

Vishay High Power Products

Schottky Rectifier, 300 A

PRODUCT SUMMARY				
I _{F(AV)}	300 A			

MECHANICAL DESCRIPTION

The Generation 5 of ADD-A-PAK module combine the excellent thermal performance obtained by the usage of direct bonded copper substrate with superior mechanical ruggedness, thanks to the insertion of a solid copper baseplate at the bottom side of the device.

The Cu baseplate allow an easier mounting on the majority of heatsink with increased tolerance of surface roughness and improved thermal spread.

The Generation 5 of ADD-A-PAK module is manufactured without hard mold, eliminating in this way any possible direct stress on the leads.

The electrical terminals are secured against axial pull-out: they are fixed to the module housing via a click-stop feature already tested and proved as reliable on other Vishay HPP modules.

FEATURES

- 175 °C T_J operation
- Low forward voltage drop
- High frequency operation

- Guard ring for enhanced ruggedness and long term reliability
- UL pending
- Totally lead (Pb)-free, RoHS compliant
- Designed and qualified for industrial level

DESCRIPTION

The VSKCS301.. Schottky rectifier common cathode has been optimized for low reverse leakage at high temperature. The proprietary barrier technology allows for reliable operation up to 175 °C junction temperature.

Typical applications are in high current switching power supplies, plating power supplies, UPS systems, converters, freewheeling diodes, welding, and reverse battery protection.

MAJOR RATINGS AND CHARACTERISTICS					
SYMBOL	CHARACTERISTICS	CHARACTERISTICS VALUES			
I _{F(AV)}	Rectangular waveform	300	А		
V _{RRM}		45	V		
I _{FSM}	t _p = 5 μs sine	16 000	А		
V _F	150 Apk, T _J = 125 °C	0.65	V		
TJ	Range	- 55 to 175	°C		

VOLTAGE RATINGS				
PARAMETER	SYMBOL	VSKCS301/045P	UNITS	
Maximum DC reverse voltage	V _R	45	V	
Maximum working peak reverse voltage	V _{RWM}	45	v	

ABSOLUTE MAXIMUM RATINGS						
PARAMETER		SYMBOL	TEST CONDITIONS		VALUES	UNITS
Maximum average	per module		50 % duty cycle at T_{C} = 109 °C, rectangular waveform		300	
forward current	per leg	I _{F(AV)}			150	
Maximum peak one cycle		I	5 μs sine or 3 μs rect. pulse	Following any rated load condition and with	16 000	A
non-repetitive surge current		IFSM	10 ms sine or 6 ms rect. pulse	rated V_{RRM} applied	3200	
Non-repetitive avalanche energ	ve avalanche energy E_{AS} $T_J = 25 \text{ °C}, I_{AS} = 21 \text{ Amps}, L = 1 \text{ mH}$		202	mJ		
Repetitive avalanche current (p	er leg)	$I_{AR} \begin{array}{c} \mbox{Current decaying linearly to zero in 1 } \mu s \\ \mbox{Frequency limited by } T_J \mbox{ maximum } V_A = 1.5 \ x \ V_R \ types the second $		•	30	А

ELECTRICAL SPECIFICATIONS					
PARAMETER	SYMBOL	L TEST CONDITIONS VALUES L		UNITS	
Maximum forward voltage drop		150 A	T _J = 25 °C	0.79	V
	V _{FM} ⁽¹⁾	300 A		1.09	
	VFM (')	150 A	T _J = 125 °C	0.65	
		300 A		0.91	
Maximum reverse leakage curent	I _{RM} ⁽¹⁾	T _J = 25 °C	V _R = Rated V _R	10	mA
Maximum reverse leakage curent		T _J = 125 °C		90	IIIA
Maximum junction capacitance	CT	$V_{R} = 5 V_{DC}$ (test signal range 100 kHz to 1 MHz) 25 °C		5200	pF
Typical series inductance	L _S	From top of terminal hole to mounting plane		7.0	nH
Maximum voltage rate of change	dV/dt	Rated V _R 10 000		V/µs	
RMS insulation voltage	V _{INS}	50 Hz, circuit to base, all terminals shorted (1 s) 3500		V	

Note

⁽¹⁾ Pulse width < 500 μ s

THERMAL - MECHANICAL SPECIFICATIONS					
PARAMETER		SYMBOL	TEST CONDITIONS	VALUES	UNITS
Maximum junction and storage temperature range		T _J , T _{Stg}		- 55 to 175	°C
Maximum thermal resistance, junction to case per leg		R _{thJC}	DC operation	0.45	°C/W
Maximum thermal resistance, case to heatsink		R _{thCS}	Mounting surface, smooth and greased	0.1	0/00
Approximate weight				110	g
Approximate weight				4	oz.
	to heatsink			5	Nm
Mounting torque ± 10 %	busbar			4	INITI
Case style			JEDEC	TO-240AA	

Schottky Rectifier, 300 A

Vishay High Power Products

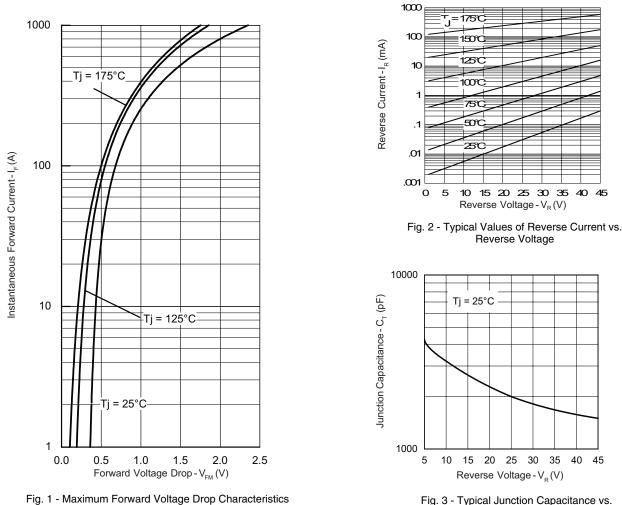


Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage

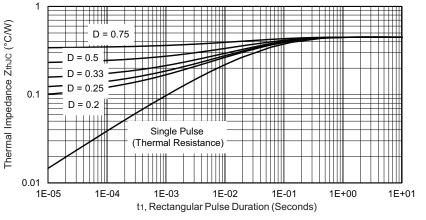
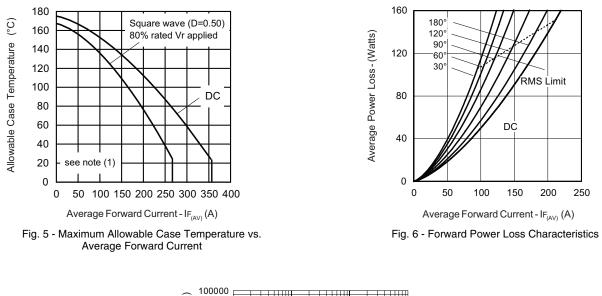
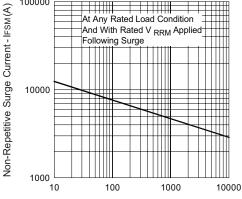




Fig. 4 - Maximum Thermal Impedance Z_{thJC} Characteristics

VSKCS301/045P

Vishay High Power Products Schottky Rectifier, 300 A

Square Wave Pulse Duration - tp(microsec)

Fig. 7 - Maximum Non-Repetitive Surge Current

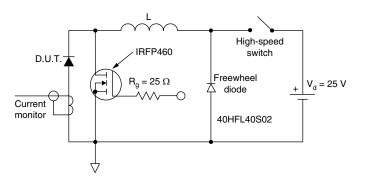
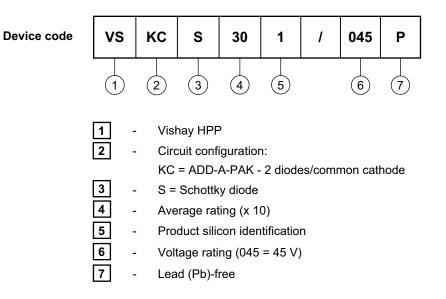
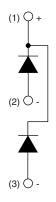


Fig. 8 - Unclamped Inductive Test Circuit

Note


⁽¹⁾ Formula used: $T_C = T_J - (Pd + Pd_{REV}) \times R_{thJC};$ $Pd = Forward power loss = I_{F(AV)} \times V_{FM} at (I_{F(AV)}/D)$ (see fig. 6); $Pd_{REV} = Inverse power loss = V_{R1} \times I_R (1 - D); I_R at V_{R1} = 80 \% rated V_R$


Schottky Rectifier, 300 A

Vishay High Power Products

ORDERING INFORMATION TABLE

CIRCUIT CONFIGURATION

LINKS TO RELATED DOCUMENTS			
Dimensions http://www.vishay.com/doc?95174			

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.