
UART Wrapper

Ho
st

Int
er

fac
e

FIFO(s)
UART Core

Host_registers

UART_RECV

UART_XMIT

UA
RT

_M
OD

EM
UART_INTR

UART_BAUD

UARTM

SIN

SOUT

CTS_N
DSR_N
DCD_N
RI_N
RTS_N
DTR_N
OUT1_N
OUT2_N

A[m:0]
ADS_N
D[7:0]
CS_N
RD_N
WR_N
INTR

CLK

RESET_N Reset

Character
Timeout

Serial
to

Parallel

Parallel
to

Serial

rst
earlyRst

AvnetCore: Datasheet
Multi-Channel UART Controller

Intended Use:
—

Features:
— Function similar to industry standard 16550
— Configurable number of channels of 4, 8 or 16
— Configurable FIFO depths
— Channel baud rates to 115 K Baud
— Inserts or deletes standard asynchronous communication bits
 (start, stop, and parity) to or from the serial data
— Line break and detection

Targeted Devices:
— ProASIC®3
— ProASICPLUS® Family

Core Deliverables:
— Netlist Version
 > Netlist compatible with the Actel Designer place and route tool
— RTL Version
 > VHDL Source Code
 > Verilog Test Bench
— All
 > User Guide

Synthesis and Simulation Support:
— Synthesis: Synplicity®

— Simulation: ModelSim®

— Other tools supported upon request

Verification:
— Test Bench
— Test Cases

TThe Multichannel UART (Universal Asynchronous Receiver/Transmitter) is a FPGA
core that implements up to 16 UARTs in a single Actel device. These UARTs are com-
pletely independent in functionality, but share common logic to reduce its overall size
as compared to individual instantiations. Each UART channel is similar to the industry
standard 16550 device and is an upward solution to standard UARTs by providing
FIFOs in both the transmit and the receive paths.

Version 1.0, July 2006

Block Diagram

General Description
Each channel performs serial-to-parallel conversion on data characters received from a peripheral device, and parallel-to serial conversion on data characters re-
ceived from the CPU. The CPU can read the complete status of each channel at any time. Reported status information includes the type and condition of the transfer
operations being performed, as well as any error conditions (parity, overrun, framing, or break interrupt). Synchronization for the serial data stream is accomplished
by adding start and stops bits to the transmit data to form a data character (character orientated protocol). An optional parity bit can be attached to the data character
to enhance data integrity. The receiver checks the parity bit for any transmission bit errors. The channels of the Multichannel UART (UARTM) are designed to reduce
CPU overhead when working with highspeed modems and other devices, because the core can buffer several bytes and burst them to the CPU instead of generating
a costly interrupt cycle on every byte. Therefore, the interrupt overhead can be amortized over several bytes, thus increasing performance. The core was designed
to be compact by time-slicing a single UART engine instead of instantiating multiple instances. The time-slicing technique allows for the core to be smaller and more
space efficient. Each channel has its own baud rate generator, interrupt controller and prioritizer, receive and transmit FIFOs, and CPU registers. The user has control
over the configuration of the core by modifying the parameters in the top-level source file. This allows the core to be modified and reused easily. These parameters
include number of channels and FIFO depth. The core comes with a testbench to aid the customer with integration and verification.

Figure 1: MC-ACT-UARTM Logic Symbol

Functional Description
The 16550 UARTM is includes a time-division multiplexed (time-sliced) version of the MC-ACT-UART core. The microprocessor interface is similar to the standard
16550 UART interface with the possible inclusion of up to 4 additional address bits to select up to 16 channels. Integration of the core into existing designs that are
replacing an array of discrete chips is easy since each channel is mapped to the standard 16550 register set using the lower three address bits.

TIME-SLICED ARCHITECTURE
The core is time multiplexed across NUM_CHANNELS serial input lines, where NUM_CHANNELS is the number of channels and is either 4, 8 or 16. It is set by the
user when instantiating the core. This means that instead of duplicating the core logic NUM_CHANNELS times, the logic is shared between all channels. This also
means that the logic must retain the state of each channel after each time slice is finished. The state machine and sampling register values of a given channel are
stored in memory or in registers so that they can be reloaded when the time multiplexing returns to the channel NUM_CHANNELS time slices later. This technique
reduces the size of the core.

The time slice period is a function of three constants – the highest baud rate in the system, 16 samples per serial bit, and the number of channels in the system,
NUM_CHANNELS. The time slice period determines what the system clock should be. For example, a system clock of 29.4912 MHz is needed for a 16-channel
system with all channels running at the maximum baud rate of 115,200 bps. (115,200 bps x 16 samples per bit x 16 channels = 29.4912 MHz).

A[m:0]
data_in[7:0]

CS_N

INTR

CPU
Interface

MODEM
and

Status
Interface

SIN[N]
SOUT[N]

CLK

RD_N
WR_N

RESET_N

Note: N = Number of UART Channels

ADS_N

dout_enable
data_out[7:0]

OUT2_N[N]
OUT1_N[N]

DTR_N[N]

RTS_N[N]

CTS_N[N]
DSR_N[N]
DCD_N[N]

RI_N[N]

rst_2_gbuf
earlyRst_2_gbuf

rstfrom rst_2_gbuf
earlyRstfrom earlyRst_2_gbuf

Signal Width Direction Description
a[m:0] m+1 Input Address Bus.

The Address input width is 8 for a 16-channel, 7 for an 8-channel, and 6 for a 4-channel imple-
mentation. The value of “m” is 7, 6, and 5 respectively.
Address bits [m-1:3] are used to select the port. Bits [2:0] are used to select the registers for a
given channel. Address bit m is reserved for future use and must be tied to logic low.

data_in[7:0] 8 Input Data Bus input.
data_out[7:0] 8 Output Data Bus output.
dout_enable 1 Output Data Bus direction control signal. This signal is high, active, during the time data_out[7:0]

should be driven to the external data bus.
ads_n 1 Input Address Strobe

When low, allows the value of a[7:0] and cs_n to propagate into the design. A low to high tran-
sistion latches the contents of a[7:0 and cs_n.

cs_n 1 Input Chip Select.
When low, this signal indicates that the microprocessor has selected this device for an access
operation.

rd_n 1 Input Read Strobe.
When rd transitions low, the contents of the register selected by A[2:0] on the channel selected
by A[6:3] will be driven on the data bus D[7:0].

wr_n 1 Input Write Strobe.
When wr transitions from high to low, the levels of the data bus D[7:0] will be latched to the
register selected by A[2:0] on the channel selected by A[6:3].

intrq 1 Output Interrupt Request.
This signal is high (active) when any channel has an interrupt available for the microprocessor.
An assertion on intrq indicates that the microprocessor should check the status registers on the
sourcing channel.

clk 1 Input Synchronous clocking source.
This clock should be driven at a rate to insure reliable bit timing on the serial interfaces and at a
rate high enough to insure timely host interface A/C timing. A clock rate of of 29.4768 Mhz is the
recommend frequency.

reset_n 1 Input Master Reset (async).
This low-active reset signal must conform to the setup time requirements specified in the data
sheet for the device used.

sin num_channels Input Receive Data.
Receive Serial Data from the UART channel.

sout num_channels Output Transmit Data.
Transmit Serial Data to the UART channel.

cts_n num_channels Input Clear to Send.
When low, this signal indicates that the data set on the UART channel is ready to receive data.
Bit 4 of the MSR register reflects the condition of this line, while bit 0, when high, indicates a
change in the condition of this line.

dsr_n num_channels Input Data Set Ready.
When low, this signal indicates that the data set is powered on. Bit 5 of the MSR register reflects
the condition of this line. Bit 1 of the MSR indicates a change in the condition of this signal when
high.

dcd_n num_channels Input Data Carrier Detect.
When low, this signal indicates that the data set has detected a sinusoidal carrier on the channel
it is monitoring. Bit 7 of the MSR register reflects the condition of this line, while bit 3, when high,
indicates a change in the condition of this signal.

ri_n num_channels Input Ring Indicator.
When low, this signal indicates that the Data Set (a modem) has detected ringing voltage from
the telephone line. Bit 6 of the MSR register reflects the condition of this line, while bit 2, when
high, indicates a change in the condition of this signal.

rts_n num_channels Output Request to Send.
This signal, when driven low, indicates to the data set that the data terminal has data in the
transmit buffer that is ready for transmission. This signal can be asserted by setting bit 1 of the
MCR register.

Signal Width Direction Description
dtr_n num_channels Output Data Terminal Ready.

This signal, when driven low, indicates to the data set that the data terminal is powered up. This
signal can be asserted by setting bit 0 of the MCR register.

out1_n num_channels Output Each channel has 2 general-purpose output pins.
data_out[7:0] num_channels Output Each channel has 2 general-purpose output pins.
rst 1 Input Buffered processed active high reset signal (should come from global buffer output)
earlyRst 1 Input Buffered processed active high early reset signal (should come from global buffer output)
rst_2_gbuf 1 Output Processed active high reset signal (should feed input to global buffer)
earlyRst_2_gbuf 1 Output Processed active high early reset signal (should feed input to global buffer)

Table 1: Top Level Module Signal Descriptions

UARTM
This is the top level of the core. Its main purpose is to serve as a container to instantiate the modules shown in the block diagram.

UART_WRAPPER
The DDR Interface (ddr_interface) module is responsible for maintaining the bi-directional ddr_data bus, and for asserting all address and command signals to the
SDRAM. For a write operation, this module reads from the larger sys_data bus and, using the 2x clock and muxes, constructs the DDR data bus, writing out a new
value on every rising edge of the 2x clock which is strobed into the DDR SDRAM with ddr_dqs. For read operations, the opposite must occur. The Data Path reads in
the DDR data using sys_clk_fb rising edge as the time reference, and de-muxes the data into two separate 1x clock pipelines. These two 1x clock pipelines are then
concatenated to form the larger sys_data bus, which is provided to the user.

Characteristics of this time-sliced UART core with portions of the design which are not time-sliced. To accomplish this interfacing, two modules are provided. A
Parallel to Serial module, named muart_p2s, which receives parallel input (all channels simultaneously) and serializes these terms at the appropriate channel time
slots to the UART core. A Serial to Parallel module, named muart_s2p, which receives the time-sliced output of the UART core, and updates the appropriate channel
state in due time.

UART core
The UART core is a net-list processed standard 8250 UART. This UART consists of 5 blocks, Receive, Transmit, Interrupt, Baud Rate, and Modem which are briefly
described below.

UART_RECV
Receiver. This block filters the serial input data (SIN), detects the start bit, controls the sampling of SIN, determines when a complete character is shifted into the
receive shift register, and stores the received character into the receive FIFO. When the correct number of bytes have been stored in the FIFO as set by bits 6 and
7 of the FIFO control register (FCR), an interrupt is sent to the microprocessor which fetches the byte from the receive holding register (RHR) for the channel that
caused the interrupt. Parity, framing, and overrun errors are detected and their corresponding bits are set in the line status register (LSR). All operations in this block
are synchronous to the system clock CLK and enabled with the receiver clock enable, RX_CE. RX_CE must occur at 16x the expected serial bit rate.

UART_XMIT
Transmitter. This block accepts 8-bit parallel data, stores it onto the FIFO, retrieves it from the FIFO, serializes it, appends start, stop, and parity bits as needed, and
shifts this data out on SOUT. This block generates an interrupt when the external FIFO is empty. All operations in this block are synchronous to CLK and enabled with
the transmitter clock enable, TX_CE, except for writing data to the THR which is synchronous to CLK and enabled with the THR_CE. TX_CE must occur at 16x the
desired serial bit rate.

UART_MODEM
Modem Control and Status Logic. This block provides status of the modem input lines for each channel, both current status and change of state. The modem control
lines are also generated here. An interrupt is generated on the low to high transition of RI_L or any change of state of CTS_L, DCD_L, and DSR_L. All operations in
this block are synchronous to CLK.

UART_INTR
Interrupt Logic. For each channel, this block prioritizes the four interrupt sources and encodes them into a 3-bit Internal version of the Interrupt Status Register value,
ISR[2:0], and sends an internal interrupt request output to the HOST_REGISTERS module which adds FIFO interrupts to the internal version of ISr[2:0]. A 4-bit Inter-
rupt Enable Register input, IER[3:0], allows the user to individually mask each interrupt input. Any active interrupt source that has its corresponding IER bit set, will
cause IRQ to be asserted. In order to clear the interrupt, the action listed in the following table must be performed. In order to determine the exact cause of an inter-
rupt, the microprocessor should read the ISR. If IIR[0] is low, there is a pending interrupt and the source is determined by decoding the Interrupt Status Bits, ISR [2:1].
For a Receiver Line Status Interrupt, the LSR must be read to further determine what type of error or errors have caused the assertion of INTRPT. If LSR[7] is set,
there is either a parity error, framing error, or break indication associated with one of the characters in the Receive FIFO. LSR[4:2] will always reflect the error status
for the character at the top of the FIFO. If the Receive FIFO is empty, LSR[4:2] will be all zeroes.

UART_BAUD
The UART_BAUD block provides each channel with a divide-by-N clock enable based on the CLK input, where N is the 16-bit value of that channel’s Divisor Latch
Register (DLR). This sampling rate represents a frequency that is 16x the desired baud rate for the channel. This oversampling allows the Transmitter and Receiver
Control blocks to properly detect start and stop bits, and to utilize samples during the middle of the bit transmission period to guarantee proper framing of data.
Like the Transmitter and Receiver Control blocks, the UART_BAUD is time multiplexed across the NUM_CHANNELS channels. The logic is shared between all
channels in the same manner as with the other blocks. The state of the UART_BAUD block is stored in memory for each time slice so that it can be restored when
the time multiplexing returns to the channel NUM_CHANNELS time slices later.

The UART_BAUD block uses a counter to delay the toggling of the clock enable by the appropriate number of CLK cycles, as determined by the Divisor Latch Regis-
ter for that channel. If the user modifies the contents of the Divisor Latch Register, the new value will be loaded into the counter on the next successive time slice and
the clock enable signal will reflect the new sampling frequency.

With an input clock to the Core of 1.8423 MHz times the number of Channels, the recommended Divisor Latch settings are provided below for common baud rates.

Table 2: Divisor Latch values for a Core clock of NUM_CHANNELS * 1.8423 MHz

FIFO
The FIFO module is comprised of the RX_FIFO, the TX_FIFO, and the FIFO_CTRL modules.

RX_FIFO
The Receiver FIFO module consists of NUM_CHANNELS independent configurable depth FIFOs. Each FIFO is 11-bits wide to support 8-bit characters plus LSR[4:2]
for that symbol.

When the correct number of bytes have been stored in the FIFO as set by bits 6 and 7 of the FIFO control register (FCR), the Data Ready bit is set for that channel
in the Line Status Register, LSR[0] and an interrupt is sent to the microprocessor which fetches the byte from the receive holding register (RHR) for the channel that
caused the interrupt. Parity, framing, and overrun errors are detected and their corresponding bits are set in the line status register (LSR).

TX_FIFO
The Transmitter FIFO module consists of NUM_CHANNELS independent configurable depth FIFOs. Each FIFO is 8-bits wide to support 8-bit characters.

HOST_REGISTERS
This block implements the bulk of the functionality of the 16550 host interface for all channels. It also contains all the host accessible registers for the design. This
block manages the Interrupt priority and subsequent Interrupt generation for all channels.

HOST_INTF
This block provides support for an asynchronous microprocessor interface, which is used to read and write the register set, and load or unload the FIFOs. The
registers form the bridge between the asynchronous interface, and the all logic that is synchronous to the system clock. They also allow the microprocessor to use
the upper bits of the address lines to select a particular time-slice in register space. The entire address bus, then, selects a particular register in a particular time-slice
or channel.

Divisor Latch BAUD RATE
2304 50
1536 75
1047 110
857 134.5
768 150
384 300
192 600
96 1200
48 2400
32 3600
24 4800
16 7200
12 9600
6 19.2K

3 38.4K
2 57.6K
1 115.2K

RESET
The reset module is responsible for processing the reset signal into two global resets for the remaining logic. These two reset signals activate asynchronously from
the RST_N input, but will deactivate synchronous to the clock. One of these reset outputs “rst_2_gbuf” will extend the duration of the reset by a multiple of the
number of channels clock periods, to allow internal sequencing thru memory structures to initialize state to the required reset values. These two outputs, “rst_2_gbuf”
and “earlyRst_2_gbuf” are driven out of the core. These two outputs should be connected two global buffers and fed back to the core into inputs “rst” and “earlyRst”
respectively. If multiple identical Cores are instantiated into a single device, only one core’s RESET module should be used.

MEMORY MAP & REGISTERS
Each of the channels has 8 registers. The NUM_CHANNELS parameter controls the number of channels actually present. Accesses to unused channels may alias.

Device Requirements
Family Channels Device Utilization Performance

Tiles RAMS
ProASICPLUS 16 APA300 95% 16 34 MHz STD
ProASICPLUS 8 APA150 83% 12 36 MHz STD
ProASICPLUS 4 APA075 97% 12 39 MHz STD

ProASIC3 16 A3P400 64% 10 54/41 MHz -2/STD
ProASIC3 8 A3P400 43% 7 61/45 MHz -2/STD
ProASIC3 4 A3P400 26% 7 60/45 MHz -2/STD
ProASIC3 8 A3P250 65% 7 61/45 MHz -2/STD
ProASIC3 4 A3P125 77% 7 60/44 MHz -2/STD

Table 3: Device Utilization and Performance

Address A[m:0] Contents R/W

0x00 LCR[7] = 0
LCR[7] = 0
LCR[7] = 1

01 LCR[7] = 0
LCR[7] = 1

02

03

04
05
06
07

Channel 0 registers
RHR: Receive Holding Register
THR: Transmit Holding Register
BDL: Baud Divisor ILOW

R
W

R/W
IER: Interrupt Enable Register
BDH: Baud Divisor High

R/W
R/W

IIR: Interrupt Identificiation Register
FCR: FIFO Control Register

R
W

LCR: Line Control Register R/W
MCR: Modem Control Register R/W
LSR: Line Status Register R
MSR: Modem Status Register R
SPR: Scratchpad Register R/W

08 - 0F Channel 1 registers
10 - 17 Channel 2 registers
18 - 1F Channel 3 registers
20 - 27 Channel 4 registers
28 - 2F Channel 5 registers
30 - 37 Channel 6 registers
38 - 3F Channel 7 registers
40 - 47 Channel 8 registers
48 - 4F Channel 9 registers
50 - 57 Channel 10 registers
58 - 5F Channel 11 registers
60 - 67 Channel 12 registers
68 - 6F Channel 13 registers
70 - 77 Channel 14 registers
78 - 7F Channel 15 registers

Verification and Compliance
Functional and timing simulation has been performed on the MultiChannel UART using a self-checking Verilog Test Bench with Verilog test cases.

Timing
Read and Write cycles have a recovery time due to time slicing latency. The recovery time is (3 * NUM_CHANNELS+3)*tCY , where tCY is the cycle time of the input
clock. However, if a FIFO Read immediately follows a FIFO Read, the recovery time is 4*tCY. If a FIFO Write immediately follows a FIFO Write, the recovery time is
4*tCY.

The timing diagrams below reflect ads_n held active, or low.

Since this IP is a core, the effects of part speed grade, family, routing variations, and effects of user logic in placement and routing will have varying degrees of impact
on the timing. The user must take these things in consideration to insure a successful implementation. The Timing information provided in this document, will ad-
dress timing requirements based upon architectural aspects of this IP only.

READ TIMING
The figure below shows the setup times required for a successful read. It also shows the expected delay between the assertion of the rd_n signal, and valid data on
the bus. The data remains valid as long as A, cs_n, and rd_n are held in their active states.

Figure 3: Asynchronous Timing For Reads

Description Min Max
tSUCS Setup time for cs_n with respect to rd_n tCY

tSUA Setup time for A with repect to rd_n tCY

tHCS Hold time for CS with respect to rd_n tCY

tHA Hold time for A with respect to rd_n NUM_CHANNELS*tCY

tDV3 Delay between rd_n assertion (going low) and valid data on the bus 2*tCY

tRD3 rd_n strobe width 2*tCY

trecovery1,2 Delay from previous rd_n or wr_n rising edge to the falling edge of rd_n (3* NUM_CHANNELS+3)*tCY

Table 4: Read Timing Descriptions

Where:
 • NUM_CHANNELS is the number of ports selected of the implementation
 • tCY is the period of the system clock
 • 1 A Read FIFO followed by a Read FIFO of the same channel requires a recovery time (trecovery) of a minimum of 4*tCY .
 • 2 A Write MCR followed by a Read MSR with MCR[4] (Loop) equal 1, requires a recovery time of (8 * NUM_CHANNELS+3)* tCY.
 • 3 The rd_n input signal is sampled a minimum of 2 times by the clock. If the host interface is not synchronous to the rising edge of the clock, increase
 the width of the rd_n signal accordingly.

cs_n

rd_n

data_out

A

Data Valid

t DV

t SUCS

t SUA

wr_n

t recovery 1,2

t RD

t HCS

t HA

WRITE TIMING
The figure below shows the setup and hold times required for a successful write. Write data is captured with the rising edge of wr_n and is written to the appropriate
location within the UARTM within the recovery time. Read or write accesses during the recovery time is not permitted. The recovery time is relaxed during back to
back write cycles to the TX FIFO.

Figure 4: Asynchronous Timing For Writes

Description Min Max
tWR wr_n strobe width 2*tCY

tSUD Setup time for D with respect to rising edge of wr_n tCY

tSUCS Setup time for cs_n with respect to falling edge of wr_n tCY

tSUA Setup time for A with respect to falling edge of wr_n tCY

tHD Hold time for data_in with respect to rising edge of wr_n tCY

tHA Hold time for A with respect to rising edge of wr_n NUM_CHANNELS*tCY

tHCS Hold time for cs_n with respect to rising edge of wr_n tCY

trecovery1 Delay from previous rd_n or wr_n rising edge to the falling edge of wr_n (3*NUM_CHANNELS+3)*tCY

Table 4: Write Timing Descriptions

Where:
 • tCY is the period of the system clock
 • 1 A Write FIFO followed by a Write FIFO of the same channel requires a recovery time (trecovery) of a minimum of 4*tCY.

RESET TIMING
After initiating a reset to the core, allow a minimum of (8 * NUM_CHANNELS+3)*tCY after the trailing edge of reset prior to using the device. This delay is needed for
the synchronous clearing of state in each of the channels. The reset pulse with should be greater than tCY wide.

cs_n

wr_n

data_in

A

Data Valid

t SUD t HD

t SUCS

t SUA

t HA

t HCS

t WR

rd_n

t recovery 1

Ordering Information:
Part Number Hardware Resale
MC-ACT-UARTM-NET Actel MultiChannel UART Netlist Contact for pricing
MC-ACT-UARTM-VHDL Actel MultiChannel UART VHDL Contact for pricing

www.em.avnet.com/actel
Copyright © 2006 Avnet, Inc. AVNET and the AV logo are registered trademarks of Avnet, Inc. All other brands are the property of their respective owners.

AEM-MC-ACT-UARTM-DS v.1.0-July 2006

Contact Information:
North America
10805 Rancho Bernardo Road
Suite 100
San Diego, California 92127
United States of America
TEL: +1 858 385 7500
FAX: +1 858 385 7770

Europe, Middle East & Africa
Mattenstrasse 6a
CH-2555 Brügg BE
Switzerland
TEL: +41 0 32 374 32 00
FAX: +41 0 32 374 32 01

Recommended Design Experience
For the source version, users should be familiar with HDL entry and Actel design flows. Users should be familiar with Actel Libero Integrated Design Environment
(IDE) and preferably with Synplify and ModelSim. Users should also have experience with microprocessor systems and asynchronous communication controllers.

Ordering Information
The CORE is provided under license from Avnet Memec for use in Actel programmable logic devices. Please contact Avnet Memec for pricing and more information.

Information furnished by Avnet Memec is believed to be accurate and reliable. Avnet Memec reserves the right to change specifications detailed in this data sheet at
any time without notice, in order to improve reliability, function or design, and assumes no responsibility for any errors within this document. Avnet Memec does not
make any commitment to update this information.

Avnet Memec assumes no obligation to correct any errors contained herein or to advise any user of this text of any correction, if such be made, nor does the Com-
pany assume responsibility for the functioning of undescribed features or parameters. Avnet Memec will not assume any liability for the accuracy or correctness of
any support or assistance provided to a user.

Avnet Memec does not represent that products described herein are free from patent infringement or from any other third-party right. No license is granted by
implication or otherwise under any patent or patent rights of Avnet Memec.

AvnetCore products are not intended for use in life support appliances, devices, or systems. Use of a AvnetCore product in such application without the written
consent of the appropriate Avnet Design officer is prohibited.

All trademarks, registered trademarks, or service marks are property of their respective owners.

