

M62437FP

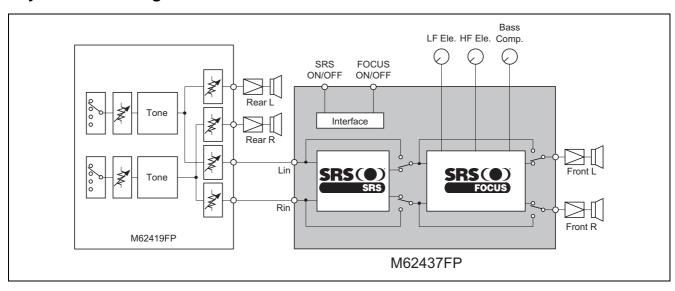
Sound Controller With SRS Focus & SRS Surround

REJ03F0216-0201 Rev.2.01 Mar 31, 2008

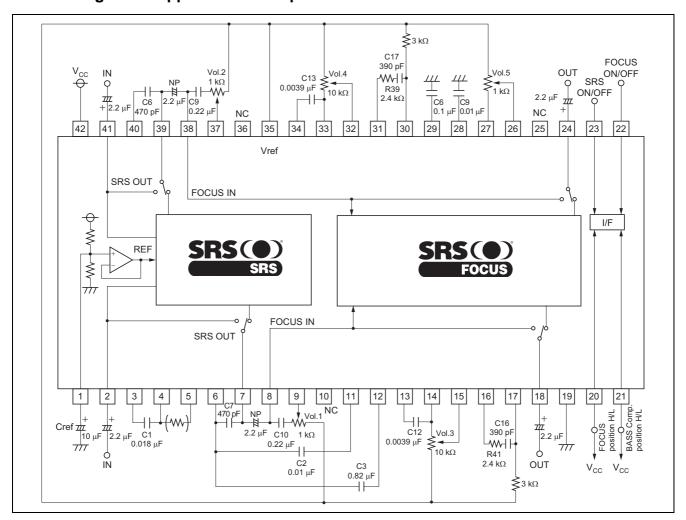
Description

This is an IC for car audio.

F(•)cus system can realize more optimal speaker position.

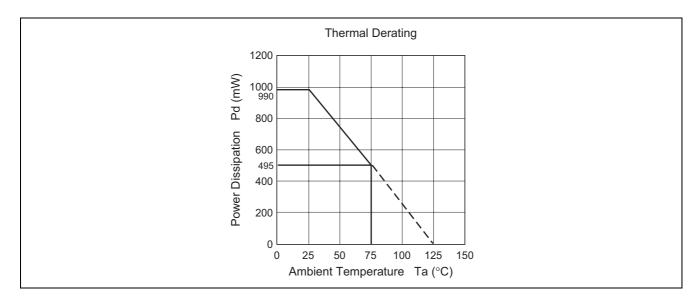

Features

- Built-in F(•)cus [LF/HF elevation (position) and Bass Compensation can be changed by the external resistors.]
- Built-in SR
- SRS ON/OFF mode and FOCUS ON/OFF mode can be controlled by the DC voltage.


Recommended Operating Condition

Supply voltage range: $V_{CC} = 7$ to 9 V Rated supply voltage: $V_{CC} = 8$ V

System Block Diagram


Block Diagram & Application Example

Absolute Maximum Ratings

 $(Ta = 25^{\circ}C, unless otherwise noted)$

Item	Symbol	Ratings	Unit	Condition
Supply Voltage	V _{CC} , Vdd	12	V	
Power Dissipation	Pd	990	mW	Ta ≤ 25°C
Thermal Derating	Κθ	9.9	mW/°C	Ta > 25°C
Operating Temperature	Topr	-20 to +75	°C	
Storage Temperature	Tstg	-55 to +125	°C	

Electrical Characteristics

(1) Power supply characteristics

 $(Ta = 25^{\circ}C, V_{CC} = 8.0V, f = 1kHz)$

			Limits			
Item	Symbol	Min	Тур	Max	Unit	Conditions
Circuit current	Icc		25	45	mA	42pin I _{CC} No Signal

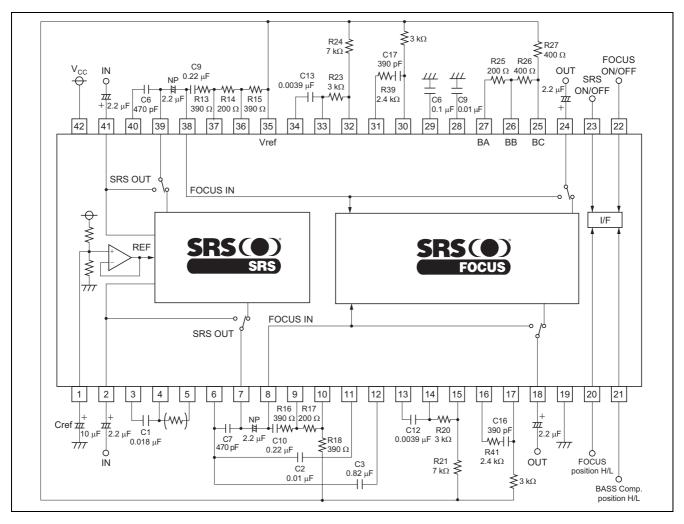
(2) Input/Output characteristics

 $(Ta = 25^{\circ}C, \ V_{CC} = 8.0V, \ f = 1 kHz, \ VOL.1, \ 2 = 1 k\Omega \ (VOL), \ VOL.3, \ 4 = 10 k\Omega \ (VOL), \ VOL.5 = 1 k\Omega \ (VOL))$

			Limits				
Item	Symbol	Min	Тур	Max	Unit	Conditions	
Maximum output voltage	VOMt	1.6	1.9	_	Vrms	Input; pin2, 41	
						Output; pin18, 24	
						$RL = 10k\Omega$, $THD = 1\%$	
Maximum input voltage	VIM1	0.4	0.6	_	Vrms	Input; pin2, 41	f = 150Hz
						Output; pin18, 24	
						SRS→ON, FOCUS→OFF	
						THD = 1%	
	VIM2	0.2	0.3	_		Input; pin2, 41/Output; pin18, 24	f = 1kHz
	VIM3	0.06	0.11	_		SRS→ON	f = 20kHz
						FOCUS→ON (All VOL. = max)	
						THD = 1%	
Pass gain	Gvt	-2.0	0	2.0	dB	Vi = 100mVrms	
						SRS, Focus→OFF	
						Input; pin2, 41/Output; pin18, 24	
	Gv1	7	10	13		Vi = 100mVrms	f = 150Hz
						Input; pin2, 41/Output; pin18, 24	
						SRS→ON, FOCUS→OFF	
	Gv2	15	18	21		Vi = 100mVrms	f = 1kHz
	Gv3	25	28	31		SRS→ON	f = 20kHz
						FOCUS→ON (All VOL. = max)	
						(2pin, 41pin)-(18, 24Pin)	
Output noise voltage	Vno1	_	5.5	15	μVrms	Rg = 0 (2, 41pin)	
						SRS→OFF, FOCUS→OFF	
						DIN-AUDIO filter	
	Vno2	_	18	50		Rg = 0 (2, 41pin)	
						SRS→ON, FOCUS→OFF	
						DIN-AUDIO filter	
	Vno3	_	90	150		Rg = 0 (2, 41pin),	
						SRS→ON, FOCUS→ON (All VOL	= max)
						DIN-AUDIO filter	
Channel separation	СТ	-	-90	-75	dB	Input side: f = 1kHz, Vi = 0.5Vrms	
						Monitor side: Rg = 0, IHF-A filter	
						Focus: OFF, SRS: OFF	
						$RL = 10k\Omega$	

(3) DC Control Characteristic of the Switch Block

		Limits				
Item	Symbol	Min	Тур	Max	Unit	Conditions
"H" level input voltage	V _{IH}	2.1	~	V_{CC}	V	Pin 22, 23
"L" level input voltage	V _{IL}	0	~	0.8	V	Pin 22, 23

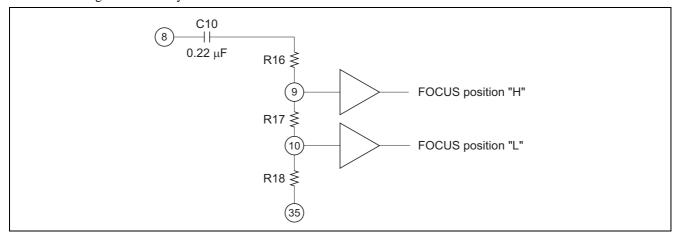

Switch Condition and the Mode

(23) SRS 3D Stereo	SRS ON/OFF Switch	
SRS ON	Н	
SRS OFF	L	

(22) FOCUS	FOCUS ON/OFF Switch
FOCUS ON	Н
FOCUS OFF	L

Note: Bypass mode can be set by both SRS ON/OFF switch and FOCUS ON/OFF switch are set to "L".

Application Circuit Example



Regarding to the other Application Circuit

• R16 (R13), R17 (R14), R18 (R15)

The resisters of R16 (R13), R17 (R14), R18 (R15) can be set the FOCUS position (LF Elevation).

Note: This figure shows only the side channel.

1. The setting of the FOCUS position "H"

2. The setting of the FOCUS position "L"

Note: please keep the following formula.

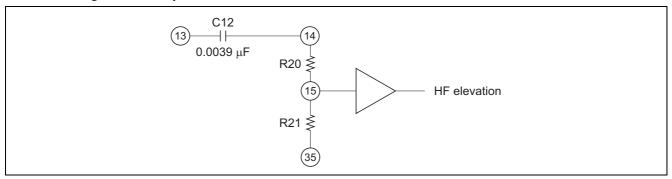
$$R16 + R17 + R18 \approx 1 \ k\Omega$$

(Example)

In the case of R16 = 390 Ω , R17 = 200 Ω , R18 = 390 Ω

FOCUS position "H" ≈ 60%

FOCUS position "L" ≈ 40%


(Switch Setting)

	FOCUS ON/OFF	FOCUS Position H/L
	Switch (22 Pin)	Switch (20 Pin)
FOCUS Position "H"	Н	Н
(LF Elevation)		
FOCUS Position "L"	Н	L
(LF Elevation)		

• R20 (R23), R21 (R24)

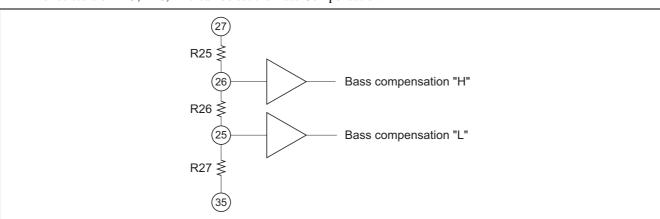
The resisters of R20 (R23), R21 (R24) can be set the HF Elevation.

Note: This figure shows only the side channel.

1. The setting of the HF Elevation.

Note: please keep the following formula.

$$R20 + R21 \approx 10 \; k\Omega$$


(Example)

In the case of R20 = 3 k Ω , R21 = 7 k Ω

HF Elevation ≈ 70%

• R25, R26, R27

The resistors of R25, R26, R27 can be set the Bass Compensation.

1. The setting of the Bass Compensation "H"

2. The setting of the Bass Compensation "L"

Note: please keep the following formula.

$$R25 + R26 + R27 \approx 1 \ k\Omega$$

(Example)

In the case of R25 = 200 Ω , R26 = 390 Ω , R27 = 390 Ω

Bass Compensation "H" ≈ 80%

Bass Compensation "L" ≈ 40%

(Switch Setting)

	FOCUS ON/OFF Switch (22 Pin)	Bass Comp. H/L Switch (21 Pin)
Bass Compensation "H"	Н	Н
Bass Compensation "L"	Н	L

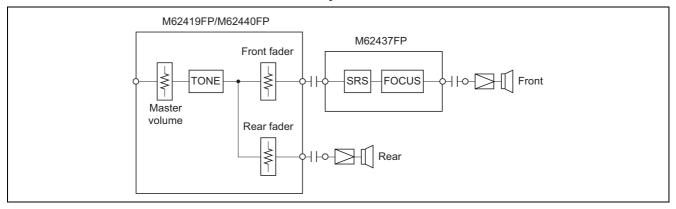
Between Pin16 (31) and Pin17 (30)

Add 10 k of resistors between Pin16(31) and Pin17(30), can adjust the difference between the sound level of Focus ON and the sound level of Focus OFF.

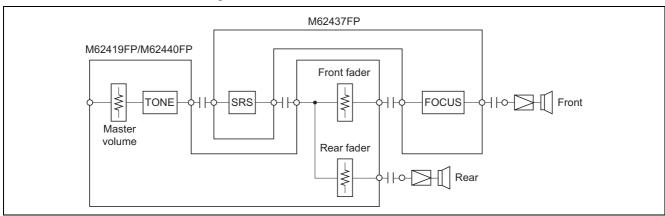
Also add 10 k of resistors between Pin16(31) and Pin17(30), can decrease the Focus gain.

Then the maximum input voltage and the output noise voltage can be improved.

(Reference)


In the case of (VOL.1, $2=1k\Omega$, VOL.3, $4=10k\Omega$, VOL.5 = $1k\Omega$, Add $10k\Omega$ of resistors between Pin16(31) and Pin17(30))

Item	Symbol	Тур.	Unit	Conditions	
Maximum output voltage	VOMt	1.9	Vrms	Input; pin2, 41	
				Output; pin18, 24	
				$RL = 10k\Omega$, $THD = 1\%$	
Maximum input voltage	VIM1	0.6	Vrms	Input; pin2, 41/Output; pin18, 24	f = 150Hz
				SRS→ON, FOCUS→OFF	
				THD = 1%	
	VIM2	0.55		Input; pin2, 41/Output; pin18, 24	f = 1kHz
	VIM3	0.2		SRS→ON	f = 20kHz
				FOCUS→ON (All VOL. = max)	
				THD = 1%	
Pass gain	Gvt	0	dB	Vi = 100mVrms	
				SRS, Focus→OFF	
				Input; pin2, 41/Output; pin18, 24	
	Gv1	10		Vi=100mVrms	f = 150Hz
				Input; pin2, 41/Output ; pin18, 24	
				SRS→ON, FOCUS→OFF	
	Gv2	12		Vi = 100mVrms	f = 1kHz
	Gv3	22		SRS→ON	f = 20kHz
				FOCUS→ON (All VOL. = max)	
				(2pin, 41pin)-(18, 24Pin)	
Output noise voltage	Vno1	5.5	μVrms	Rg = 0 (2, 41pin)	
				SRS→OFF, FOCUS→OFF	
				DIN-AUDIO filter	
	Vno2	18		Rg = 0 (2, 41pin)	
				SRS→ON, FOCUS→OFF	
				DIN-AUDIO filter	
	Vno3	50		Rg = 0 (2, 41pin)	
				SRS-ON, FOCUS-ON (All VOL. = max)	
				DIN-AUDIO filter	
Channel separation	CT	-90	dB	Input Side: f = 1kHz, Vi = 0.5Vrms	
				Monitor Side: Rg = 0, IHF-A filter	
				Focus: OFF, SRS: OFF	
				RL=10kΩ	


System Circuit Example

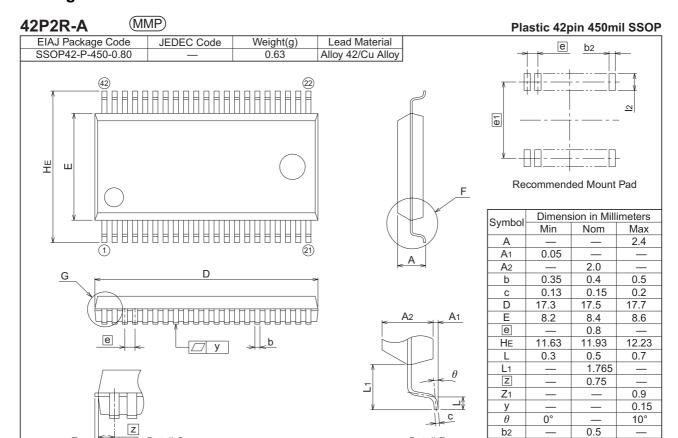
(The following figures show only the side channel.)

1. In the case of SRS 3D stereo is effective for the front speakers.

2. In the case of SRS 3D stereo is effective for the front and rear speakers. (FOCUS is effective for the front speakers.)

Note

Each switches (SRS ON/OFF, FOCUS ON/OFF and FOCUS Position H/L Switches) does not have the countermeasure for click noise, so that we recommended outside mute circuit.


SRS, the SRS logo, Sound Retrieval System and "everything else is only stereo" are registered trademarks of SRS Labs, Inc.

This device available only to licensees of SRS Lab, Inc.

Licensing and application information may be obtained from SRS Lab, Inc.

Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts or circuit application examples contained in these materials.

Package Dimensions

Detail F

e1

12

11.43

1.27

Detail G

Renesas Technology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Renesas lechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Notes:

 1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warrantes or representations with respect to the accuracy or completeness of the information in this document nor grants any license to any intellectual property girbs to any other rights of representations with respect to the information in this document in this document of the purpose of the respect of the information in this document in the product data, diagrams, charts, programs, algorithms, and application circuit examples.

 3. You should not use the products of the technology described in this document for the purpose of military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations, and procedures required to change without any plan protein. Before purchasing or using any Renesas products listed in this document, in the such procedure in the procedure of the development of the development of the development of the procedure of the development of the de

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510