

M62352P/FP/GP

8-bit 12ch D/A Converter with Buffer Amplifiers

REJ03D0868-0300 Rev.3.00 Mar 25, 2008

Description

The M62352 is an integrated circuit semiconductor of CMOS structure with 12 channels of built-in D/A converters with output buffer operational amplifiers.

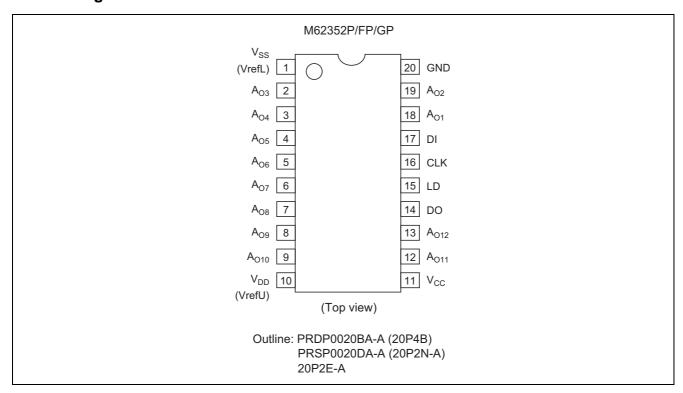
The 3-wire serial interface method is used for the transfer format of digital data to allow connection with microcomputer with minimum wiring.

It is able to cascading serial use with DO terminal.

The output buffer operational amplifier operates in the whole voltage range from power supply to ground for both input/output.

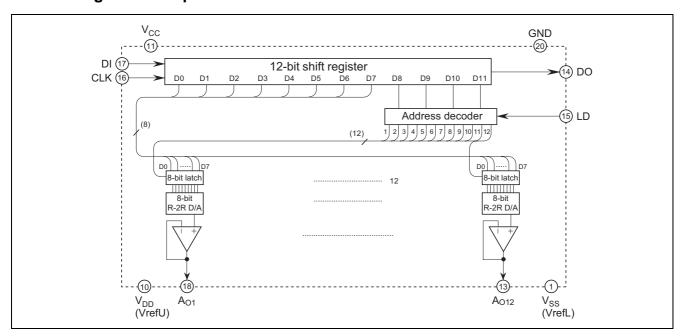
Features

- 12-bit serial data input (3-wire serial data transfer method)
- Highly stable output buffer operational amplifier allow operation in the all voltage range from power supply to ground.


Application

Adjustment/control of industrial or home-use electronic equipment, such as VTR camera, VTR set, TV, and CRT display.

Block Diagram


Pin Arrangement

Pin Description

Pin No.	Pin Name	Function
17	DI	Serial data input terminal
14	DO	Serial data output terminal
16	CLK	Serial clock input terminal
15	LD	LD terminal input high level then latch circuit data load
18	A _{O1}	8-bit D/A converter output terminal
19	A _{O2}	
2	A _{O3}	
3	A _{O4}	
4	A _{O5}	
5	A _{O6}	
6	A _{O7}	
7	A _{O8}	
8	A _{O9}	
9	A _{O10}	
12	A _{O11}	
13	A _{O12}	
11	Vcc	Power supply terminal
20	GND	Digital and analog common GND
10	V_{DD}	D/A converter upper reference voltage input terminal
1	V _{SS}	D/A converter lower reference voltage input terminal

Block Diagram for Explanation of Terminals

Absolute Maximum Ratings

Item	Symbol	Ratings	Unit
Supply voltage	V _{CC}	-0.3 to +7.0	V
D/A converter upper reference voltage	V _{DD}	-0.3 to +7.0	V
Input voltage	V _{IN}	-0.3 to V _{CC} + 0.3	V
Output voltage	Vo	-0.3 to V _{CC} + 0.3	V
Power dissipation	Pd	350 (P) / 300 (FP) / 150 (GP)	mW
Operating temperature	Topr	-20 to +85	°C
Storage temperature	Tstg	-40 to +125	°C

Electrical Characteristics

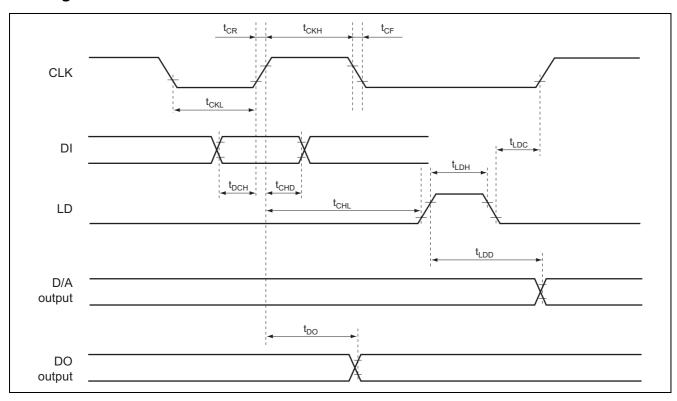
Digital Part

 $(V_{CC}, VrefU = +5 \ V \pm 10\%, V_{CC} \geq VrefU, GND, VrefL = 0 \ V, Ta = -20^{\circ}C \ to \ +85^{\circ}C, unless \ otherwise \ noted)$

			Limits			
Item	Symbol	Min	Тур	Max	Unit	Test Conditions
Supply voltage	Vcc	4.5	5.0	5.5	V	
Circuit current	Icc	_	1.6	3.2	mA	CLK = 1 MHz operation
						$I_{OA} = 0 \mu A$
Input leak current	I _{ILK}	-10	_	10	μΑ	$V_{IN} = 0$ to V_{CC}
Input low voltage	V _{IL}	_	_	0.2 V _{CC}	V	
Input high voltage	V _{IH}	0.8 V _{CC}	_	_	V	
Output low voltage	V _{OL}	_	_	0.4	V	I _{OL} = 2.5 mA
Output high voltage	V _{OH}	V _{CC} - 0.4	_	_	V	I _{OH} = -400 μA

Analog Part

(V_{CC}, VrefU = +5 V \pm 10%, V_{CC} \geq VrefU, Ta = -20°C to +85°C, unless otherwise noted)


		Limits				
Item	Symbol	Min	Тур	Max	Unit	Test Conditions
Current dissipation	I _{DD}	_	1.5	3.5	mA	VrefU = 5 V, VrefL = 0 V, I_{AO} = 0 μ A
						Data condition; at maximum current
D/A converter upper	V_{DD}	3.5	_	V_{CC}	V	The output dose not necessarily be
reference voltage range						the value within the reference voltage
D/A converter lower	V_{SS}	GND	_	$V_{CC} - 3.5$	V	setting range. The output value is
reference voltage range						determined by the buffer amplifier
						output voltage range (V _{AO})
Buffer amplifier output	V_{AO}	0.1	_	V _{CC} - 0.1	V	$I_{OA} = \pm 100 \mu A$
voltage range		0.2	_	$V_{CC}-0.2$		$I_{OA} = \pm 500 \mu A$
Buffer amplifier output	I _{AO}	-1	_	1	mA	Upper side saturation voltage = 0.3 V
drive range						Lower side saturation voltage = 0.2 V
Differential nonlinearity	S _{DL}	-1.0	_	1.0	LSB	VrefU = 4.79 V
error						VrefL = 0.95 V
Nonlinearity error	S _L	-1.5	_	1.5	LSB	V _{CC} = 5.5 V (15 mV/LSB)
Zero code error	S _{ZERO}	-2	_	2	LSB	Without load ($I_{OA} = \pm 0 \mu A$)
Full scale error	S _{FULL}	-2	_	2	LSB	
Output capacitive load	Co		_	0.1	μF	
Buffer amplifier output	Ro	_	5	_	Ω	
impedance						

AC Characteristics

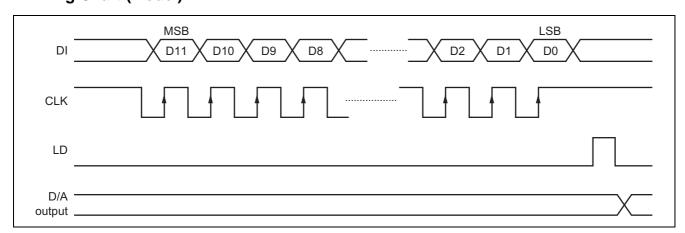
 $(V_{CC}, VrefU = +5 V \pm 10\%, V_{CC} \ge VrefU, GND, VrefL = 0 V, Ta = -20 to +85$ °C, unless otherwise noted)

		Limits				
Item	Symbol	Min	Тур	Max	Unit	Test Conditions
Clock "L" pulse width	t _{CKL}	200	_	_	ns	
Clock "H" pulse width	t _{CKH}	200	_	1	ns	
Clock rise time	t _{CR}	_	_	200	ns	
Clock fall time	t _{CF}	_	_	200	ns	
Data setup time	t _{DCH}	30	_	1	ns	
Data hold time	t _{CHD}	60	_	1	ns	
LD setup time	t _{CHL}	200	_	1	ns	
LD hold time	t _{LDC}	100	_	1	ns	
LD "H" pulse width	t _{LDH}	100	_	_	ns	
Data output delay time	t _{DO}	70	_	350	ns	$C_L \le 100 \text{ pF}$
D/A output setting time	t _{LDD}	_	_	300	μS	$C_L \le 100 \text{ pF V}_{AO}$: $0.5 \leftrightarrow 4.5 \text{ V}$
						The time until the output becomes the final value of 1/2 LSB

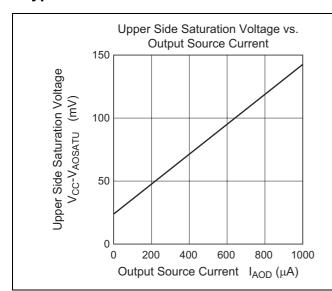
Timing Chart

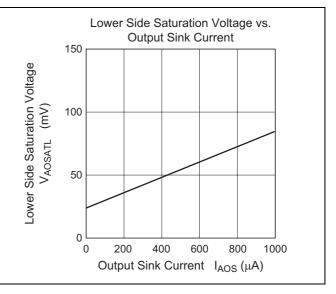
Digital Data Format

DAC Data

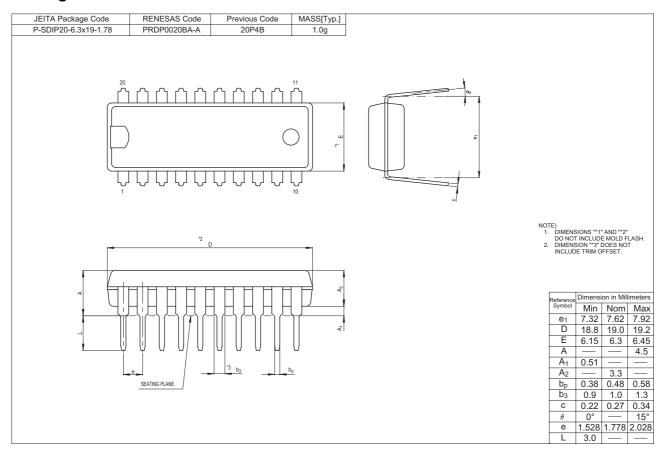

D0	D1	D2	D3	D4	D5	D6	D7	D/A Output
0	0	0	0	0	0	0	0	(VrefU – VrefL) / 256 × 1 + VrefL
1	0	0	0	0	0	0	0	(VrefU – VrefL) / 256 × 2 + VrefL
0	1	0	0	0	0	0	0	(VrefU – VrefL) / 256 × 3 + VrefL
1	1	0	0	0	0	0	0	(VrefU – VrefL) / 256 × 4 + VrefL
:	:	:	:	:	:	:	:	:
0	1	1	1	1	1	1	1	(VrefU – VrefL) / 256 × 255 + VrefL
1	1	1	1	1	1	1	1	VrefU

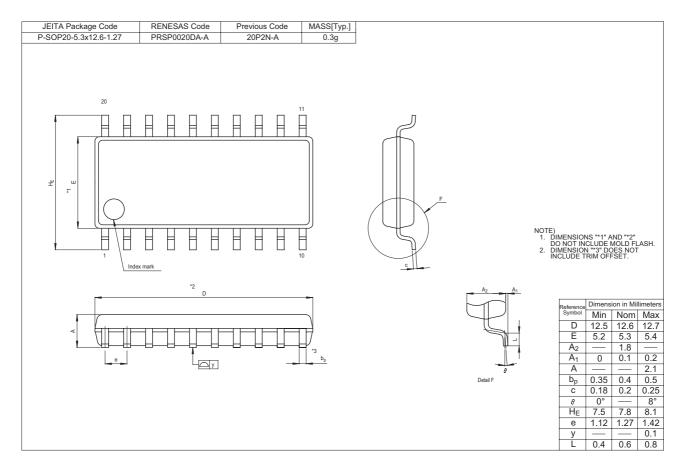
Note: $VrefU = V_{DD}$, $VrefL = V_{SS}$

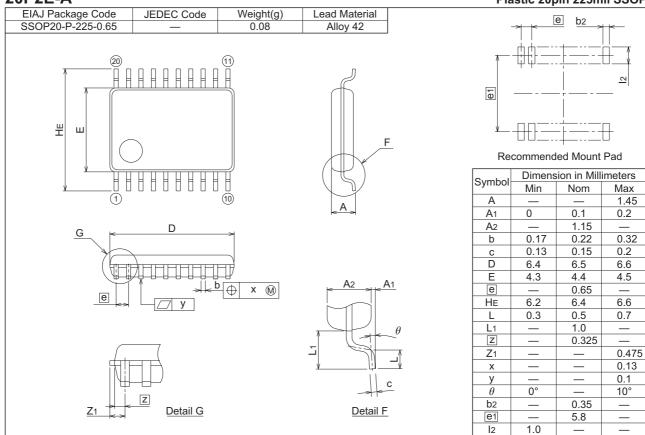

DAC Select Data


D8	D9	D10	D11	DAC Selection
0	0	0	0	Don't care
0	0	0	1	A _{O1} select
0	0	1	0	A _{O2} select
0	0	1	1	A _{O3} select
0	1	0	0	A _{O4} select
0	1	0	1	A _{O5} select
0	1	1	0	A _{O6} select
0	1	1	1	A _{O7} select
1	0	0	0	A _{O8} select
1	0	0	1	A _{O9} select
1	0	1	0	A _{O10} select
1	0	1	1	A _{O11} select
1	1	0	0	A _{O12} select
1	1	0	1	Don't care
1	1	1	0	Don't care
1	1	1	1	Don't care

Timing Chart (Model)




Typical Characteristics


Package Dimensions

20P2E-A

Plastic 20pin 225mil SSOP

Renesas Technology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Renesas lechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Notes:

 1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warrantes or representations with respect to the accuracy or completeness of the information in this document nor grants any license to any intellectual property girbs to any other rights of representations with respect to the information in this document in this document of the purpose of the respect of the information in this document in the product data, diagrams, charts, programs, algorithms, and application circuit examples.

 3. You should not use the products of the technology described in this document for the purpose of military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations, and procedures required to change without any plan protein. Before purchasing or using any Renesas products listed in this document, in the development is satisfied. The procedure is such as the development of the dev

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510