High-Speed, Low-Glitch D/CMOS Analog Switches

DESCRIPTION

The DG611/612/613 feature high-speed low-capacitance lateral DMOS switches. Charge injection has been minimized to optimize performance in fast sample-and-hold applications.

Each switch conducts equally well in both directions when on and blocks up to $16 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}$ when off. Capacitances have been minimized to ensure fast switching and low-glitch energy. To achieve such fast and clean switching performance, the DG611/612/613 are built on the Vishay Siliconix proprietary D/CMOS process. This process combines n-channel DMOS switching FETs with low-power CMOS control logic and drivers. An epitaxial layer prevents latchup.

The DG611 and DG612 differ only in that they respond to opposite logic levels. The versatile DG613 has two normally open and two normally closed switches. It can be given various configurations, including four SPST, two SPDT, one DPDT.

For additional information see Applications Note AN207 (FaxBack number 70605).

FEATURES

- Fast Switching - t_{ON} : 12 ns
- Low Charge Injection: $\pm 2 \mathrm{pC}$
- Wide Bandwidth: 500 MHz
- 5 V CMOS Logic Compatible
- Low $\mathrm{r}_{\mathrm{DS}(\mathrm{on})}: 18 \Omega$
- Low Quiescent Power : 1.2 nW
- Single Supply Operation

BENEFITS

- Improved Data Throughput
- Minimal Switching Transients
- Improved System Performance
- Easily Interfaced
- Low Insertion Loss
- Minimal Power Consumption

APPLICATIONS

- Fast Sample-and-Holds
- Synchronous Demodulators
- Pixel-Rate Video Switching
- Disk/Tape Drives
- DAC Deglitching
- Switched Capacitor Filters
- GaAs FET Drivers
- Satellite Receivers

RoHS*
COMPLIANT

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

Four SPST Switches per Package

TRUTH TABLE		
Logic	DG611	DG612
0	ON	OFF
1	OFF	ON

Logic "0" $\leq 1 \mathrm{~V}$
Logic "1" $\geq 4 \mathrm{~V}$

[^0]
FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

Four SPST Switches per Package

TRUTH TABLE		
Logic	$\mathbf{S W}_{\mathbf{1}}, \mathbf{S W}_{\mathbf{4}}$	$\mathbf{S W}_{\mathbf{2}}, \mathbf{S W}_{\mathbf{3}}$
0	OFF	ON
1	ON	OFF

Logic " 0 " $\leq 1 \mathrm{~V}$
Logic "1" $\geq 4 \mathrm{~V}$

ORDERING INFORMATION		
Temp Range	Package	Part Number
DG611/612		
- 40 to $85^{\circ} \mathrm{C}$	16-Pin Plastic DIP	$\begin{gathered} \text { DG611DJ } \\ \text { DG611DJ-E3 } \end{gathered}$
		$\begin{gathered} \hline \text { DG612DJ } \\ \text { DG612DJ-E3 } \end{gathered}$
	16-Pin Narrow SOIC	DG611DY DG611DY-E3 DG611DY-T1 DG611DY-T1-E3
		DG612DY DG612DY-E3 DG612DY-T1 DG612DY-T1-E3
DG613		
- 40 to $85{ }^{\circ} \mathrm{C}$	16-Pin Plastic DIP	$\begin{gathered} \text { DG613DJ } \\ \text { DG613DJ-E3 } \end{gathered}$
	16-Pin Narrow SOIC	DG613DY DG613DY-E3 DG613DY-T1 DG613DY-T1-E3

ABSOLUTE MAXIMUM RATINGS

Parameter		Limit	Unit
V+ to V-		-0.3 to 21	V
V+ to GND		-0.3 to 21	
V- to GND		-19 to 0.3	
V_{L} to GND		$-1 \text { to }(\mathrm{V}+)+1$ or 20 mA , whichever occurs first	
$\mathrm{V}_{\mathrm{IN}}{ }^{\text {a }}$		$(\mathrm{V}-)-1 \text { to }(\mathrm{V}+)+1$ or 20 mA , whichever occurs first	
$\mathrm{V}_{\mathrm{S}}, \mathrm{V}_{\mathrm{D}}{ }^{\text {a }}$		$\text { (V-) - } 0.3 \text { to (V+) + } 16$ or 20 mA , whichever occurs first	
Continuous Current (Any Terminal)		± 30	mA
Current, S or D (Pulsed at $1 \mu \mathrm{~s}, 10$ \% Duty Cycle)		± 100	
Storage Temperature	CerDIP	- 65 to 150	${ }^{\circ} \mathrm{C}$
	Plastic	- 65 to 125	
Power Dissipation (Package) ${ }^{\text {b }}$	16-Pin Plastic DIP ${ }^{\text {c }}$	470	mW
	16-Pin Narrow SOIC ${ }^{\text {d }}$	600	
	16-Pin CerDIP ${ }^{\text {e }}$	900	
	20-Pin LCC ${ }^{\text {e }}$	900	

Notes:
a. Signals on S_{X}, D_{X}, or IN_{X} exceeding $\mathrm{V}+$ or $\mathrm{V}-$ will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
b. All leads welded or soldered to PC Board.
c. Derate $6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $75^{\circ} \mathrm{C}$.
d. Derate $7.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $75^{\circ} \mathrm{C}$.
e. Derate $12 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $75^{\circ} \mathrm{C}$.

RECOMMENDED OPERATING RANGE		
Parameter	Limit	Unit
V+	5 to 21	V
V-	- 10 to 0	
V_{L}	4 to V_{+}	
V_{IN}	0 to V_{L}	
$\mathrm{V}_{\text {ANALOG }}$	V - to ($\mathrm{V}+$) - 5	

SPECIFICATIONS ${ }^{\text {a }}$									
Parameter	Symbol	Test Conditions Unless Otherwise Specified$\begin{gathered} \mathrm{V}_{+}=15 \mathrm{~V}, \mathrm{~V}-=-3 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{L}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=4 \mathrm{~V}, 1 \mathrm{~V}^{\mathrm{f}} \end{gathered}$	Temp ${ }^{\text {b }}$	Typ ${ }^{\text {c }}$	$\begin{gathered} \text { A Suffix } \\ -55 \text { to } 125^{\circ} \mathrm{C} \\ \hline \end{gathered}$		$\begin{gathered} \text { D Suffix } \\ -40 \text { to } 85^{\circ} \mathrm{C} \end{gathered}$		Unit
					Min ${ }^{\text {d }}$	Max ${ }^{\text {d }}$	Min ${ }^{\text {d }}$	Max ${ }^{\text {d }}$	
Analog Switch									
Analog Signal Range ${ }^{\text {e }}$	$V_{\text {analog }}$	$\mathrm{V}-=-5 \mathrm{~V}, \mathrm{~V}+=12 \mathrm{~V}$	Full		- 5	7	- 5	7	V
Switch On-Resistance	$\mathrm{r}_{\mathrm{DS} \text { (on) }}$	$\mathrm{I}_{\mathrm{S}}=-1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}=0 \mathrm{~V}$	$\begin{gathered} \hline \text { Room } \\ \text { Full } \end{gathered}$	18		$\begin{aligned} & 45 \\ & 60 \end{aligned}$		$\begin{aligned} & \hline 45 \\ & 60 \end{aligned}$	Ω
Resistance Match Bet Ch.	$\Delta^{\text {d }}$ (on)		Room	2					
Source Off Leakage	$\mathrm{I}_{\text {(off) }}$	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V}$	$\begin{aligned} & \text { Room } \\ & \text { Hot } \end{aligned}$	± 0.001	$\begin{array}{\|c} \hline-0.25 \\ -20 \end{array}$	$\begin{gathered} 0.25 \\ 20 \end{gathered}$	$\begin{gathered} -0.25 \\ -20 \end{gathered}$	$\begin{gathered} 0.25 \\ 20 \end{gathered}$	
Drain Off Leakage Current	$I_{\text {(off) }}$	$\mathrm{V}_{\mathrm{S}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=0 \mathrm{~V}$	$\begin{aligned} & \text { Room } \\ & \text { Hot } \end{aligned}$	± 0.001	$\begin{array}{\|c} \hline-0.25 \\ -20 \end{array}$	$\begin{gathered} 0.25 \\ 20 \end{gathered}$	$\begin{gathered} -0.25 \\ -20 \end{gathered}$	$\begin{gathered} 0.25 \\ 20 \end{gathered}$	nA
Switch On Leakage Current	${ }^{\text {D (on) }}$	$\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=0 \mathrm{~V}$	$\begin{aligned} & \text { Room } \\ & \text { Hot } \end{aligned}$	± 0.001	$\begin{aligned} & \hline-0.4 \\ & -40 \end{aligned}$	$\begin{aligned} & \hline 0.4 \\ & 40 \end{aligned}$	$\begin{aligned} & \hline-0.4 \\ & -40 \end{aligned}$	$\begin{aligned} & \hline 0.4 \\ & 40 \end{aligned}$	
Digital Control									
Input Voltage High	V_{IH}		Full		4		4		
Input Voltage Low	V_{IL}		Full			1		,	
Input Current	I_{N}		$\begin{aligned} & \text { Room } \\ & \text { Hot } \end{aligned}$	0.005	$\begin{gathered} \hline-1 \\ -20 \\ \hline \end{gathered}$	$\begin{aligned} & 1 \\ & 20 \end{aligned}$	$\begin{gathered} \hline-1 \\ -20 \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ 20 \end{gathered}$	$\mu \mathrm{A}$
Input Capacitance	$\mathrm{C}_{\text {IN }}$		Room	5					pF
Dynamic Characteristics									
Off State Input Capacitance	$\mathrm{C}_{\text {S(off) }}$	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}$	Room	3					
Off State Output Capacitance	$\mathrm{C}_{\text {(off) }}$	$\mathrm{V}_{\mathrm{D}}=0 \mathrm{~V}$	Room	2					pF
On State Input Capacitance	$\mathrm{C}_{\text {S(on) }}$	$\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=0 \mathrm{~V}$	Room	10					
Bandwidth	BW	$\mathrm{R}_{\mathrm{L}}=50 \Omega$	Room	500					MHz
Turn-On Time ${ }^{\text {e }}$	t_{ON}	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=3 \mathrm{pF}$	Room	12		25		25	
Turn-Off Time ${ }^{\text {e }}$	$\mathrm{t}_{\text {OFF }}$	$V_{S}= \pm 2 \mathrm{~V},$ See Test Circuit, Figure 2	Room	8		20		20	
Turn-On Time	t_{ON}	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=75 \mathrm{pF}$ $\mathrm{V}_{\mathrm{S}}= \pm 2 \mathrm{~V},$	$\begin{aligned} & \hline \text { Room } \\ & \text { Full } \\ & \hline \end{aligned}$	19		$\begin{aligned} & 35 \\ & 50 \\ & \hline \end{aligned}$		$\begin{aligned} & 35 \\ & 50 \\ & \hline \end{aligned}$	ns
Turn-Off Time	$\mathrm{t}_{\text {OFF }}$	See Test Circuit, Figure 2	$\begin{gathered} \hline \text { Room } \\ \text { Full } \end{gathered}$	16		$\begin{aligned} & 25 \\ & 35 \end{aligned}$		$\begin{aligned} & 25 \\ & 35 \end{aligned}$	
Charge Injection ${ }^{\text {e }}$	Q	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}$	Room	4					pC
Ch. Injection Change ${ }^{\text {e,g }}$	$\Delta \mathrm{Q}$	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \mid \mathrm{V}_{\mathrm{S}} \mathrm{I} \leq 3 \mathrm{~V}$	Room	3		4		4	pC
Off Isolation ${ }^{\text {e }}$	OIRR	$\begin{gathered} \mathrm{R}_{\mathrm{IN}}=50 \Omega, \mathrm{R}_{\mathrm{L}}=50 \Omega \\ \mathrm{f}=5 \mathrm{MHz} \end{gathered}$	Room	74					dB
Crosstalk ${ }^{\text {e }}$	$\mathrm{X}_{\text {TALK }}$	$\begin{aligned} & R_{\text {IN }}= 10 \Omega, R_{L}=50 \Omega \\ & f=5 \mathrm{MHz} \end{aligned}$	Room	87					B
Power Supplies									
Positive Supply Current	I+	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ or 5 V	$\begin{gathered} \hline \text { Room } \\ \text { Full } \end{gathered}$	0.005		$\begin{aligned} & 1 \\ & 5 \end{aligned}$		$\begin{aligned} & \hline 1 \\ & 5 \end{aligned}$	
Negative Supply Current	I-		$\begin{gathered} \hline \text { Room } \\ \text { Full } \end{gathered}$	-0.005	$\begin{aligned} & \hline-1 \\ & -5 \end{aligned}$		$\begin{aligned} & \hline-1 \\ & -5 \end{aligned}$		
Logic Supply Current	I_{L}		$\begin{array}{\|c\|} \hline \text { Room } \\ \text { Full } \\ \hline \end{array}$	0.005		$\begin{aligned} & \hline 1 \\ & 5 \end{aligned}$		$\begin{aligned} & \hline 1 \\ & 5 \end{aligned}$	$\mu \mathrm{A}$
Ground Current	$\mathrm{I}_{\text {GND }}$		$\begin{aligned} & \hline \text { Room } \\ & \text { Full } \end{aligned}$	-0.005	$\begin{aligned} & \hline-1 \\ & -5 \\ & \hline \end{aligned}$		$\begin{aligned} & \hline-1 \\ & -5 \\ & \hline \end{aligned}$		

SPECIFICATIONS FOR UNIPOLAR SUPPLIES ${ }^{\text {a }}$

Parameter	Symbol	Test Conditions Unless Otherwise Specified$\begin{gathered} \mathrm{V}+=15 \mathrm{~V}, \mathrm{~V}-=-3 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{L}}=5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=4 \mathrm{~V}, 1 \mathrm{~V}^{f} \end{gathered}$	Temp ${ }^{\text {b }}$	Typ ${ }^{\text {c }}$	$\begin{gathered} \text { A Suffix } \\ -55 \text { to } 125^{\circ} \mathrm{C} \\ \hline \end{gathered}$		$\begin{gathered} \text { D Suffix } \\ -40 \text { to } 85^{\circ} \mathrm{C} \end{gathered}$		Unit
					Min ${ }^{\text {d }}$	Max ${ }^{\text {d }}$	Min ${ }^{\text {d }}$	Max ${ }^{\text {d }}$	
Analog Switch									
Analog Signal Range ${ }^{\text {e }}$	$\mathrm{V}_{\text {ANALOG }}$		Full		0	7	0	7	V
Switch On-Resistance	$\mathrm{r}_{\mathrm{DS} \text { (on) }}$	$\mathrm{I}_{\mathrm{S}}=-1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}=1 \mathrm{~V}$	Room	25		60		60	Ω
Dynamic Characteristics									
Turn-On Time ${ }^{\text {e }}$	t_{ON}	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=3 \mathrm{pF}$	Room	15		30		30	
Turn-Off Time ${ }^{\text {e }}$	$\mathrm{t}_{\text {OFF }}$	$\mathrm{V}_{\mathrm{S}}=2 \mathrm{~V},$ See Test Circuit, Figure 2	Room	10		25		25	ns

Notes:
a. Refer to PROCESS OPTION FLOWCHART.
b. Room $=25^{\circ} \mathrm{C}$, Full = as determined by the operating temperature suffix.
c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum.
e. Guaranteed by design, not subject to production test.
f. $\mathrm{V}_{\mathrm{IN}}=$ input voltage to perform proper function.
g. $\Delta \mathrm{Q}=\mid \mathrm{Q}$ at $\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}-\mathrm{Q}$ at $\mathrm{V}_{\mathrm{S}}=-3 \mathrm{Vl}$.

TYPICAL CHARACTERISTICS $25^{\circ} \mathrm{C}$, unless otherwise noted

$r_{D S(o n)}$ vs. V_{D} and Power Supply Voltages

Leakage Current vs. Analog Voltage

Vishay Siliconix
TYPICAL CHARACTERISTICS $25^{\circ} \mathrm{C}$, unless otherwise noted

$r_{D S(o n)}$ vs. V_{D} and Temperature

Leakage Currents vs. Temperature

Switching Times vs. Temperature

Charge Injection vs. Analog Voltage

TYPICAL CHARACTERISTICS $25^{\circ} \mathrm{C}$, unless otherwise noted

f - Frequency (MHz)
Crosstalk and Off Isolation vs. Frequency

Supply Currents vs. Switching Frequency

SCHEMATIC DIAGRAM (TYPICAL CHANNEL)

Figure 1.

TEST CIRCUITS

C_{L} (includes fixture and stray capacitance)

$$
V_{O}=V_{S} \frac{R_{L}}{R_{L}+r_{D S(o n)}}
$$

Figure 2. Switching Time

TEST CIRCUITS

Figure 3. Charge Injection

APPLICATIONS

High-Speed Sample-and-Hold

In a fast sample-and-hold application, the analog switch characteristics are critical. A fast switch reduces aperture uncertainty. A low charge injection eliminates offset (step) errors. A low leakage reduces droop errors. The CLC111, a fast input buffer, helps to shorten acquisition and settling times. A low leakage, low dielectric absorption hold capacitor must be used. Polycarbonate, polystyrene and polypropylene are good choices. The JFET output buffer reduces droop due to its low input bias current.
(See Figure 5.)

Figure 4. Crosstalk

Pixel-Rate Switch

Windows, picture-in-picture, title overlays are economically generated using a high-speed analog switch such as the DG613. For this application the two video sources must be sync locked. The glitch-less analog switch eliminates halos. (See Figure 6.)

GaAs FET Drivers

Figure 7 illustrates a high-speed GaAs FET driver. To turn the GaAs FET on 0 V are applied to its gate via S_{1}, whereas to turn it off, - 8 V are applied via S_{2}. This high-speed, low-power driver is especially suited for applications that require a large number of RF switches, such as phased array radars.

Figure 5. High-Speed Sample-and-Hold

APPLICATIONS

Figure 6. A Pixel-Rate Switch Creates Title Overlays

Figure 7. A High-Speed GaAs FET Driver that Saves Power

[^1]
Disclaimer

All product specifications and data are subject to change without notice.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

[^0]: * Pb containing terminations are not RoHS compliant, exemptions may apply

[^1]: Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?70057.

