H" level >>

Parameter	Symbol	Pin	Conditions	Min	Typ	Max	Unit
Data setup time	tSU	DI, CL		0.75			$\mu \mathrm{s}$
Data hold time	tHD	DI, CL		0.75			$\mu \mathrm{s}$
Clock L level time	tCL	CL		0.75			$\mu \mathrm{s}$
Clock H level time	tCH	CL		0.75			$\mu \mathrm{s}$
CE wait time	tEL	CE, CL		0.75			$\mu \mathrm{s}$
CE setup time	tES	CE, CL		0.75			$\mu \mathrm{s}$
CE hold time	tEH	CE, CL		0.75			$\mu \mathrm{s}$
Data latch change time	tLC					0.75	$\mu \mathrm{s}$
Data output time	tDC	DO, CL DO, CE	Varies depending on the pull-up resistance and substrate capacity			0.35	$\mu \mathrm{s}$

Block Diagram

Test Circuit

LV23014T Pin description and pin voltage ($\mathrm{V} \mathrm{CC}=5.0 \mathrm{~V},+\mathrm{B}=9.0 \mathrm{~V}$)

No.	Pin name	Pin description	No input voltage (V)		Internal equivqlent circuit
			AM	FM	
1	AM RF input	Connect the AM ANT coil between this pin and pin 2 (Vreg1).	Vreg1	Vreg1	
2	REG1	Reference voltage of AM/FM, IF/MPX block	2.2	2.2	
3	FM MIX output	Rout $=270 \Omega$	$\begin{gathered} (2 / 3) V_{C C} \\ -0.5 \end{gathered}$	$\begin{gathered} (2 / 3) V_{C C} \\ -0.7 \end{gathered}$	
4	GND1	GND of AM/FM, IF/MPX block	0	0	
5	AM MIX output	Connect the AM MIX coil between this pin and pin $6\left(\mathrm{~V}_{\mathrm{CC}}\right.$ voltage $)$.	V_{CC}	V_{CC}	
6	$\mathrm{V}_{\mathrm{CC}}{ }^{1}$	$\mathrm{V}_{\text {CC }}$ of AM/FM, IF/MPX block	5.0	5.0	
7	AM IF input	Rin $=2 \mathrm{k} \Omega$	Vreg1	Vreg1	
8	FM IF input	Rin $=330 \Omega$	Vreg1	Vreg1	
9	Pilot filter	$\mathrm{R}=10 \mathrm{k} \Omega$	$\mathrm{V}_{\mathrm{CC}}{ }^{-1}$	$\mathrm{V}_{\mathrm{CC}}{ }^{-1}$	

Continued on next page.

Continued from preceding page.

No.	Pin name	Pin description	No input voltage (V)		Internal equivqlent circuit
			AM	FM	
10	Phase comparator filter	$\mathrm{R}=10 \mathrm{k} \Omega$	$\mathrm{V}_{\mathrm{CC}}-1$	$\mathrm{V}_{\mathrm{CC}}-1$	
11	FM DET	Connect the FM DET coil between this pin and pin 6 (V_{CC} voltage). Recommended detection coil : 600BCAS-10790Z by TOKO.	V_{CC}	V_{CC}	
12 13	L output R output	Resistance $2.2 \mathrm{k} \Omega$ for output level adjustments is connected between pin 12/13 and $+\mathrm{B}(+9 \mathrm{~V})$. $R=600 \Omega$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & \hline 6.0 \\ & 6.0 \end{aligned}$	
14	SD IND	SD indicator Active low output. $R=30 \mathrm{k} \Omega$	Vreg2	Vreg2	(21)
15	CE	Chip enable port At changeover from " L " to " H " address latching. At changeover from " H " to "L" data latching.			
16	DI	Serial data input port Sets data in synchronization with rise of data clock.			
17	CL	Data clock input port			
18	DO	Data output port Outputs various data in synchronization with fall of data clock in the out mode.			

Continued on next page.

Continued from preceding page.

No.	Pin name	Pin description	No input voltage (V)		Internal equivqlent circuit
			AM	FM	
19 20	XIN XOUT	Clock for internal reference Connect 4.5 MHz crystal oscillator.			(19) (20)
21	VREG2	Reference voltage of PLL block	3.0	3.0	
22	MPX input	$\mathrm{Rin}=20 \mathrm{k} \Omega$	Vreg1	Vreg1	
23	FM detection output	The separation can be adjusted with an external capacitor connected between this pin and GND. Rout $=3.3 \mathrm{k} \Omega$	0.8	Vreg1	
24	AM detection output	AM low frequency characteristic can be adjusted with an external capacitor connected between this pin and GND. Rout $=5.0 \mathrm{k} \Omega$	2.0	0	
25	AM AGC output	$\mathrm{R}=13.8 \mathrm{k} \Omega$	0.8	0	
26	FM S-meter output and FM SD adjust	The FMSD sencitivity can be adjusted with an external resistor connected between this pin and GND. $\mathrm{R}=14.0 \mathrm{k} \Omega$	0	0.8	
$\begin{aligned} & 27 \\ & 28 \end{aligned}$	AIN AOUT	Nch MOS transistor for PLL active low pass filter.			

Continued on next page.

Continued from preceding page.

No.	Pin name	Pin description	No input voltage (V)		Internal equivglent circuit
			AM	FM	
29	BO1	General purpose output port			
30	AM OSC	AM OSC circuit with ALC AM OSC coil used between pins 31 and 6 (V_{CC} voltage).	V_{CC}	V_{CC}	
31	FM OSC	$\begin{aligned} & \mathrm{R}=10 \mathrm{k} \Omega \\ & \mathrm{C} 1=10 \mathrm{pF} \\ & \mathrm{C} 2=20 \mathrm{pF} \end{aligned}$	V_{CC}	4.95	
32	$\mathrm{V}_{\mathrm{CC}}{ }^{2}$	$\mathrm{V}_{\text {CC }}$ of FM FE block	5.0	5.0	
33 34 35	FM RF output FM bypass FM RF input	FM RF coil used between pins 33 and 32 (V_{CC} voltage). The capacity of 1000 pF is connected between pins 34 and 35 (GND). $\operatorname{Rin}=1.5 \mathrm{k} \Omega$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ 1.6 \\ 0.9 \end{gathered}$	
35	GND2	GND of FM FE block	0	0	

Application Circuit

■ SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein.
\square SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
■ In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.

- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd.
■ Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production.
■ Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellctual property rights which has resulted from the use of the technical information and products mentioned above.

This catalog provides information as of June, 2008. Specifications and information herein are subject to change without notice.

