M62437FP

Sound Controller With SRS Focus \& SRS Surround

Description

This is an IC for car audio.
$\mathrm{F}(\bullet)$ cus system can realize more optimal speaker position.

Features

- Built-in $\mathrm{F}(\bullet)$ cus [LF/HF elevation (position) and Bass Compensation can be changed by the external resistors.]
- Built-in SR
- SRS ON/OFF mode and FOCUS ON/OFF mode can be controlled by the DC voltage.

Recommended Operating Condition

Supply voltage range: $\mathrm{V}_{\mathrm{CC}}=7$ to 9 V
Rated supply voltage: $\mathrm{V}_{\mathrm{CC}}=8 \mathrm{~V}$

System Block Diagram

Block Diagram \& Application Example

Absolute Maximum Ratings

($\mathrm{Ta}=25^{\circ} \mathrm{C}$, unless otherwise noted)

Item	Symbol	Ratings	Unit	Condition
Supply Voltage	$\mathrm{V}_{\mathrm{CC}}, \mathrm{Vdd}$	12	V	
Power Dissipation	Pd	990	mW	$\mathrm{Ta} \leq 25^{\circ} \mathrm{C}$
Thermal Derating	$\mathrm{K} \theta$	9.9	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$	$\mathrm{Ta}>25^{\circ} \mathrm{C}$
Operating Temperature	Topr	-20 to +75	${ }^{\circ} \mathrm{C}$	
Storage Temperature	Tstg	-55 to +125	${ }^{\circ} \mathrm{C}$	

Thermal Derating

Electrical Characteristics

(1) Power supply characteristics

Item		$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=8.0 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz}\right)$				
	Symbol	Limits			Unit	Conditions
		Min	Typ	Max		
Circuit current	I_{CC}	-	25	45	mA	42pin Icc No Signal

(2) Input/Output characteristics

$$
\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}=8.0 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz}, \mathrm{VOL} .1,2=1 \mathrm{k} \Omega(\mathrm{VOL}), \mathrm{VOL} .3,4=10 \mathrm{k} \Omega(\mathrm{VOL}), \mathrm{VOL} .5=1 \mathrm{k} \Omega(\mathrm{VOL})\right)
$$

Item	Symbol	Limits			Unit	Conditions	
		Min	Typ	Max			
Maximum output voltage	VOMt	1.6	1.9	-	Vrms	Input; pin2, 41 Output; pin18, 24 $\mathrm{RL}=10 \mathrm{k} \Omega, \mathrm{THD}=1 \%$	
Maximum input voltage	VIM1	0.4	0.6	-	Vrms	Input; pin2, 41 Output; pin18, 24 SRS \rightarrow ON, FOCUS \rightarrow OFF THD $=1 \%$	$\mathrm{f}=150 \mathrm{~Hz}$
	VIM2	0.2	0.3	-		Input; pin2, 41/Output; pin18, 24 SRS \rightarrow ON FOCUS \rightarrow ON (All VOL. = max) THD = 1\%	$\mathrm{f}=1 \mathrm{kHz}$
	VIM3	0.06	0.11	-			$\mathrm{f}=20 \mathrm{kHz}$
Pass gain	Gvt	-2.0	0	2.0	dB	$\mathrm{Vi}=100 \mathrm{mVrms}$ SRS, Focus \rightarrow OFF Input; pin2, 41/Output; pin18, 24	
	Gv1	7	10	13		$\begin{aligned} & \mathrm{Vi}=100 \mathrm{mVrms} \\ & \text { Input; pin2, 41/Output ; pin18, } 24 \\ & \text { SRS } \rightarrow \mathrm{ON}, \text { FOCUS } \rightarrow \text { OFF } \end{aligned}$	$\mathrm{f}=150 \mathrm{~Hz}$
	Gv2	15	18	21		$\begin{aligned} & \mathrm{Vi}=100 \mathrm{mVrms} \\ & \text { SRS } \rightarrow \mathrm{ON} \\ & \text { FOCUS } \rightarrow \mathrm{ON}(\text { All VOL. }=\text { max }) \\ & (2 \text { pin, } 41 \text { pin })-(18,24 \mathrm{Pin}) \\ & \hline \end{aligned}$	$\mathrm{f}=1 \mathrm{kHz}$
	Gv3	25	28	31			$\mathrm{f}=20 \mathrm{kHz}$
Output noise voltage	Vno1	-	5.5	15	$\mu \mathrm{Vrms}$	$\mathrm{Rg}=0(2,41 \mathrm{pin})$ SRS \rightarrow OFF, FOCUS \rightarrow OFF DIN-AUDIO filter	
	Vno2	-	18	50		$\begin{aligned} & \mathrm{Rg}=0 \text { (2, 41pin) } \\ & \text { SRS } \rightarrow \text { ON, FOCUS } \rightarrow \text { OFF } \\ & \text { DIN-AUDIO filter } \end{aligned}$	
	Vno3	-	90	150		$\begin{aligned} & \mathrm{Rg}=0(2,41 \mathrm{pin}), \\ & \text { SRS } \rightarrow \text { ON, FOCUS } \rightarrow \text { ON (All VOL. }=\text { max }) \\ & \text { DIN-AUDIO filter } \end{aligned}$	
Channel separation	CT	-	-90	-75	dB	Input side: $\mathrm{f}=1 \mathrm{kHz}, \mathrm{Vi}=0.5 \mathrm{Vrms}$ Monitor side: $\mathrm{Rg}=0$, IHF-A filter Focus: OFF, SRS: OFF $\mathrm{RL}=10 \mathrm{k} \Omega$	

(3) DC Control Characteristic of the Switch Block

Item	Symbol	Limits			Unit	Conditions
		Min	Typ	Max		
"H" level input voltage	V_{IH}	2.1	~	$\mathrm{V}_{\text {cc }}$	V	Pin 22, 23
"L" level input voltage	$\mathrm{V}_{\text {IL }}$	0	\sim	0.8	V	Pin 22, 23

Switch Condition and the Mode

(23) SRS 3D Stereo	SRS ON/OFF Switch
SRS ON	H
SRS OFF	L

(22) FOCUS	FOCUS ON/OFF Switch
FOCUS ON	H
FOCUS OFF	L

Note: Bypass mode can be set by both SRS ON/OFF switch and FOCUS ON/OFF switch are set to "L".

Application Circuit Example

Regarding to the other Application Circuit

- R16 (R13), R17 (R14), R18 (R15)

The resisters of R16 (R13), R17 (R14), R18 (R15) can be set the FOCUS position (LF Elevation).
Note: This figure shows only the side channel.

1. The setting of the FOCUS position " H "
$\frac{\mathrm{R} 17+\mathrm{R} 18}{\mathrm{R} 16+\mathrm{R} 17+\mathrm{R} 18}$
2. The setting of the FOCUS position "L"
$\frac{\mathrm{R} 18}{\mathrm{R} 16+\mathrm{R} 17+\mathrm{R} 18}$

Note: please keep the following formula.
$\mathrm{R} 16+\mathrm{R} 17+\mathrm{R} 18 \approx 1 \mathrm{k} \Omega$
(Example)
In the case of R16 $=390 \Omega, \mathrm{R} 17=200 \Omega, \mathrm{R} 18=390 \Omega$
FOCUS position " H " $\approx 60 \%$
FOCUS position " L " $\approx 40 \%$
(Switch Setting)

	FOCUS ON/OFF Switch (22 Pin)	FOCUS Position H/L Switch (20 Pin)
FOCUS Position "H" (LF Elevation)	H	H
FOCUS Position "L" (LF Elevation)	H	L

- R20 (R23), R21 (R24)

The resisters of R20 (R23), R21 (R24) can be set the HF Elevation.
Note: This figure shows only the side channel.

1. The setting of the HF Elevation.
$\frac{R 21}{R 20+R 21}$
Note: please keep the following formula.
$\mathrm{R} 20+\mathrm{R} 21 \approx 10 \mathrm{k} \Omega$
(Example)
In the case of R20 $=3 \mathrm{k} \Omega, \mathrm{R} 21=7 \mathrm{k} \Omega$
HF Elevation $\approx 70 \%$

- R25, R26, R27

The resistors of R25, R26, R27 can be set the Bass Compensation.

1. The setting of the Bass Compensation "H"

$$
\frac{\mathrm{R} 26+\mathrm{R} 27}{\mathrm{R} 25+\mathrm{R} 26+\mathrm{R} 27}
$$

2. The setting of the Bass Compensation "L"
$\frac{\text { R27 }}{\text { R25 + R26 + R27 }}$
Note: please keep the following formula.
$R 25+R 26+R 27 \approx 1 k \Omega$
(Example)
In the case of R25 $=200 \Omega, \mathrm{R} 26=390 \Omega, \mathrm{R} 27=390 \Omega$
Bass Compensation "H" $\approx 80 \%$
Bass Compensation "L" $\approx 40 \%$

(Switch Setting)		
	FOCUS ON/OFF Switch (22 Pin)	Bass Comp. H/L Switch (21 Pin)
Bass Compensation "H"	H	H
Bass Compensation "L"	H	L

Between Pin16 (31) and Pin17 (30)

Add 10 k of resistors between Pin16(31) and Pin17(30), can adjust the difference between the sound level of Focus ON and the sound level of Focus OFF.

Also add 10 k of resistors between Pin16(31) and Pin17(30), can decrease the Focus gain.
Then the maximum input voltage and the output noise voltage can be improved.
(Reference)
In the case of
(VOL.1, $2=1 \mathrm{k} \Omega$, VOL. $3,4=10 \mathrm{k} \Omega$, VOL. $5=1 \mathrm{k} \Omega$, Add $10 \mathrm{k} \Omega$ of resistors between $\operatorname{Pin} 16(31)$ and $\operatorname{Pin} 17(30)$)

Item	Symbol	Typ.	Unit	Conditions	
Maximum output voltage	VOMt	1.9	Vrms	Input; pin2, 41 Output; pin18, 24 $\mathrm{RL}=10 \mathrm{k} \Omega, \mathrm{THD}=1 \%$	
Maximum input voltage	VIM1	0.6	Vrms	Input; pin2, 41/Output; pin18, 24 SRS \rightarrow ON, FOCUS \rightarrow OFF THD $=1 \%$	$\mathrm{f}=150 \mathrm{~Hz}$
	VIM2	0.55		Input; pin2, 41/Output; pin18, 24 SRS \rightarrow ON FOCUS \rightarrow ON (All VOL. = max) THD = 1\%	$\mathrm{f}=1 \mathrm{kHz}$
	VIM3	0.2			$\mathrm{f}=20 \mathrm{kHz}$
Pass gain	Gvt	0	dB	$\mathrm{Vi}=100 \mathrm{mVrms}$ SRS, Focus \rightarrow OFF Input; pin2, 41/Output ; pin18, 24	
	Gv1	10		$\mathrm{Vi}=100 \mathrm{mVrms}$ Input; pin2, 41/Output ; pin18, 24 SRS \rightarrow ON, FOCUS \rightarrow OFF	$\mathrm{f}=150 \mathrm{~Hz}$
	Gv2	12		$\begin{aligned} & \text { Vi }=100 \mathrm{mVrms} \\ & \text { SRS } \rightarrow \text { ON } \\ & \text { FOCUS } \rightarrow \text { ON (All VOL. }=\text { max }) \\ & \text { (2pin, } 41 \text { pin)-(18, 24Pin) } \end{aligned}$	$\mathrm{f}=1 \mathrm{kHz}$
	Gv3	22			$\mathrm{f}=20 \mathrm{kHz}$
Output noise voltage	Vno1	5.5	$\mu \mathrm{Vrms}$	$\begin{aligned} & \mathrm{Rg}=0(2,41 \mathrm{pin}) \\ & \text { SRS } \rightarrow \text { OFF, FOCUS } \rightarrow \text { OFF } \\ & \text { DIN-AUDIO filter } \\ & \hline \end{aligned}$	
	Vno2	18		$\mathrm{Rg}=0(2,41 \mathrm{pin})$ SRS \rightarrow ON, FOCUS \rightarrow OFF DIN-AUDIO filter	
	Vno3	50		$\begin{aligned} & \mathrm{Rg}=0 \text { (2, 41pin) } \\ & \text { SRS } \rightarrow \text { ON, FOCUS } \rightarrow \text { ON (All VOL. }=\text { max }) \\ & \text { DIN-AUDIO filter } \end{aligned}$	
Channel separation	CT	-90	dB	Input Side: $\mathrm{f}=1 \mathrm{kHz}, \mathrm{Vi}=0.5 \mathrm{Vrms}$ Monitor Side: $\mathrm{Rg}=0$, IHF-A filter Focus: OFF, SRS: OFF RL=10k Ω	

System Circuit Example

(The following figures show only the side channel.)

1. In the case of SRS 3D stereo is effective for the front speakers.

2. In the case of SRS 3D stereo is effective for the front and rear speakers. (FOCUS is effective for the front speakers.)

Note

Each switches (SRS ON/OFF, FOCUS ON/OFF and FOCUS Position H/L Switches) does not have the countermeasure for click noise, so that we recommended outside mute circuit.

SRS, the SRS logo, Sound Retrieval System and "everything else is only stereo" are registered trademarks of SRS Labs, Inc.

This device available only to licensees of SRS Lab, Inc.
Licensing and application information may be obtained from SRS Lab, Inc.
Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts or circuit application examples contained in these materials.

Package Dimensions

RenesasTechnology Corp. Sales strategic Planning Div. Nippon Bldg., 2-6-2, Onte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Notes:

1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property warranties or representations with respect to the accuracy or completeness of the information contained
rights or any other rights of Renesas or any third party with respect to the information in this document.
Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out of the use of any information in this document, including, but not limited to, product data, diagrams, charts, programs, algorithms, and application circuit examples.
. You should not use the products or the technology described in this document for the purpose of military applications such as the development of weapons of mass destruction or for the purpose of any other military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations.
2. All information included in this document such as product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas products listed in this document disclosed by Renesas such as that disclosed through our website. (http://www.renesas.com)
Renesas has used reasonable care in compiling the information included in this document, but Renesas assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information included in this document.
3. When using or otherwise relying on the information in this document, you should evaluate the information in light of the total system before deciding about the applicability of such information to the intended application. Renesas makes no representations, warranties or guaranties regarding the suitability of its products for any particular application and specifically disclaims any liability arising out of the application and use of the information in this document or Renesas products
7 . With the exception of products specified by Renesas as suitable for automobile applications, Renesas products are not designed, manufactured or tested for applications and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare, combustion control, aerospace and aeronautics, nuclear power undersea communication transmission. If you are considering the use of our products for such purposes, please contact a Renesas sales office beforehand. Renesas shall have no liability for damages arising out of the uses set forth above.
4. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:
(1) artificial life support devices or systems
2) surgical implantations
(3) healthcare intervention (e.g., excision, administration of medication, etc.)
(4) any other purposes that pose a direct threat to human life

Renesas sha shall indemnify and hor damages arising out of the uses set forth in the above and purchasers who elect to use Renesas products in any of the foregoing damages arising out of such applications.
9. You should use the products described herein within the range specified by Renesas, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or damages arising out of the use of Renesas products beyond such specified ranges.
10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage malfunction prevention appropriate treatment for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
11. In case Renesas products listed in this document are detached from the products to which the Renesas products are attached or affixed, the risk of accident such as swallowing by infants and small children is very high. You should implement safety measures so that Renesas products may not be easily detached from your products. Renesas shall have no liability for damages arising out of such detachment
12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written approval from Renesas.

Please contact a Renesas sales office if you have any questions regarding the information contained in this document, Renesas semiconductor products, or if you have any other inquiries.

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.
Renesas Technology America, Inc.
450 Holger Way, San Jose, CA 95134-1368, U.S.A
Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900
Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No. 1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120
Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd

7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong
Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd

10th Floor, No.99, Fushing North Road, Taipei, Taiwan
Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.

1 Harbour Front Avenue, \#06-10, Keppel Bay Tower, Singapore 098632
Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd.

Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea
Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145
Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

