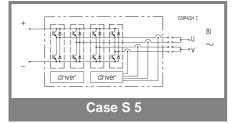

SKiiP 592GH170-4D

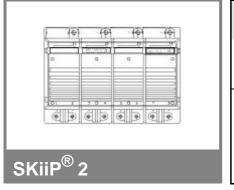
4-pack - integrated intelligent Power System

Power section


SKiiP 592GH170-4D

Power section features

- SKiiP technology inside
- CAL diode technology
- · Integrated current sensor
- Integrated teperature sensor
- Integrated heat sink
- IEC 60721-3-3 (humidity) class 3K3/IE32 (SKiiP® 2 System)
- IEC 60068-1 (climate) 40/125/56
- UL recognized file no. E63532
- 1) with assembly of suitable MKP capacitor per terminal
- 8) AC connection busbars must be connected by the user; copper busbars available on request


Absolute	Maximum Ratings	s = 25 °C unless otherwise specified				
Symbol	Conditions	Values	Units			
IGBT						
V_{CES}		1700	V			
V _{CES} V _{CC} 1)	Operating DC link voltage	1200	V			
V_{GES}		± 20	V			
I _C	T _s = 25 (70) °C	500 (375)	Α			
Inverse diode						
$I_F = -I_C$	T _s = 25 (70) °C	500 (375)	Α			
I _{FSM}	$T_i = 150 ^{\circ}\text{C}, t_p = 10 \text{ms}; \text{sin}.$	4320	Α			
I²t (Diode)	Diode, T _j = 150 °C, 10 ms	93	kA²s			
T_j , (T_{stg})		- 40 (-25) + 150 (125)	°C			
V _{isol}	AC, 1 min. (mainterminals to heat sink)	4000	V			

Characteristics $T_s = 25$ °C unless otherwise specified									
Symbol	Conditions				min.	typ.	max.	Units	
IGBT									
V_{CEsat}	I _C = 400 A	A, T _i = 25 (1	25) °C			3,3 (4,3)	3,9	V	
V_{CEO}	$T_{j} = 25 (12)$					1,7 (2)	2 (2,3)	V	
r_{CE}	$T_{j} = 25 (12)$	25) °C				4 (5,9)	4,8 (6,6)	mΩ	
I _{CES}	$V_{GE} = 0 \text{ V}, V_{CE} = V_{CES},$					(30)	2	mA	
	T _i = 25 (125) °C								
E _{on} + E _{off}	I _C = 400 A, V _{CC} = 900 V					345	mJ		
	T _j = 125 °	C, V _{CC} = 12	200 V				509	mJ	
R _{CC' + EE'}	terminal c	hip, T _i = 12	5 °C			0,25		mΩ	
L _{CE}	top, bottor	m .				7,5		nΗ	
C _{CHC}	per phase	, AC-side				1,6		nF	
Inverse o	diode								
$V_F = V_{EC}$	I _F = 400 A	, T _j = 25 (1	25) °C			2,3 (2,1)	2,9	V	
V_{TO}	$T_j = 25 (12)$						1,6 (1,3)	V	
r _T	$T_j = 25 (12)$					2,5 (2,8)		mΩ	
E _{rr}	-	$V_{CC} = 900$					42	mJ	
	T _j = 125 °	C, V _{CC} = 12	200 V				50	mJ	
Mechani									
M _{dc}		als, SI Unit			6		8	Nm	
M _{ac}		als, SI Unit			13		15	Nm	
W	SKiiP® 2 System w/o heat sink					3,5		kg	
W	heat sink					8,5		kg	
			P16 hea	t sink; 27	75 m³/h)	; " _r " refe	rence to		
temperat		sor			ı		0.04	1.000	
R _{th(j-s)I}	per IGBT						0,04	K/W	
R _{th(j-s)D}	per diode						0,133	K/W	
R _{th(s-a)}	per modul						0,033	K/W	
Z_{th}) (max. valu		4	l 4	tau		4	
7	1	2 31	3 5	4 0	1 1	2 0,13	3 0,001	4 1	
Z _{th(j-r)I}	15	103	5 16	0	1 1	0,13	0,001	1	
Z _{th(j-r)D}						•	•		
$Z_{th(r-a)}$	1,6	22	7	2,4	494	165	20	0,03	

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

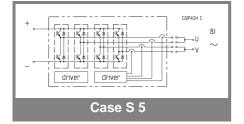
SKiiP 592GH170-4D

Absolute Maximum Ratings		Γ _a = 25 °C, unless otherwise specified			
Symbol	Conditions	Values	Units		
V_{S1}	stabilized 15 V power supply	18	V		
V_{S2}	unstabilized 24 V power supply	30	V		
V_{iH}	input signal voltage (high)	15 + 0,3	V		
dv/dt	secondary to primary side	75	kV/μs		
V_{isollO}	input / output (AC, r.m.s., 2s)	4000	Vac		
V _{isol12}	output 1 / output 2 (AC, r.m.s., 2s)	1500	Vac		
f_{sw}	switching frequency	10	kHz		
f _{out}	output frequency for I=I _C ;sin.	1	kHz		
$T_{op} (T_{stg})$	operating / storage temperature	- 40 + 85	°C		

4-pack - integrated intelligent Power System

4-pack integrated gate driver

SKiiP 592GH170-4D


Gate driver features

- Two separate and independent "GB"-type driver
- CMOS compatible input
- Wide range power supply
- Integrated circuitry to sense phase current, heat sink temperature and DC-bus voltage (option)
- U-option is integrated on left driver, (DC terminals at bottom; refer to case drawing)
- Short circuit protection
- Over current protection
- Over voltage protection (option)
- Power supply protected against under voltage
- Interlock of top/bottom switch
- Isolation by transformers
- Fibre optic interface (option)
- IEC 60068-1 (climate) 25/85/56

Characteristics				(T _a = 25 °C)		
Symbol	Conditions	min.	typ.	max.	Units	
V_{S1}	supply voltage stabilized	14,4	15	15,6	V	
V_{S2}	supply voltage non stabilized	20	24	30	V	
I _{S1}	V _{S1} = 15 V	210+440	210+440*f/f _{max} +1,2*(I _{AC} /A)			
I _{S2}	V _{S2} = 24 V	160+310*f/f _{max} +0,85*(I _{AC} /A)			mA	
V_{iT+}	input threshold voltage (High)		12,3			
V_{iT-}	input threshold voltage (Low)	4,6			V	
R _{IN}	input resistance	10			kΩ	
$t_{d(on)IO}$	input-output turn-on propagation time			1,5	μs	
t _{d(off)IO}	input-output turn-off propagation time			1,4	μs	
tpERRRESET	error memory reset time	9			μs	
t _{TD}	top / bottom switch : interlock time		3,3		μs	
I _{analogOUT}	8 V corresponds to max. current of 15 V supply voltage		500			
I _{Vs1outmax}	(available when supplied with 24 V)			50	mA	
I _{A0max}	output current at pin 12/14			5	mA	
V _{0I}	logic low output voltage			0,6	V	
V _{0H}	logic high output voltage			30	V	
I _{TRIPSC}	over current trip level (I _{analog OUT} = 10 V)		625		Α	
I _{TRIPLG}	ground fault protection				Α	
T _{tp}	over temperature protection	110		120	°C	
U _{DCTRIP}	trip level of U _{DC} -protection	1200			V	
	(U _{analog OUT} = 9 V); (option)					

For electrical and thermal design support please use SEMISEL. Access to SEMISEL is via SEMIKRON website http://www.semikron.com.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

