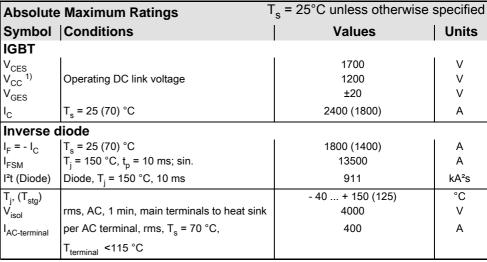
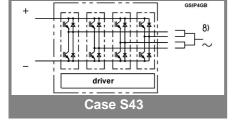

SKiiP 2403GB172-4DW

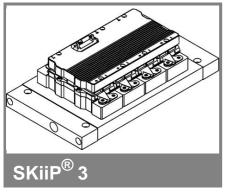

2-pack-integrated intelligent Power System

Power section SKiiP 2403GB172-4DW


Data

Power section features

- SKiiP technology inside
- Trench IGBTs
- CAL diode technology
- · Integrated current sensor
- · Integrated temperature sensor
- Integrated heat sink
- IEC 60721-3-3 (humidity) class 3K3/IE32 (SKiiP® 3 System)
- IEC 60068-1 (climate) 40/125/56
- UL recognized file no. E63532
- with assembly of suitable MKP capacitor per terminal
- 8) AC connection busbars must be connected by the user; copper busbars available on request



Characte	Characteristics T						T _s = 25°C unless otherwise specified			
Symbol	Conditions				min.	typ.	max.	Units		
IGBT						•				
V _{CEsat}	I _C = 1200 a measured at t	A, T _j = 25 erminal	(125) °C;			1,9 (2,2)	2,4	V		
V_{CEO}	T _i = 25 (125) °C; at terminal					1 (0,9)	1,2 (1,1)	V		
r _{CE}	$T_i = 25 (125) ^{\circ}\text{C}$; at terminal					0,8 (1)	1 (1,3)	mΩ		
I _{CES}	V _{GE} = 0 V, V _{CE} = V _{CES} , T _i = 25 (125) °C					mA				
$E_{on} + E_{off}$	I _C = 1200 A, V _{CC} = 900 V					mJ				
	T _j = 125 °C, V _{CC} = 1200 V					mJ				
R _{CC+EE}	terminal chip, T _i = 25 °C					mΩ				
L _{CE}	top, botton	n ´				nΗ				
C _{CHC}	per phase	, AC-side				4		nF		
Inverse o	diode									
$V_F = V_{EC}$	I _F = 1200 / measured at t	A, T _j = 25 erminal	(125) °C			2 (1,8)	2,15	V		
V_{TO}	T _j = 25 (12	25) °C				1,1 (0,8)	1,2 (0,9)	V		
r _T	$T_i = 25 (12)$	25) °C				0,8 (0,8)	0,8 (0,9)	mΩ		
Ė"	$I_{\rm C}^{\rm J} = 1200 {\rm J}$		900 V			144		mJ		
	T _i = 125 °C	C, V _{CC} = 1	200 V			171		mJ		
Mechani	cal data									
M _{dc}	DC termina	als, SI Uni	its		6		8	Nm		
M _{ac}	AC termina				13		15	Nm		
w	SKiiP® 3 System w/o heat sink					3,1		kg		
w	heat sink					6,2		kg		
						c.); "s" re (acc. IEC				
R _{th(j-s)I}	per IGBT					,	0,013	K/W		
R _{th(j-s)D}	per diode						0,025	K/W		
Z _{th}	R _i (mK/W) (max. values)				tau _i (s)					
	1	2	3	4	1	2	3	4		
$Z_{th(j-r)I}$	1,2	5	5,8	0	69	0,35	0,02	1		
$Z_{th(j-r)D}$	2	3	13,5	13,5	50	5	0,25	0,04		
$Z_{\text{th(r-a)}}$	2,7	4,6	1,1	0,6	48	15	2,8	0,4		

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

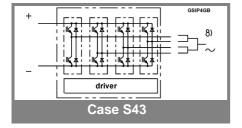
SKiiP 2403GB172-4DW

2-pack-integrated intelligent Power System

2-pack integrated gate driver SKiiP 2403GB172-4DW

Data

Gate driver features


- CMOS compatible inputs
- Wide range power supply
- Integrated circuitry to sense phase current, heat sink temperature and DC-bus voltage (option)
- Short circuit protection
- Over current protection
- Over voltage protection (option)
- Power supply protected against under voltage
- Interlick of top/bottom switch
- · Isolation by transformers
- Fibre optic interface (option for GB-types only)
- IEC 60068-1 (climate) 40/85/56
- UL recognized file no. 242581

Absolute	Maximum Ratings	T _a = 25°C unless otherwise specified		
Symbol	Conditions	Values	Units	
V_{S2}	unstabilized 24 V power supply	30	V	
V_{i}	input signal voltage (high)	15 + 0,3	V	
dv/dt	secondary to primary side	75	kV/μs	
V_{isollO}	input / output (AC, rms, 2s)	4000	V	
V _{isoIPD}	partial discharge extinction voltage, rms, Q _{PD} ≤10 pC;	1500	V	
V _{isol12}	output 1 / output 2 (AC, rms, 2s)	1500	V	
f _{sw}	switching frequency	7	kHz	
f _{out}	output frequency for I _{peak(1)} =I _C	7	kHz	
$T_{op} (T_{stg})$	operating / storage temperature	- 40 + 85	°C	

Characte	eristics	(T _a = 25°C)			
Symbol	Conditions	min.	typ.	max.	Units
V_{S2}	supply voltage non stabilized	13	24	30	V
I _{S2}	V _{S2} = 24 V	430+45*f/kHz+0,00011*(I _{AC} /A) ²			mA
V _{iT+}	input threshold voltage (High)			12,3	V
V_{iT-}	input threshold voltage (Low)	4,6			V
R _{IN}	input resistance		10		kΩ
C_{IN}	input capacitance		1		nF
t _{d(on)IO}	input-output turn-on propagation time		1,3		μs
$t_{d(off)IO}$	input-output turn-off propagation time		1,3		μs
$t_{pERRRESET}$	error memory reset time		9		μs
t_{TD}	top / bottom switch interlock time		3,3		μs
I _{analogOUT}	max. 5mA; 8 V corresponds to 15 V supply voltage for external components		2000		А
I _{s1out}	max. load current			50	mA
I _{TRIPSC}	over current trip level		2500		Α
т	(I _{analog} OUT = 10 V) over temperature protection	110	2300	120	°C
T_{tp} U_{DCTRIP}	U_{DC} -protection ($U_{analog\ OUT} = 9\ V$);	110	not	120	V
DCTRIP	analog OUT	i	mplemented	d	•
	(option for GB types)				

For electrical and thermal design support please use SEMISEL. Access to SEMISEL is via SEMIKRON website http://www.semikron.com.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

