DG2720

Vishay Siliconix

2 Port, USB 2.0 High Speed (480 Mbps) Switch, DPDT Analog Switch

DESCRIPTION

The DG2720 is 2 Port high speed analog switch optimized for USB 2.0 signal switching. The DG2720 switch is configured in DPDT. It handles bidirectional signal flow, achieving a 620 MHz - 3 dB bandwidth with 5 pF load, and a port to port Crosstalk and isolation at - 49 dB.

Processed with high density sub micron CMOS, the DG2720 provide low parasitic capacitance. Signals are routed with minimized phase distortion and attain a bit to bit skew is as low as 40 pS.

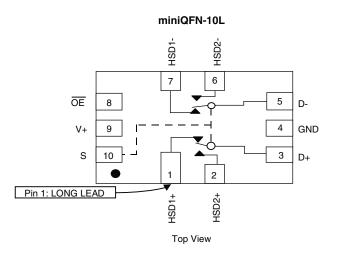
The DG2720 is designed for a wide range of operating voltages, from 2.7 V to 4.3 V that can be driven directly from one cell Li-ion battery. On-chip circuitry protects against conditions when either the D+/D- lines are shorted to the V_{BUS} at the USB port. Additionally, logic control pins (S and \overline{OE}) can tolerate the presence of voltages that are above the supply power rail (V+). The control logic threshold is guaranteed to be (V_{IH} = 1.3 V/min).

Latch up current is greater than 300 mA, as per JESD78, and its ESD tolerance exceeds 8 kV.

Packaged in ultra small miniQFN-10 (1.4 mm x 1.8 mm x 0.55 mm), it is ideal for portable high speed mix signal switching application.

As a committed partner to the community and the environment, Vishay Siliconix manufactures this product with lead (Pb)-free device termination. The miniQFN-10 package has a nickel-palladium-gold device termination and is represented by the lead (Pb)-free "-E4" suffix to the ordering part number. The nickel-palladium-gold device terminations meet all JEDEC standards for reflow and MSL rating.

As a further sign of Vishay Siliconix's commitment, the DG2720 is fully RoHS complaint.


FEATURES

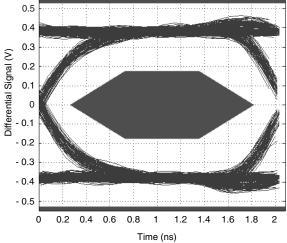
- Wide operation voltage range
- Low on-resistance, 5.7 Ω (typical at 3 V)
- Low capacitance, 5.6 pF (typical)
- 3 dB high bandwidth with 5 pF load: 620 MHz (typical)
- Low bit to bit skew: 40 pS (typical)
- Low power consumption
- · Low logic threshold: V
- Power down protection: D+/D- pins can tolerate up to 5 V when V+ = 0 V
- Logic (S and OE) above V+ tolerance
- Latch-up current greater than 300 mA per JESD78
- 8 kV ESD protection (HBM)
- Lead (Pb)-free low profile miniQFN-10 (1.4 mm x 1.8 mm x 0.55 mm)

APPLICATIONS

- Cellular phones
- Portable media players
- PDA
- Digital camera
- GPS
- Notebook computer
- TV, monitor, and set top box

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

DG2720


Vishay Siliconix

ORDERING INFORMATION			
Temp Range Package		Part Number	
- 40 °C to 85 °C	miniQFN-10	DG2720DN-T1-E4	

TRUTH TABLE					
OE (Pin 8)	3) S (Pin 10) Function				
0	0	D+ = HSD1+ and D- = HSD1-			
0	1	D+ = HSD2+ and D- = HSD2-			
1	X	Disconnect			

PIN DESCRIPTIONS			
Pin Name Description			
ŌĒ	Bus Switch Enable		
S	Select Input		
HSD1±, HSD2±, D±	Data Port		

High Speed Signal Quality Eye Diagram Test with V+ = 3.3 V

SUMMARY OF THE USB 2.0 SIGNAL QUALITY TEST RESULTS				
Compliance Test High Speed				
Signal Eye Test	Pass			
EOP Width	7.95 bits			
Measured Signal Rate	480.0009 MHz			
Consecutive Jitter Range	- 59.8 ps to 68.2 ps, RMS Jitter 26.8 ps			
Paired JK Jitter Range	- 49.7 ps to 51.4 ps, RMS Jitter 25.3 ps			
Paired KJ Jitter Range	- 61.3 ps to 58.5 ps, RMS Jitter 26.8 ps			

ABSOLUTE MAXIMUM RATINGS $T_A = 25 \degree C$, unless otherwise noted					
Parameter		Limit	Unit		
Reference to GND	V+	- 0.3 to 5.0	V		
Reference to GIND	S, OE, D±, HSD1±, HSD2± ^a	- 0.3 to (V+ + 0.3)			
Current (Any Terminal except S, OE, D±, HSD1±, HSD2±)		30	mA		
Continuous Current (S, OE, D±, HSD1±, HSD2±)		± 250			
Peak Current (Pulsed at 1 ms, 10 % duty cycle)		± 500			
Storage Temperature (D Suffix)		- 65 to 150	°C		
Power Dissipation (Packages) ^b	miniQFN-10 ^c	208	mW		
ESD (Human Body Model) I/O to GND		8	kV		
Latch-up (Current Injection)		350	mA		

Notes:

a. Signals on S, \overline{OE} , D±, HSD1±, HSD2± exceeding V+ will be clamped by internal diodes. Limit forward diode current to maximum current ratings.

b. All leads welded or soldered to PC board.

c. Derate 2.6 mW/°C above 70 °C.

SPECIFICATIONS V + = 3.0 V							
		Test Conditions		Limits - 40 to 85 °C		°C	
Parameter	Symbol	Otherwise Unless Specified	Temp. ^a	Min. ^b	Typ. ^c	Max. ^b	Unit
Analog Switch							
Analog Signal Range ^d	V _{ANALOG}	r _{DS(on)}	Full	0		V+	V
	Back	V+ = 3.0 V, I _{D+} = 8 mA, V _{HSD1/2+} = 0.4 V	Room		5.7	7	Ω
On-Resistance	R _{DS(on)}	$v_{\pm} = 0.0 v$, $v_{\pm} = 0.00 v$, $v_{HSD1/2\pm} = 0.4 v$	Full			9	
On-Resistance Match ^d	ΔR_{ON}	V+ = 3.0 V, $I_{D\pm}$ = 8 mA, $V_{HSD1/2\pm}$ = 0.4 V	Room		0.35		
On-Resistance Resistance Flatness ^d	R _{ON} Flatness	V + = 3.0 V, $I_{D\pm}$ = 8 mA, $V_{HSD1/2\pm}$ = 0.0 V, 1.0 V	Room		2		
Switch Off Leakage Current	I _(off)	V+ = 4.3 V, V _{HSD1/2±} = 0.3 V, 3.0 V, V _{D±} = 3.0 V, 0.3 V	Full	- 100		100	
Channel On Leakage Current	I _(on)	V+ = 4.3 V, V _{HSD1/2±} = 0.3 V, 4.0 V, V _{D±} = 4.0 V, 0.3 V	Full	- 200		200	– nA
Digital Control			•				
Input Voltage High	V _{INH}	V+ = 3.0 V to 3.6 V	Full	1.3			v
input voltage Fight		V+ = 4.3 V	Full	1.7			
Input Voltage Low	V _{INL}	V+ = 3.0 V to 4.3 V	Full			0.5	
Input Capacitance	C _{IN}		Full		5.6		pF
Input Current	I _{INL} or I _{INH}	V _{IN} = 0 or V+	Full	- 1		1	μA

Vishay Siliconix

SPECIFICATIONS $V + = 3.0 V$							
		Test Conditions			Limits - 40 to 85 °C		
Parameter	Symbol	Otherwise Unless Specified	Temp. ^a	Min. ^b	Typ. ^c	Max. ^b	Unit
Dynamic Characteristics							
Break-Before-Make Time ^{e, d}	t _{BBM}	V+ = 3.0 V, V _{D1/2 ±} = 1.5 V, R _L = 50 Ω, C _L = 35 pF	Room Full		5		
Enable Turn-On Time ^{e, d}	t _{ON(EN)}		Room			30	ns
Enable Turn-Off Time ^{e, d}	t _{OFF(EN)}		Room			25	
	. ,		Full				
Charge Injection ^d	Q _{INJ}	$C_L = 1 \text{ nF}, R_{GEN} = 0 \Omega, V_{GEN} = 0 V$			0.5		рС
Off-Isolation ^d	OIRR	V+ = 3.0 V to 3.6 V, R_L = 50 Ω , C_L = 5 pF,			- 30		dB
Crosstalk ^d	X _{TALK}	f = 240 MHz	-		- 49		UD
Bandwidth ^d	BW	V+ = 3.0 V to 3.6 V, R _L = 50 Ω, C _L = 5 pF, - 3 dB			620		MHz
a i ana i d	C _{D1± (off)}	- V+ = 3.3 V, f = 1 MHz			4		pF
Channel-Off Capacitance ^d	C _{D2± (off)}		Room		4		
e i e e i d	C _{D± (off)}				5.6		
Channel-On Capacitance ^d	C _{D± (on)}				11		
Channel-to-Channel Skew ^d	t _{SK(O)}				50		
Skew Off Opposite Transitions of the Same Output ^d	t _{SK(p)}	V+ = 3.0 V to 3.6 V, R _L = 50 Ω, C _L = 5 pF			20		ps
Total Jitter ^d	tj				200		1
Power Supply		1	n			<u> </u>	1
Power Supply Range	V+			2.6		4.3	V
Power Supply Current	l+	$V_{IN} = 0 V$, or V+	Full			2	μA

Notes:

a. Room = 25 $^{\circ}$ C, Full = as determined by the operating suffix.

b. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.

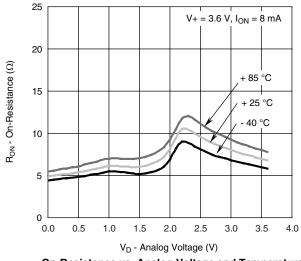
c. Typical values are for design aid only, not guaranteed nor subject to production testing.

d. Guarantee by design, not subjected to production test.

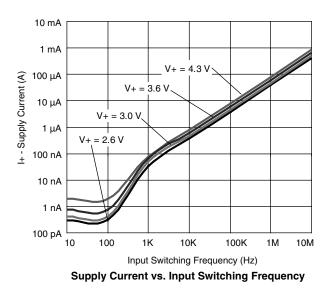

e. V_{IN} = input voltage to perform proper function.

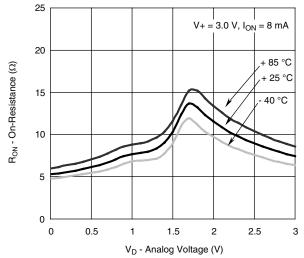
f. Crosstalk measured between channels.

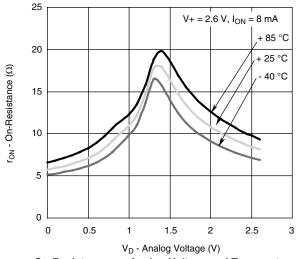
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

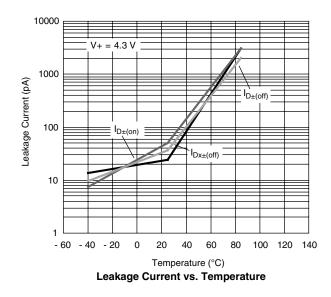

DG2720 Vishay Siliconix

TYPICAL CHARACTERISTICS $T_A = 25$ °C, unless otherwise noted

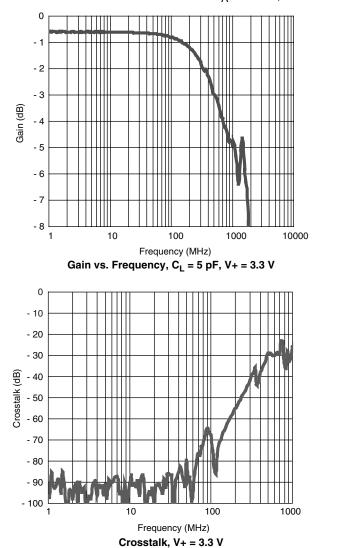



VISHAY





On-Resistance vs. Analog Voltage and Temperature



On-Resistance vs. Analog Voltage and Temperature

Document Number: 74593 S-81473-Rev. C, 23-Jun-08

Vishay Siliconix

TYPICAL CHARACTERISTICS $T_A = 25$ °C, unless otherwise noted

0

- 10

- 20

- 30

- 40

- 50

- 60

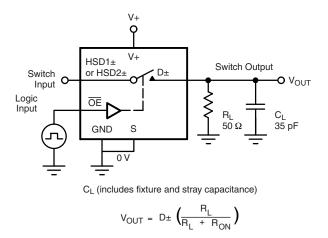
- 70

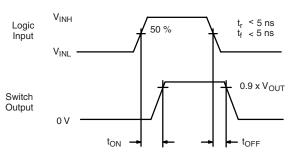
- 80

- 90 - 100

10

Frequency (MHz)


OFF Isolation, V+ = 3.3 V


100

1000

Off Isolation (dB)

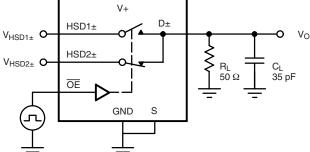
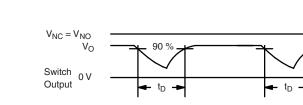

Logic "1" = Switch On Logic input waveforms inverted for switches that have the opposite logic sense.

Figure 1. Switching Time

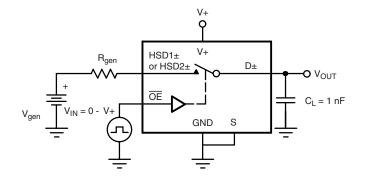

VISHA

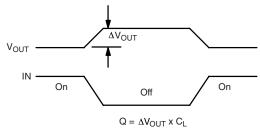
reliability data, see http://www.vishay.com/ppg?74593.

TEST CIRCUITS

۷+ **റ**

C_L (includes fixture and stray capacitance)


Figure 2. Break-Before-Make Interval


Logic

Input

 V_{INH}

VINL

IN depends on switch configuration: input polarity determined by sense of switch.

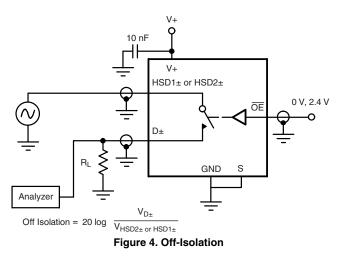


Figure 3. Charge Injection

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and

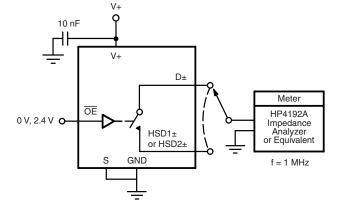


Figure 5. Channel Off/On Capacitance

Vishay Siliconix

DG2720

t_r < 5 ns t_f < 5 ns

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.