

Features

- ► Free from secondary breakdown
- Low power drive requirement
- Ease of paralleling
- Low C_{ISS} and fast switching speeds
- Excellent thermal stability
- Integral Source-Drain diode
- ► High input impedance and high gain
- Complementary N- and P-Channel devices

Applications

- Motor controls
- Converters
- Amplifiers
- Switches
- Power supply circuits
- Drivers (relays, hammers, solenoids, lamps, memories, displays, bipolar transistors, etc.)

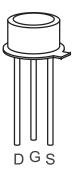
General Description

The Supertex 2N6660 and 2N6661 are enhancement-mode (normally-off) transistors that utilizes a vertical DMOS structure and Supertex's well-proven silicon-gate manufacturing process. This combination produces devices with the power handling capabilities of bipolar transistors, and the high input impedance and positive temperature coefficient inherent in MOS devices. Characteristic of all MOS structures, these devices are free from thermal runaway and thermally-induced secondary breakdown.

Supertex's vertical DMOS FETs are ideally suited to a wide range of switching and amplifying applications where very low threshold voltage, high breakdown voltage, high input impedance, low input capacitance, and fast switching speeds are desired.

Ordering Information

Device	Package	BV _{DSS} /BV _{DGS} (V)	R _{DS(ON)} (max) (Ω)	I _{D(ON)} (min) (A)	
2N6660	TO-39	60	3.0	1.5	
2N6661	TO-39	90	4.0	1.5	


Absolute Maximum Ratings

Parameter	Value			
Drain to source voltage	BV _{DSS}			
Drain to gate voltage	BV _{DGS}			
Gate to source voltage	±20V			
Operating and storage temperature	-55°C to +150°C			
Soldering temperature ¹	+300°C			

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Continuous operation of the device at the absolute rating level may affect device reliability. All voltages are referenced to device ground.

Note 1. Distance of 1.6mm from case for 10 seconds.

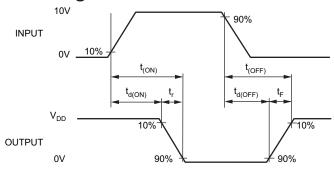
Pin Configuration

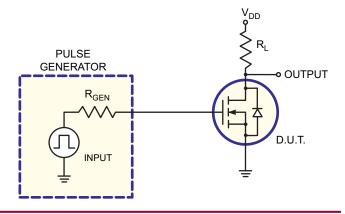
TO-39

Case: DRAIN

Electrical Characteristics ($T_c = 25^{\circ}$ C unless otherwise specified)

Symbol	Parameter		Min	Тур	Max	Units	Conditions	
D\/	Drain-to-source break- down voltage	2N6660	60	-	-	V	\/ - 0\/ - 10uA	
BV _{DSS}		2N6661	90	-	-		$V_{GS} = 0V$, $I_D = 10\mu A$	
$V_{\rm GS(th)}$	Gate threshold voltage	0.8	-	2.0	V	$V_{GS} = V_{DS}$, $I_{D} = 1.0 \text{mA}$		
$\Delta V_{GS(th)}$	V _{GS(th)} change with temperature		ı	-3.8	-5.5	mV/°C	$V_{GS} = V_{DS}$, $I_{D} = 1.0$ mA	
I _{GSS}	Gate body leakage current	ı	-	100	nA	$V_{GS} = \pm 20V$, $V_{DS} = 0V$		
		-	-	10		$V_{GS} = 0V$, $V_{DS} = Max rating$		
I _{DSS}	ero gate voltage drain current		-	-	500	μA	$V_{DS} = 0.8$ Max Rating, $V_{GS} = 0V$, $T_{A} = 125^{\circ}C$	
I _{D(ON)}	ON-state drain current	1.5	-	-	А	$V_{GS} = 10V, V_{DS} = 10V$		
	Static drain-to-source ON-state resistance	All	ı	-	5.0	Ω	$V_{GS} = 5.0V, I_{D} = 0.3A$	
R _{DS(ON)}		2N6660	-	-	3.0		$V_{GS} = 10V, I_{D} = 1.0A$	
		2N6661	-	-	4.0		$V_{GS} = 10V, I_{D} = 1.0A$	
G _{FS}	Forward transconductance			-	-	mmho	$V_{DS} = 25V, I_{D} = 0.5A$	
C _{ISS}	Input capacitance		-	-	50		V _{GS} = 0V,	
C _{oss}			-	-	40	pF	$V_{DS} = 24V$,	
C _{RSS}			-	-	10		f = 1.0MHz	
t _(ON)				-	10	ns	$V_{DD} = 25V, I_{D} = 1.0A,$ $R_{GEN} = 25\Omega$	
				-	10	115		
V _{SD}				1.2	-	V	$V_{GS} = 0V, I_{SD} = 1.0A$	
t _{rr}	Reverse recovery time	-	350	-	ns	$V_{GS} = 0V, I_{SD} = 1.0A$		

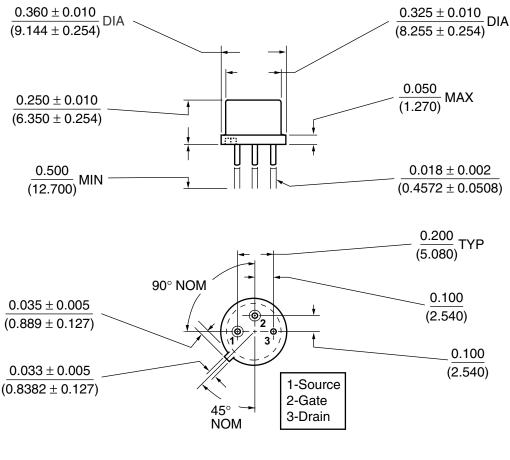

Notes:


Thermal Characteristics

Device	Package	l _D (continuous) [*] (mA)	I _D (pulsed) (A)	Power Dissipation @T _c = 25°C (W)	θ _{jc} (°C/W)	θ _{ja} (°C/W)	I _{DR} * (mA)	I _{DRM} (A)
2N6660	TO-39	410	3.0	6.25	20	125	410	3.0
2N6661	TO-39	350	3.0	6.25	20	125	350	3.0

Notes:

Switching Waveforms and Test Circuit



 $^{1. \}textit{All D.C. parameters } 100\% \ \textit{tested at } 25^{\circ} \textit{C unless otherwise stated.} \ \textit{(Pulse test: } 300 \mu \textit{s pulse, } 2\% \ \textit{duty cycle.)}$

^{2.}All A.C. parameters sample tested.

^{*} I_D (continuous) is limited by max rated T_J.

TO-39 Package Outline

 $Measurement Legend = \frac{Dimensions in Inches}{(Dimensions in Millimeters)}$

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to http://www.supertex.com/packaging.html.)

Supertex inc. does not recommend the use of its products in life support applications, and will not knowingly sell its products for use in such applications, unless it receives an adequate "product liability indemnification insurance agreement". **Supertex** does not assume responsibility for use of devices described and limits its liability to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions or inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications, refer to the **Supertex** website: http://www.supertex.com.

©2007 **Supertex inc.** All rights reserved. Unauthorized use or reproduction is prohibited.

www.supertex.com