

RD15LD74AP, RD15LD74ANP, RD15LD74AT

8-bit D-type Flip-Flop Driver (with Clear)

REJ03D0894-0300 Rev.3.00 Feb 29, 2008

Description

RD15LD74AP, RD15LD74ANP, RD15LD74AT have eight D-type flip-flop drivers and high voltage NMOS output (open drain output) in a 20 pin package. Each bit, there are a common clear and clock input. The input signal is output with the rising edge of clock signals. The voltage of maximum 15 V can be impressed to the drain-source voltage.

Features

• Application of amusement equipment.

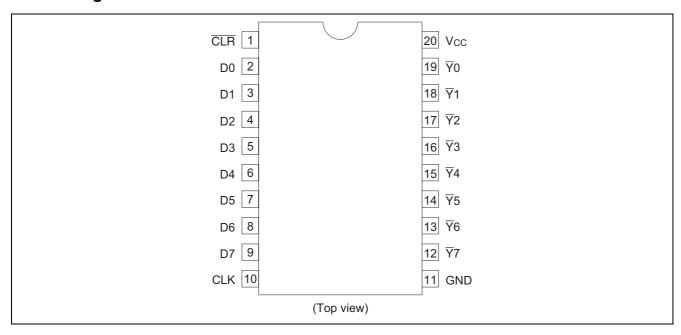
• Output voltage : V_{DS} (max) = 15 V

• Output current : I_{DS} (max) = 200 mA (par pin)

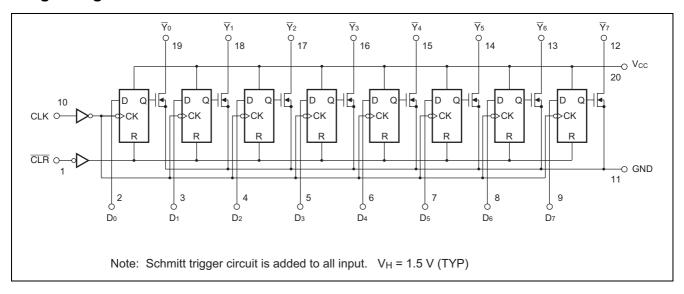
• Supply voltage range: 3.0 to 5.5 V

• Operating temperature range : -20 to +85 °C

• Quiescent supply current : 5 μA max.


• Low input current : 1 μA max.

• Ordering Information


Part Name	Package Type	Package Code (Previous Code)	Package Abbreviation	Packing Abbreviation (Quantity)	Surface Treatment
RD15LD74APT0	SDIP-20 pin	PRDP0020BA-A (20P4B)	Р	T (1,125 pcs/box)	0 (Sn-Cu)
RD15LD74ANPT0	DILP-20 pin	PRDP0020AC-B (DP-20NEV)	Р	T (1,000 pcs/box)	0 (Ni/Pd/Au)
RD15LD74ATH0	TSSOP-20 pin	PTSP0020JB-A (TTP-20DAV)	Т	H (2,000 pcs/reel)	0 (Ni/Pd/Au)

Note: Please consult the sales office for the above package availability.

Pin Arrangement

Logic Diagram

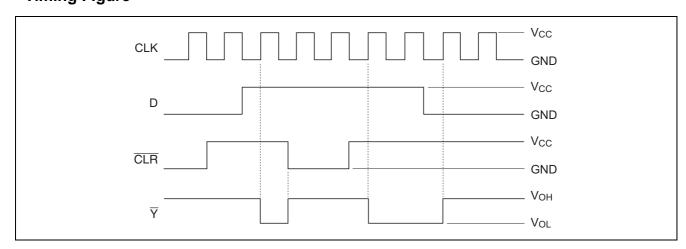
Function Table

	Output		
CLR	CLK	D	\overline{Y}
L	X	X	Z
Н	↑	L	Z
Н	↑	Н	L
Н	L	X	Y ₀
Н	\	X	Y ₀

H: High level

L : Low level

X : Immaterial


Z : High Impedance

 $\ensuremath{\uparrow}$: Low to High transition

↓ : High to Low transition

 Y_0 : Level of \overline{Y} before the indicated steady input conditions were established.

Timing Figure

Absolute Maximum Ratings

Item	Symbol	Ratings	Unit		Conditions
Supply voltage	V_{CC}	6.5	V		
Input voltage	VI	-0.5 to V_{CC}	V		
Output voltage	V_{DS}	-0.5 to 15	V	Output: "Z" (off)	
Output current	I _{DS}	200	mA	Output: "on", Current of one circuit	
Maximumana		1.47		SDIP	Ta = 25°C
Maximum power dissipation *1	P _T	1.38	W	DILP	Base implementation
uissipation		0.76		TSSOP	base implementation
Storage temperature	Tstg	-55 to +125	°C		

Note: The absolute maximum ratings are values which must not individually be exceeded, and furthermore no two of which may be realized at the same time.

Recommended Operating Conditions

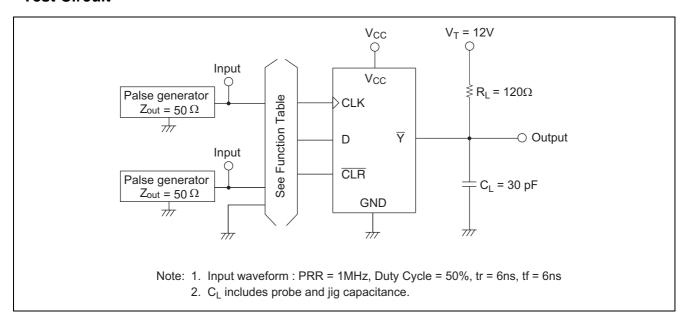
Item	Symbol	Ratings		Unit		Conditions
Supply voltage	V_{CC}	3.0	5.5	V		
Input voltage	Vı	0	V _{CC}	V		
Output voltage	V_{DS}	0	15	V	Output "Z"	(off)
	I _{DS}	0	200	mA	SDIP	Duty cycle ≤ 60%
Output current		0	150		SDIF	Duty cycle ≤ 100%
(Current of an one circuit,		0	200	mA	DILP	Duty cycle ≤ 55%
when eight circuit		0	140			Duty cycle ≤ 100%
operation)		0	200	mA	TSSOP	Duty cycle ≤ 25%
		0	105		13306	Duty cycle ≤ 100%
Input rise / fall time	t _r , t _f	0	500	ns	V _{CC} = 3.0 V, 4.5 V	
Operating temperature	Та	-20	85	°C		

Note: Unused or floating inputs must be held high or low.

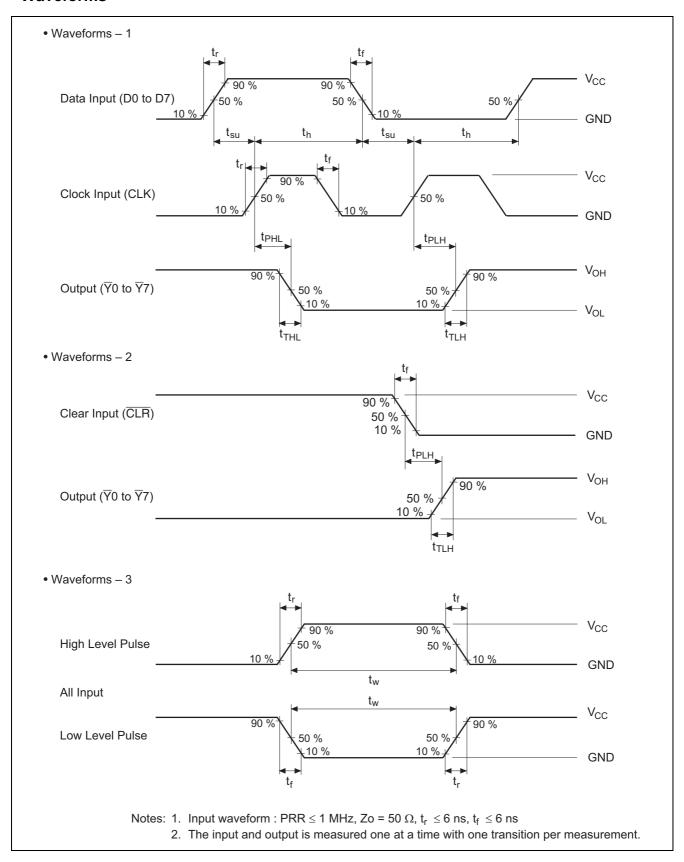
Electrical Characteristics

 $(Ta = -20 \text{ to } +85^{\circ}C)$

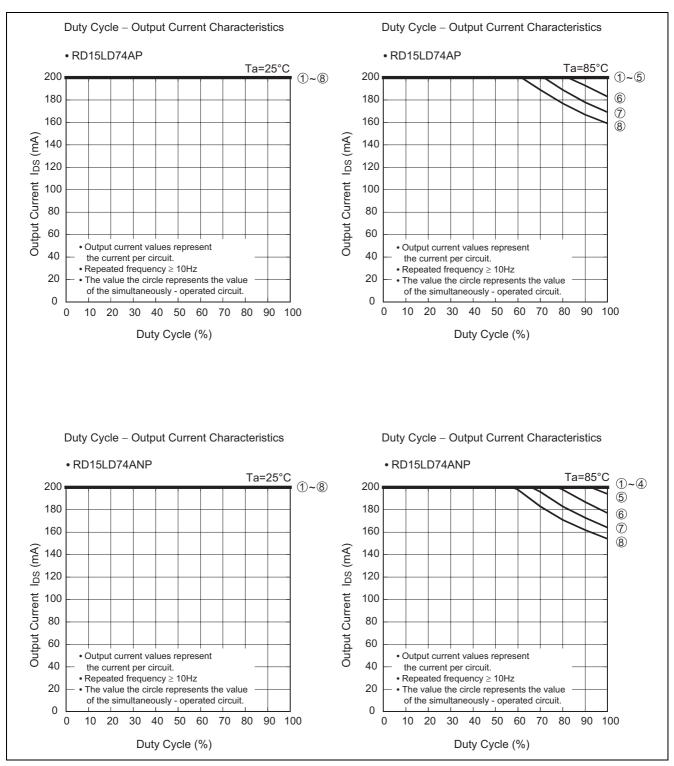
Item	Symbol	VCC (V)	Ratings			Unit	Conditions	
item		VCC (V)	Min	Тур	Max	Onit	Conditions	
	V _{IH}	3.0 to 3.6	V _{CC} ×0.84		_	V		
Input voltage	VIH	4.5 to 5.5	V _{CC} ×0.76		_	V		
input voitage	VIL	3.0 to 3.6	_		V _{CC} ×0.16	>		
	V IL	4.5 to 5.5	_		V _{CC} ×0.24			
		3.0 to 3.6	_	0.30	0.45		I _{DS} = 100 mA	
Outrout valtage	V _{DS}	4.5 to 5.5	_	0.25	0.38	V	IDS = TOO IIIA	
Output voltage		3.0 to 3.6	_	0.60	0.90		I _{DS} = 200 mA	
		4.5 to 5.5	_	0.51	0.77			
"H" input current	I _{IH}	3.0 to 5.5	_	0.005	1.0	μΑ	$V_I = V_{CC}$	
"L" input current	I _{IL}	3.0 to 5.5	_	0.005	-1.0	μΑ	$V_I = 0 V$	
Quiocoont cumply	Icc	5.5		0.005 5.0	5.0		All output "Z" (off)	
Quiescent supply current		5.5	_		μΑ	$V_I = V_{CC}$ or GND		
		5.5	_	0.005	5.0		All output "on", $V_I = V_{CC}$ or GND	
Output off state	I _{DS}	5.0		0.002	5.0	μА	V _{DS} = 12 V	
leak current	.00	0.0		0.002	0.0	μ/ (100 - 12	
Output on resister	R _{DS}	4.5	_	2.5	3.8	Ω	I _{DS} = 100 mA	

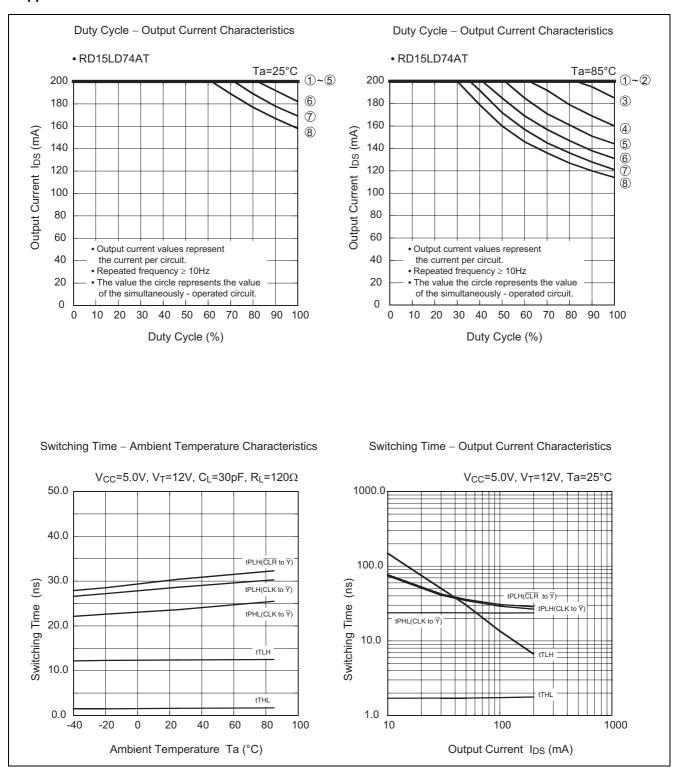

^{1.} The maximum package power dissipation was calculated using a junction temperature of 150°C

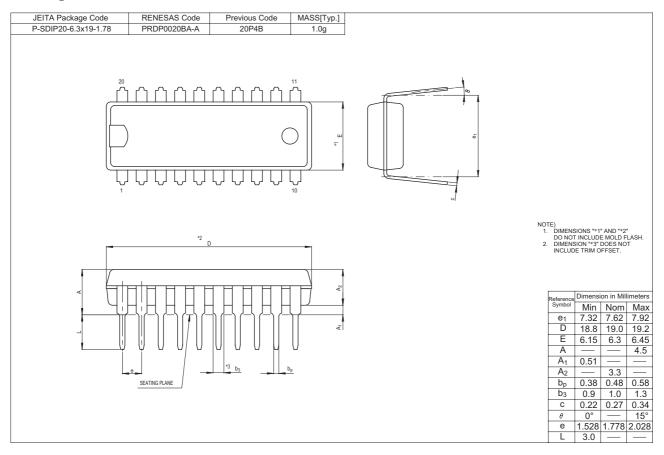
Switching Characteristics

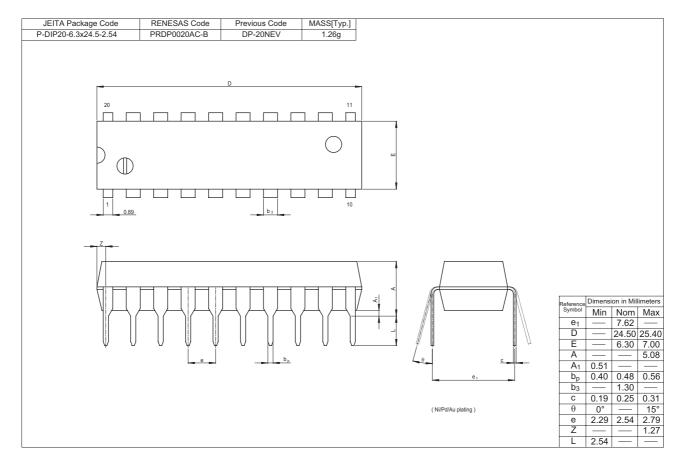

 $(Ta = -20 \text{ to } +85^{\circ}\text{C}, CL = 30 \text{ pF}, tr = tf = 6 \text{ ns})$

Item	Symbol	VCC (V) Ratings		Unit	Conditions		
item	Syllibol	VCC (V)	Min	Max	Unit	Conditions	
Maximum clock	f _{max}	3.3 ± 0.3		15	MHz		
frequency	ımax	5.0 ± 0.5	_	20	IVII IZ		
Propagation delay	t	3.3 ± 0.3	1.0	65	ns	CLK, $\overline{\text{CLR}}$ to $\overline{\text{Y}}$	
time	t _{PLH}	5.0 ± 0.5	1.0	50	115	CLN, CLN to 1	
Propagation delay	t	3.3 ± 0.3	1.0	60	ns	CLK to \overline{Y}	
time	t _{PHL}	5.0 ± 0.5	1.0	45	115	CLN 10 Y	
Setup time	t _{su}	3.3 ± 0.3	25	_	ns	D to CLK	
Setup time		5.0 ± 0.5	20	_	115	D to CLN	
Hold time	t _h	3.3 ± 0.3	3	_	ns	CLK to D	
i ioid time		5.0 ± 0.5	3	_	115	CLK 10 D	
Pulse width	t _W	3.3 ± 0.3	50	_	ns	CLK, CLR	
Puise width		5.0 ± 0.5	40	_	115		
Output rise time	t _{TLH}	3.3 ± 0.3	_	30	ns	Ÿ	
		5.0 ± 0.5	_	20	TIS	'	
Output fall time	e t _{THL}	3.3 ± 0.3	_	10	ns	Ÿ	
		5.0 ± 0.5	_	5	115	T	

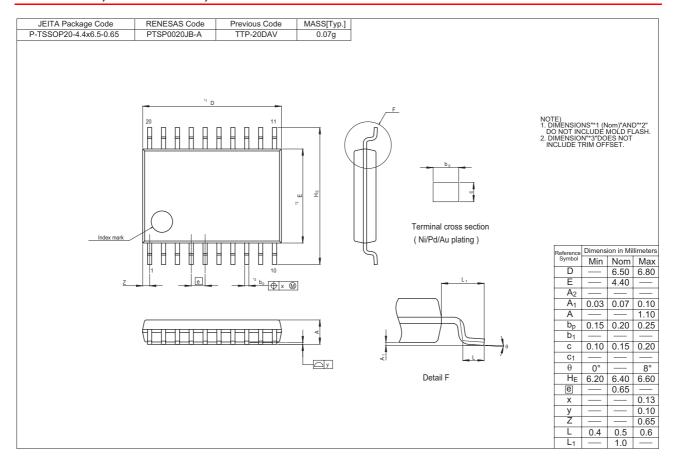

Test Circuit


Waveforms


Application Data



Application Data



Package Dimensions

RD15LD74AP, RD15LD74ANP, RD15LD74AT

Renesas Technology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Renesas lechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Notes:

 1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warrantes or representations with respect to the accuracy or completeness of the information in this document nor grants any license to any intellectual property girbs to any other rights of representations with respect to the information in this document in this document of the purpose of the respect of the information in this document in the product data, diagrams, charts, programs, algorithms, and application circuit examples.

 3. You should not use the products of the technology described in this document for the purpose of military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations, and procedures required to change without any plan protein. Before purchasing or using any Renesas products listed in this document, in the such procedure in the procedure of the development of the development of the development of the procedure of the development of the de

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510