

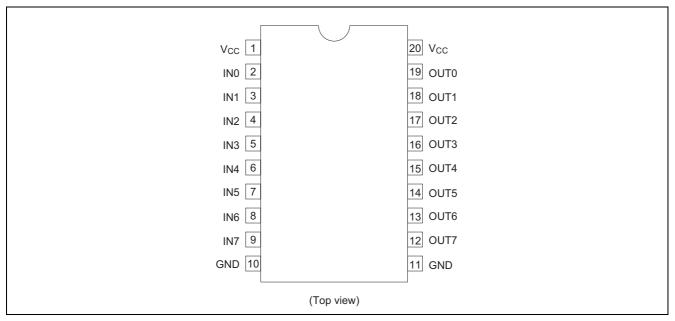
RD74HV8T06

High-Voltage 8-bit Inverter Buffer (with Open Drain Outputs)

REJ03D0900-0100 Rev.1.00 Jul 14, 2008

Description

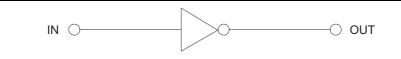
The RD74HV8T06 has eight Inverter (with open drain outputs) in a 20 pin package. The voltage of maximum 30 V can be impressed to the drain-source voltage. Supports the wide power supply voltage and can use it for the other use as a general–purpose driver.


Features

- Wide supply voltage range : 4.5 to 30 V
- Output voltage : V_{DS} (Max.) = 30 V
- Operating temperature range : -40 to +85°C
- All inputs V_{IH} (Min.) = 2.4 V, V_{IL} (Max.) = 0.8 V (@V_{CC} = 10 V to 30 V)
- Output current : I_0 short (Typ.) = 70 mA (@V_{CC} = 15 V)
- Ordering Information

Part Name	Package Type	Package Code (Previous Code)	Package Abbreviation	Packing Abbreviation (Quantity)	Surface Treatment	
RD74HV8T06FPH0	SOP-20 pin (JEITA)	PRSP0020DD-B (FP-20DAV)	FP	H (2,000 pcs/reel)	0 (Ni/Pd/Au)	
RD74HV8T06TH0	TSSOP-20 pin	PTSP0020JB-A (TTP-20DAV)	Т	H (2,000 pcs/reel)	0 (Ni/Pd/Au)	

Note: Please consult the sales office for the above package availability.


Pin Arrangement

These products designed for general and industrial use. It is not supported for special quality or reliability demanded use such as automotive or life support or something like that.

RENESAS

Logic Diagram

Function Table

Input	Output
Н	L
L	Н

H : High level

L : Low level

Absolute Maximum Ratings

Item	Symbol	Ratings	Unit	Test Conditions	
Supply voltage range	pply voltage range V _{CC}		V		
Input voltage range *1	VI	/ ₁ –0.5 to V _{CC} + 0.5			
Output voltage range *1, 2	Vo	-0.5 to 30	V		
Input clamp current		±50	mA	$V_{I} < 0 \text{ or } V_{I} > V_{CC}$	
Output clamp current	I _{ОК}	-75	mA	V ₀ < 0	
Continuous output current	lo	100	mA	Output : L	
Continuous current through V _{CC} or GND	I _{CC} or I _{GND}	±100	mA		
Maximum power dissipation	Ρτ	835	mW	SOP	
at Ta = 25°C (in still air) *3	ΓŢ	757	11100	TSSOP	
Storage temperature	Tstg	–65 to 150	°C		

Notes: The absolute maximum ratings are values which must not individually be exceeded, and furthermore no two of which may be realized at the same time.

- 1. The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
- 2. This value is limited to 30 V maximum.
- 3. The maximum package power dissipation was calculated using a junction temperature of 150°C.

Recommended Operating Conditions

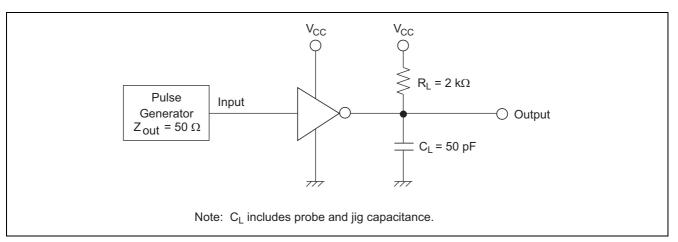
ltem	Symbol	Min	Max	Unit	Conditions
Supply voltage range	V _{CC}	4.5	30	V	
Input voltage range	VI	0	V _{CC}	V	
Output voltage range	Vo	0	V _{CC}	V	
		_	2.5		V _{CC} = 10 V
	I _{OL}	—	5	mA	V _{CC} = 15 V
Output current		_	10		V _{CC} = 25 V
		_	15		V _{CC} = 30 V
	Δt / Δv	0	100		V _{CC} < 5 V
Input transition rise or fall rate		0	20	ns / V	15 V > V _{CC} ≥ 5 V
		0	10		$30 \text{ V} \ge \text{V}_{\text{CC}} \ge 15 \text{ V}$
Operating free-air temperature	Ta	-40	85	°C	

Note: Unused or floating inputs must be held high or low.

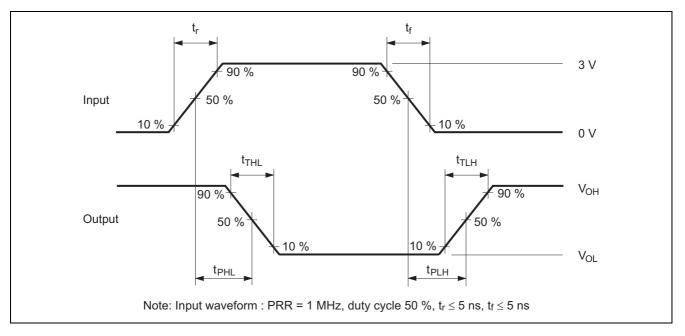
Electrical Characteristics

 $(Ta = -40 \text{ to } 85^{\circ}\text{C})$

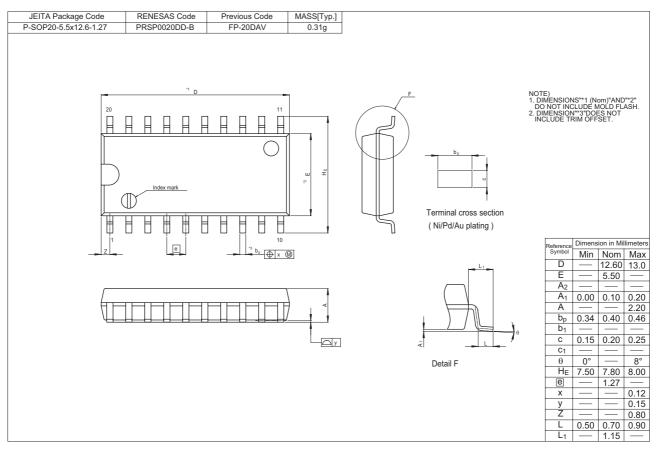
(1a = -4)								
Item	Symbol	V _{cc} (V) *	Min	Тур	Max	Unit	Test condition	
	V _{IH}	10	2.4	—	—			
		15	2.4					
	VIH	25	2.4					
Input voltage		30	2.4	_	—	v		
Input voltage		10	_		0.8	v		
	N	15	_	_	0.8			
	VIL	25		_	0.8			
		30	_	—	0.8			
	V _{OL}	10	_	_	1.0		I _{OL} = 2.5 mA	
Output voltage		15	_	—	1.0	V	I _{OL} = 5 mA	
Output voltage		25		_	1.5		I _{OL} = 10 mA	
		30		_	2.0		I _{OL} = 15 mA	
Output current	I _{OL} short	15	46	70	95	mA	$V_{O} = V_{CC}$	
Input current	I _{IN}	V _{CC}	_		±1	μA	V _{IN} = V _{CC} or GND	
Output off state leak current	I _{DS}	30		_	2.0	μA	V _{DS} = 30 V	
	Icc	10			0.5		V _{IN} = V _{CC} or GND	
Outersent europhy europat		15	_	_	1.0	μA		
Quiescent supply current		25	_	_	2.0			
		30	_		2.0			
Cumply current		10	—	—	1		V _{CC} = 10 V , VIN = 3.0 V	
Supply current	I _{SUPP}	30	_	—	2.0	mA	V _{CC} = 30 V , VIN = 3.0 V	
Input capacitance	CIN	Vcc	_	2.5	_	pF	V _{IN} = V _{CC} or GND	

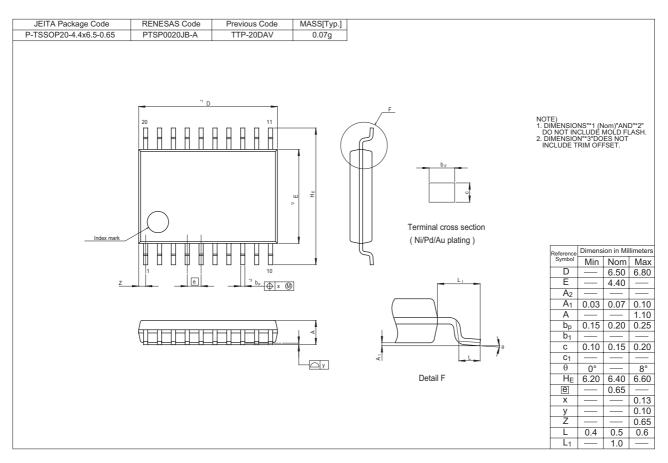

Note: For conditions shown as Min or Max, use the appropriate values under recommended operating conditions.

Switching Characteristics


ltem	Cumhal	$Ta = -40 \text{ to } 85^{\circ}\text{C}$			l lucit	FROM	то	
	Symbol	Vcc (V)	Min	Тур	Max	Unit	(Input)	(Output)
	t _{PLH}	10	15	—	200	ns	IN	OUT
		15	15	—	200			
		20	10	—	160			
		25	10	—	160			
Propagation delay time		30	10	—	160			
	t _{PHL}	10	10	—	60		IN	OUT
		15	10	—	60	ns		
		20	10	—	60			
		25	10	—	60			
		30	10	—	60			
		10	—	—	300	ns	IN	OUT
		15	—	—	300			
	t_{TLH}	20	—	—	300			
		25	—	—	300			
Output rise / fall time		30	—	—	300			
		10	2	—	30	ns	IN	OUT
	tтнL	15	2	—	30			
		20	2	_	30			
		25	2	—	30]		
		30	2	—	30	1		

 $(C_L = 50 \text{ pF}, t_r = t_f = 5 \text{ ns})$


Test Circuit



Waveforms

Package Dimensions

RENESAS

RenesasTechnology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Benesas lechnology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
 Pines
 This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information in this document.
 But not infinited to, product data. diagrams, charts, programs, algorithms, and application scuch as the development of weapons of mass and regulations, and proceedures required by such laws and regulation.
 All information in this document, included in this document for the purpose of military application scuch as the development of weapons of mass and regulations, and proceedures required by such laws and regulations.
 All information included in this document such as product data, diagrams, charts, programs, algorithms, and application carcuit examples, is current as of the date this document, when exporting the products or the technology described herein, you should follow the applicable export control laws and regulations, and proceedures required by such laws and regulations.
 Renesas has used reasonable care in compiling the information in this document, but Renesas assumes no liability whattowere for any damages incurred as a fast used in this document, but Renesas assumes no liability whattowere of neitary application states are the explorability of the total system before deciding about the applicability or otherwise in systems the failue on malfunction of which may cause a direct threads for the purpose, leave and mediation in the date this document. Jou should evaluate the information in link document to use and regulations.
 When using or otherwise regulations in the information in this document. Dut Renesas as subletion data and applications and regulations and regulations and regulations.
 When using or otherwise regulation the

RENESAS SALES OFFICES

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.

1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

http://www.renesas.com