N-Channel Depletion-Mode Vertical DMOS FETs

Features

- Very low gate threshold voltage
- Design to be source-driven
- Low switching losses
- Low effective output capacitance
- Design for inductive load
- Well matched for low second harmonic

Applications

- Medical ultrasound beamforming
- Ultrasonic array focusing transmitter
- Piezoelectric transducer waveform drivers
- High speed arbitrary waveform generator
- Normally-on switches
- Solid state relays
- Constant current sources
- Power supply circuits

General Description

The Supertex DN2625 is a low threshold depletion-mode (normally-on) transistor utilizing an advanced vertical DMOS structure and Supertex's well-proven silicon-gate manufacturing process. This combination produces a device with the power handling capabilities of bipolar transistors and with the high input impedance and positive temperature coefficient inherent in MOS devices. Characteristic of all MOS structures, this device is free from thermal runaway and thermally-induced secondary breakdown.

Supertex's vertical DMOS FETs are ideally suited to a wide range of switching and amplifying applications where high breakdown voltage, high input impedance, low input capacitance, and fast switching speeds are desired.

Switching Waveforms and Test Circuit

Thermal Characteristics

Package	I_{D} (continuous) ${ }^{1}$ (A)	(A)	$\begin{aligned} & R_{O j A}{ }^{2} \\ & \left({ }^{\circ} \mathrm{C} / W\right) \end{aligned}$	$\begin{gathered} R_{e j c} \\ \left({ }^{\circ} \mathrm{C} / \mathrm{W}\right) \end{gathered}$	$I_{D R}{ }^{1}$ (A)	$I_{\text {DRM }}$ (A)
D-PAK	1.1	3.3	50	5.5	1.1	3.3
14-Lead QFN			45	4.0		

Notes:

1. I (Continuous) is limited by Max. T_{J}
2. 4-layer, 1oz, 3x4inch PCB, with 20 -via for drain pad.

Ordering Information

Device	Package Options		$\begin{aligned} & \mathrm{BV}_{\mathrm{DSx}} / \\ & \mathrm{BV}_{\mathrm{DGX}} \end{aligned}$ (V)	$\begin{aligned} & V_{\text {GS(OFF) }} \\ & (\max V) \end{aligned}$	$\begin{gathered} \mathrm{I}_{\mathrm{Ds}} \\ \left(\mathrm{v}_{\mathrm{cs}}=0.9 \mathrm{~V}\right) \\ (\min A) \end{gathered}$
	$\begin{aligned} & \text { TO-252 } \\ & \text { (D-PAK) } \end{aligned}$	14-Lead QFN $5 \times 5 \mathrm{~mm}$ body, 1.0 mm height (max), 1.27 mm pitch			
DN2625	DN2625K4-G	DN2625K6-G	250	-2.1	3.3

-G indicates package is RoHS compliant ('Green')

Absolute Maximum Ratings

Parameter	Value
Drain-to-source voltage	250 V
Drain-to-gate voltage	250 V
Gate-to-source voltage	$\pm 20 \mathrm{~V}$
Operating and storage temperature	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Soldering temperature*	$300^{\circ} \mathrm{C}$

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Continuous operation of the device at the absolute rating level may affect device reliability. All voltages are referenced to device ground.
*Distance of 1.6 mm from case for 10 seconds.

Pin Configurations

TO-252 D-PAK (top view)

Product Marking

YY = Year Sealed
WW = Week Sealed
L = Lot Number
\qquad = "Green" Packaging

DN2625
LLLLLL
YYWW
AAACCC

L = Lot Number
YY = Year Sealed WW = Week Sealed
A = Assembler ID
C = Country of Origin
\qquad = "Green" Packaging

14-Lead QFN
Electrical Characteristics $@ 25^{\circ} \mathrm{C}$ unless otherwise specified

Symbol	Parameter	Min	Typ	Max	Units	Conditions
$B V_{D S X}$	Drain-to-source breakdown voltage	250	-	-	V	$\mathrm{V}_{G S}=-2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=50 \mu \mathrm{~A}$
$B \mathrm{~V}_{\text {DGX }}$	Drain-to-gate breakdown voltage	250	-	-	V	$\mathrm{V}_{G S}=-2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=50 \mu \mathrm{~A}$
$\mathrm{~V}_{\text {GS(OFF) }}$	Gate-to-source OFF voltage	-1.5	-	-2.1	V	$\mathrm{~V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=100 \mu \mathrm{~A}$
$\Delta \mathrm{~V}_{\text {GS(OFF) }}$	Change in $\mathrm{V}_{G S(\text { OFF) }}$ with temperature	-	-	4.5	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=100 \mu \mathrm{~A}$

Electrical Characteristics (cont) @25 ${ }^{\circ} \mathrm{C}$ unless otherwise specified

Symbol	Parameter	Min	Typ	Max	Units	Conditions
$\mathrm{I}_{\text {Gss }}$	Gate body leakage current	-	-	100	nA	$\mathrm{V}_{\text {GS }}= \pm 20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$
$I_{\text {D(OFF) }}$	Drain-to-source leakage current	-	-	1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\text {DS }}=250 \mathrm{~V}, \mathrm{~V}_{\text {GS }}=-5.0 \mathrm{~V}$
		-	-	200	$\mu \mathrm{A}$	$\begin{aligned} & V_{D S}=250 \mathrm{~V}, \mathrm{~V}_{G S}=-5.0 \mathrm{~V}, \\ & T_{A}=125^{\circ} \mathrm{C} \end{aligned}$
$\mathrm{I}_{\text {DS }}$	Saturated drain-to-source current	1.1	-	-	A	$\mathrm{V}_{G S}=0 \mathrm{~V}, \mathrm{~V}_{\text {DS }}=15 \mathrm{~V}$
$\mathrm{I}_{\text {DS(PULSE) }}$	Pulsed drain-to-source current	3.1	3.3	-	A	$\mathrm{V}_{\mathrm{GS}}=0.9 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=15 \mathrm{~V}$ with duty cycle of 1%
$\mathrm{R}_{\text {DS(ON) }}$	Static drain-to-source ON resistance	-	-	3.5	Ω	$V_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1.0 \mathrm{~A}$
$\Delta \mathrm{R}_{\text {DS(ON) }}$	Change in $\mathrm{R}_{\mathrm{DS}(\text { ON })}$ with temperature	-	-	1.1	\%/ ${ }^{\circ} \mathrm{C}$	$V_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mathrm{~mA}$
$\mathrm{G}_{\text {FS }}$	Forward transconductance	1.0	-	-	mmho	$V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=150 \mathrm{~mA}$
$\mathrm{C}_{\text {ISS }}$	Input capacitance	-	800	1000	pF	$\begin{aligned} & V_{G S}=-2.5 \mathrm{~V}, \\ & V_{D S}=25 \mathrm{~V}, \\ & f=1.0 \mathrm{MHz} \end{aligned}$
$\mathrm{C}_{\text {oss }}$	Common source output capacitance	-	70	210		
$\mathrm{C}_{\text {RSS }}$	Reverse transfer capacitance	-	18	70		
$\mathrm{t}_{\mathrm{d}(\mathrm{ON})}$	Turn-ON delay time	-	-	10	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=25 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{D}}=150 \mathrm{~mA}, \\ & \mathrm{R}_{\mathrm{GEN}}=3.0 \Omega, \\ & \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{v} \text { to }-10 \mathrm{~V} \end{aligned}$
t_{r}	Rise time	-	-	20		
$\mathrm{t}_{\text {d(OFF) }}$	Turn-OFF delay time	-	-	10		
t_{f}	Fall time	-	-	20		
$\mathrm{V}_{\text {so }}$	Diode forward voltage drop	-	-	1.8	V	$\mathrm{V}_{\mathrm{GS}}=-2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{SD}}=150 \mathrm{~mA}$

Typical Performance Curves

Output Characteristics

Typical Performance Curves (cont.)

Transfer Characteristics

BV $_{\text {Dsx }}$ Variation With Temperature

Typical Performance Curves (cont.)

On-Resistance vs Drain Current

Transconductance vs Drain Current

3-Lead TO-252 D-PAK Package Outline (K4)

Side View

Front View

Rear View

Detail B

Notes:

1. 4 terminal locations are shown, only 3 are functional. Lead number 2 was removed.

Symbol		A	A1	b	b2	c2	D	D1	E	E1	e	H	L	L1		L3	L4	L5	θ	01
Dimension (inches)	MIN	. 086	-	. 025	. 030	. 018	. 235	. 205	. 250	. 170	$\begin{aligned} & .090 \\ & \text { BSC } \end{aligned}$. 370	. 055	$\begin{aligned} & .108 \\ & \text { REF } \end{aligned}$	$\begin{aligned} & .020 \\ & \text { BSC } \end{aligned}$. 035	-	. 045	0°	0°
	NOM	-	-	-	-	-	. 240	-	-	-		-	. 060			-	-		-	-
	MAX	. 094	. 005	. 035	. 045	. 035	. 245	-	. 265	-		. 410	. 070			. 050	. 040	. 060	10°	15°

JEDEC Registration TO-252, Variation AA, Issue E, June 2004.
Drawings not to scale.

Supprtex Inc. • 1235 Bordeaux Drive, Sunnyvale, CA 94089 • Tel: (408) 222-8888•FAX: (408) 222-4895 • www.supertex.com

14-Lead QFN Package Outline (K6)
 $5 x 5 \mathrm{~mm}$ body, 1.0 mm height (max), 1.27 mm pitch

Top View

Notes:

1. Details of Pin 1 identifier are optional, but must be located within the indicated area. The Pin 1 identifier may be either a mold, or a marked feature.

Symbol		A	A1	A3	b	D	D2	E	E2	e	AA	BB	CC	DD	θ
Dimension (mm)	MIN	0.80	0.00	$\begin{aligned} & 0.20 \\ & \text { REF } \end{aligned}$	0.46	4.85	4.45	4.85	2.52	$\begin{aligned} & 1.27 \\ & \text { BSC } \end{aligned}$	0.152	0.473	0.66	0.456	0°
	NOM	0.90	0.02		0.51	5.00	4.50	5.00	2.57		0.252	0.523	0.71	0.506	-
	MAX	1.00	0.05		0.58	5.15	4.55	5.15	2.62		0.352	0.583	0.77	0.566	14°

Drawings not to scale.
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to http://www.supertex.com/packaging.html.)

[^0]
[^0]: Supertex inc. does not recommend the use of its products in life support applications, and will not knowingly sell its products for use in such applications, unless it receives an adequate "product liability indemnification insurance agreement". Supertex does not assume responsibility for use of devices described and limits its liability to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions or inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications, refer to the Supertex website: http//www.supertex.com.

