Power MOSFET 75 Amps, 60 Volts, Logic Level N–Channel TO–220 and D²PAK

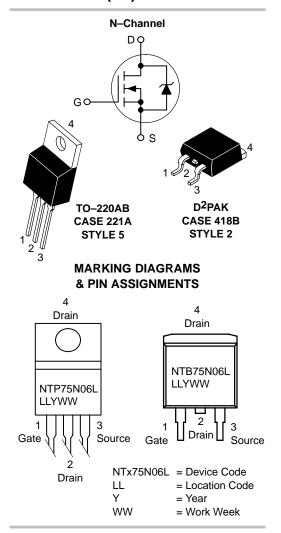
Designed for low voltage, high speed switching applications in power supplies, converters and power motor controls and bridge circuits.

Typical Applications

- Power Supplies
- Converters
- Power Motor Controls
- Bridge Circuits

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

$\begin{array}{ c c c c c } \hline Rating & Symbol & Value & Unit \\ \hline Drain-to-Source Voltage & V_{DSS} & 60 & Vdc \\ \hline Drain-to-Gate Voltage (R_{GS} = 10 M\Omega) & V_{DGR} & 60 & Vdc \\ \hline Gate-to-Source Voltage & V_{GS} & \pm 20 & Vdc \\ \hline - Continuous & V_{GS} & \pm 15 & Vdc \\ \hline - Non-Repetitive (t_p \leq 10 ms) & V_{GS} & \pm 15 & Vdc \\ \hline Drain Current & ID & 75 & Adc \\ \hline - Continuous @ T_A = 25^{\circ}C & ID & 75 & Adc \\ \hline - Continuous @ T_A = 100^{\circ}C & ID & 50 & \\ \hline - Single Pulse (t_p \leq 10 \ \mu s) & IDM & 225 & Apk \\ \hline Total Power Dissipation @ T_A = 25^{\circ}C & P_D & 214 & W \\ \hline Derate above 25^{\circ}C & P_D & 214 & W \\ \hline Operating and Storage Temperature Range & T_J, T_{Stg} & -55 to & ^{\circ}C \\ \hline +175 & \\ \hline Single Pulse Drain-to-Source Avalanche \\ Energy - Starting T_J = 25^{\circ}C & P_D & 214 & M \\ \hline \end{array}$,		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Rating	Symbol	Value	Unit
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Drain-to-Source Voltage	VDSS	60	Vdc
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Drain–to–Gate Voltage (R_{GS} = 10 M Ω)	VDGR	60	Vdc
$\begin{tabular}{ c c c c c c } \hline -& Non-Repetitive (t_p \le 10 \text{ ms}) & V_{GS} & \pm 15 \\ \hline Drain Current & & I_D & 75 & Adc \\ & -& Continuous @ T_A = 25^\circ C & I_D & 50 & \\ & -& Single Pulse (t_p \le 10 \ \mu s) & I_DM & 225 & Apk \\ \hline Total Power Dissipation @ T_A = 25^\circ C & P_D & 214 & W \\ Derate above 25^\circ C & & 1.4 & W/^\circ C \\ \hline Total Power Dissipation @ T_A = 25^\circ C (Note 1.) & 2.4 & W \\ \hline Operating and Storage Temperature Range & T_J, T_{Stg} & -55 \ to & +175 & \\ \hline Single Pulse Drain-to-Source Avalanche & E_{AS} & 844 & mJ \\ \hline Energy - Starting T_J = 25^\circ C & \hline \end{tabular}$	Gate-to-Source Voltage			Vdc
$\begin{tabular}{ c c c c c c } \hline -& Non-Repetitive (t_p \le 10 \text{ ms}) & V_{GS} & \pm 15 \\ \hline Drain Current & & I_D & 75 & Adc \\ & -& Continuous @ T_A = 25^\circ C & I_D & 50 & \\ & -& Single Pulse (t_p \le 10 \ \mu s) & I_DM & 225 & Apk \\ \hline Total Power Dissipation @ T_A = 25^\circ C & P_D & 214 & W \\ Derate above 25^\circ C & & 1.4 & W/^\circ C \\ \hline Total Power Dissipation @ T_A = 25^\circ C (Note 1.) & 2.4 & W \\ \hline Operating and Storage Temperature Range & T_J, T_{Stg} & -55 \ to & +175 & \\ \hline Single Pulse Drain-to-Source Avalanche & E_{AS} & 844 & mJ \\ \hline Energy - Starting T_J = 25^\circ C & \hline \end{tabular}$	 Continuous 	VGS	± 20	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	– Non–Repetitive (t _p ≤10 ms)		±15	
$\label{eq:constraint} \begin{array}{ c c c } - & Continuous @ T_A = 100^\circ C & I_D & 50 \\ \hline & - & Single Pulse (t_p \leq 10 \ \mu s) & I_DM & 225 & Apk \\ \hline & I_DM & 225 & Apk \\ \hline & I_DM & 225 & P_D & 214 & W \\ \hline & Derate above 25^\circ C & 1.4 & W/^\circ C \\ \hline & Total Power Dissipation @ T_A = 25^\circ C (Note 1.) & 2.4 & W \\ \hline & Operating and Storage Temperature Range & T_J, T_{Stg} & -55 \ to & +175 \\ \hline & Single Pulse Drain-to-Source Avalanche & E_{AS} & 844 & mJ \\ \hline & Energy - Starting T_J = 25^\circ C & \hline & & & \\ \hline \end{array}$				
$\label{eq:logical_states} \begin{array}{ c c c } - & \text{Single Pulse} (t_p \leq 10 \ \mu\text{s}) & \text{I}_{DM} & 225 & \text{Apk} \\ \hline \text{Total Power Dissipation @ } T_A = 25^\circ\text{C} & P_D & 214 & W \\ \hline \text{Derate above } 25^\circ\text{C} & 1.4 & W/^\circ\text{C} \\ \hline \text{Total Power Dissipation @ } T_A = 25^\circ\text{C} \ (\text{Note 1.}) & 2.4 & W \\ \hline \text{Operating and Storage Temperature Range} & T_J, \ T_{Stg} & -55 \ \text{to} & \circ^{\text{C}} \\ +175 & & \\ \hline \text{Single Pulse Drain-to-Source Avalanche} & E_{AS} & 844 & \text{mJ} \\ \hline \text{Energy} - \ \text{Starting } T_J = 25^\circ\text{C} & & \\ \hline \end{array}$		۱D	75	Adc
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		۱ _D	50	
$\begin{tabular}{ c c c c c c c } \hline Derate above 25^{\circ}C & 1.4 & W/^{\circ}C \\ \hline Total Power Dissipation @ T_A = 25^{\circ}C (Note 1.) & 2.4 & W \\ \hline Operating and Storage Temperature Range & T_J, T_{Stg} & -55 to & ^{\circ}C \\ & +175 & & \\ \hline Single Pulse Drain-to-Source Avalanche & E_{AS} & 844 & mJ \\ \hline Energy - Starting T_J = 25^{\circ}C & & \\ \hline \end{array}$	– Single Pulse ($t_p \le 10 \ \mu s$)	IDM	225	Apk
Total Power Dissipation @ $T_A = 25^{\circ}C$ (Note 1.)2.4WOperating and Storage Temperature Range T_J, T_{Stg} -55 to $+175$ $^{\circ}C$ $+175$ Single Pulse Drain-to-Source Avalanche Energy - Starting $T_J = 25^{\circ}C$ EAS844mJ	Total Power Dissipation @ T _A = 25°C	PD	214	W
Operating and Storage Temperature RangeTJ, Tstg-55 to +175°C +Single Pulse Drain-to-Source Avalanche Energy – Starting TJ = 25°CEAS844mJ	Derate above 25°C		1.4	W/°C
Single Pulse Drain-to-Source Avalanche EAS 844 mJ Energy – Starting TJ = 25°C Filler Filler Filler	Total Power Dissipation @ $T_A = 25^{\circ}C$ (Note 1.)		2.4	W
Single Pulse Drain-to-Source Avalanche EAS 844 mJ Energy – Starting TJ = 25°C Filler Filler Filler	Operating and Storage Temperature Range	TJ, Tstg	-55 to	°C
Energy – Starting T _J = 25°C		,	+175	
	0	EAS	844	mJ
	$(V_{DD} = 50 \text{ Vdc}, V_{GS} = 5.0 \text{ Vdc}, L = 0.3 \text{ mH}$			
I _{L(pk)} = 75 A, V _{DS} = 60 Vdc)	$I_{L(pk)} = 75 \text{ A}, V_{DS} = 60 \text{ Vdc}$			
Thermal Resistance °C/W	Thermal Resistance			°C/W
– Junction–to–Case R ₀ JC 0.7	 Junction-to-Case 	R ₀ JC	0.7	
– Junction–to–Ambient (Note 1.) $R_{\theta JA}$ 62.5	– Junction–to–Ambient (Note 1.)		62.5	
Maximum Lead Temperature for Soldering TL 260 °C	Maximum Lead Temperature for Soldering	ΤL	260	°C
Purposes, 1/8" from case for 10 seconds	Purposes, 1/8" from case for 10 seconds			


 When surface mounted to an FR4 board using minimum recommended pad size, (Cu Area 0.412 in²).

ON Semiconductor[™]

http://onsemi.com

75 AMPERES 60 VOLTS RDS(on) = 11 mΩ

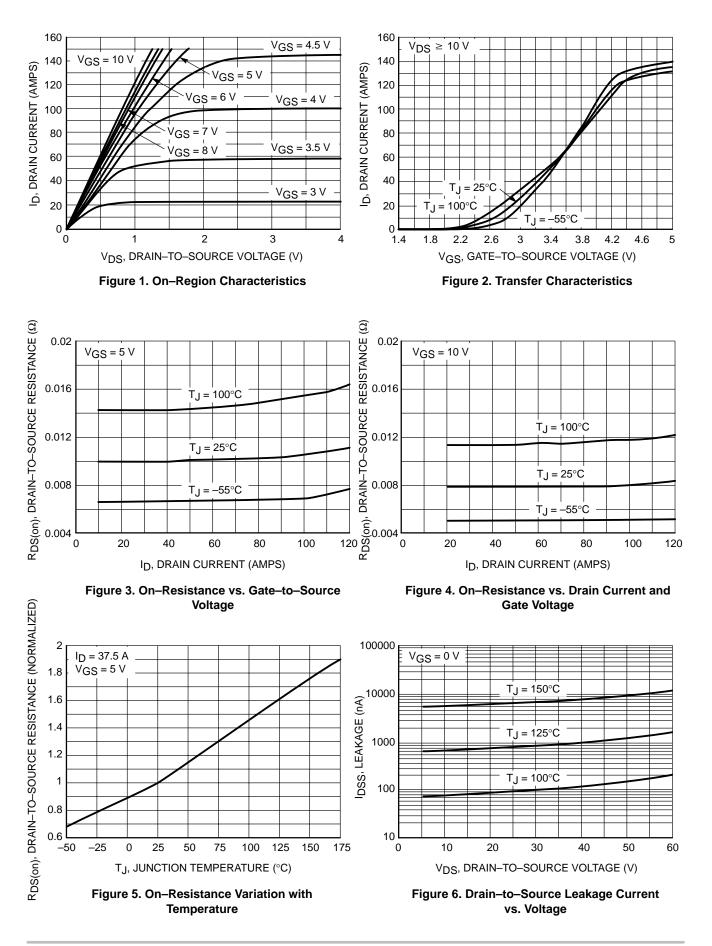
ORDERING INFORMATION

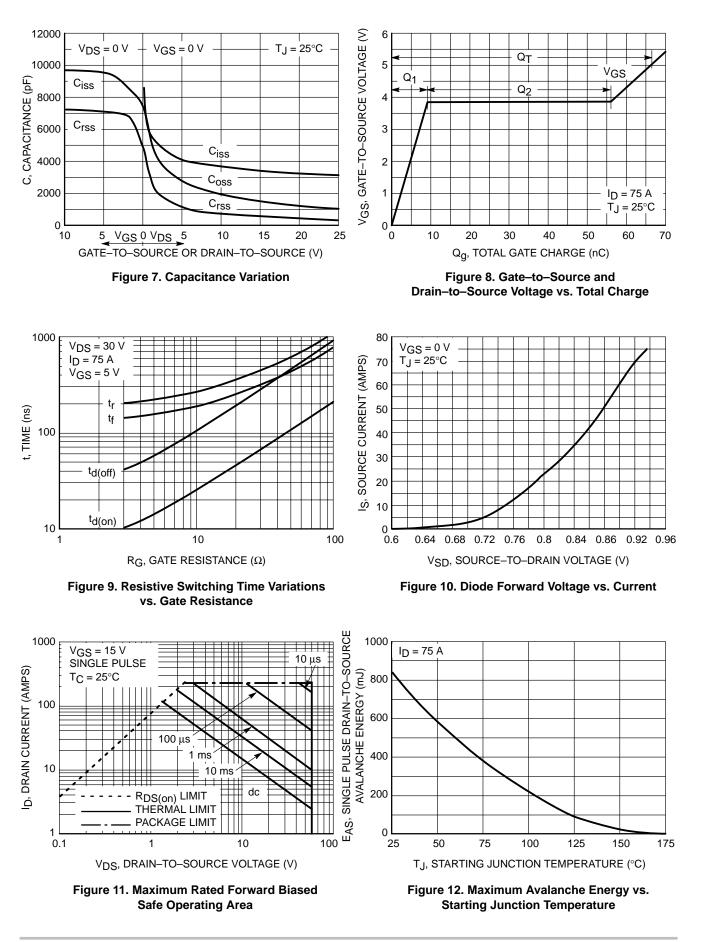
Device	Package	Shipping
NTP75N06L	TO-220AB	50 Units/Rail
NTB75N06L	D ² PAK	50 Units/Rail
NTB75N06LT4	D ² PAK	800/Tape & Reel

ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise noted)

Characteristic			Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Drain–to–Source Breakdown Voltage (Note 2.) (V _{GS} = 0 Vdc, I _D = 250 μ Adc) Temperature Coefficient (Positive)			60 -	72 74		Vdc mV/°C
Zero Gate Voltage Drain Curr ($V_{DS} = 60 \text{ Vdc}, V_{GS} = 0 \text{ Vd}$ ($V_{DS} = 60 \text{ Vdc}, V_{GS} = 0 \text{ Vd}$	IDSS			10 100	μAdc	
Gate-Body Leakage Current	$(V_{GS} = \pm 15 \text{ Vdc}, V_{DS} = 0 \text{ Vdc})$	IGSS	-	-	±100	nAdc
ON CHARACTERISTICS (Note	2.)					
Gate Threshold Voltage (Note 2.) $(V_{DS} = V_{GS}, I_D = 250 \mu Adc)$ Threshold Temperature Coefficient (Negative)			1.0	1.58 6.0	2.0	Vdc mV/°C
Static Drain-to-Source On-R (V _{GS} = 5.0 Vdc, I _D = 37.5 /	R _{DS(on)}	_	9.0	11	mOhm	
Static Drain-to-Source On-Voltage (Note 2.) (V _{GS} = 5.0 Vdc, I _D = 75 Adc) (V _{GS} = 5.0 Vdc, I _D = 37.5 Adc, T _J = 150°C)		VDS(on)		0.75 0.61	0.99 -	Vdc
Forward Transconductance (N	Note 2.) (V _{DS} = 15 Vdc, I _D = 37.5 Adc)	9FS	_	55	-	mhos
YNAMIC CHARACTERISTIC	s					
Input Capacitance		C _{iss}	-	3122	4370	pF
Output Capacitance	(V _{DS} = 25 Vdc, V _{GS} = 0 Vdc, f = 1.0 MHz)	C _{OSS}	-	1029	1440	
Transfer Capacitance		C _{rss}	-	276	390	
WITCHING CHARACTERIST	ICS (Note 3.)					
Turn–On Delay Time		^t d(on)	-	22	32	ns
Rise Time	$(V_{DD} = 30 \text{ Vdc}, I_D = 75 \text{ Adc},$	tr	-	265	370	
Turn–Off Delay Time	$V_{GS} = 5.0 \text{ Vdc}, R_{G} = 9.1 \Omega$ (Note 2.)	^t d(off)	-	113	160	
Fall Time		t _f	-	170	240	
Gate Charge	(V _{DS} = 48 Vdc, I _D = 75 Adc, V _{GS} = 5.0 Vdc) (Note 2.)	QT	-	66	92	nC
		Q ₁	_	9.0	_	
		Q ₂	_	47	_	
OURCE-DRAIN DIODE CHA	RACTERISTICS					
Forward On–Voltage	$(I_S = 75 \text{ Adc}, V_{GS} = 0 \text{ Vdc}) \text{ (Note 2.)}$ $(I_S = 75 \text{ Adc}, V_{GS} = 0 \text{ Vdc}, T_J = 150^{\circ}\text{C})$	V _{SD}	_ _	1.0 0.9	1.15 –	Vdc
Reverse Recovery Time		t _{rr}	-	70	-	ns
	(I _S = 75 Adc, V _{GS} = 0 Vdc, dI _S /dt = 100 A/μs) (Note 2.)	^t a	_	43	_	
		tb	_	27	-	

Reverse Recovery Stored Charge


Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperatures.


0.16

 Q_{RR}

μC

_

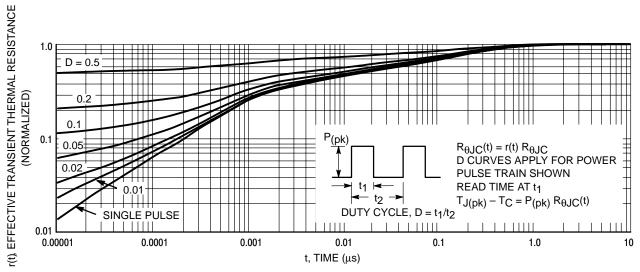
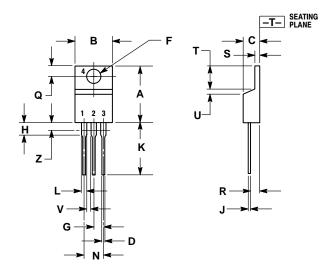
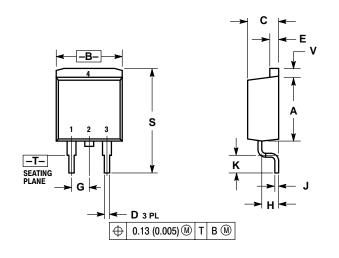



Figure 13. Thermal Response

PACKAGE DIMENSIONS

TO-220 THREE-LEAD TO-220AB CASE 221A-09 **ISSUE AA**


NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

	INCHES MILLIM		IETERS	
DIM	MIN	MAX	MIN	MAX
Α	0.570	0.620	14.48	15.75
В	0.380	0.405	9.66	10.28
С	0.160	0.190	4.07	4.82
D	0.025	0.035	0.64	0.88
F	0.142	0.147	3.61	3.73
G	0.095	0.105	2.42	2.66
Н	0.110	0.155	2.80	3.93
J	0.018	0.025	0.46	0.64
Κ	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
Ν	0.190	0.210	4.83	5.33
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.15	1.39
Т	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
٧	0.045		1.15	
Ζ		0.080		2.04

STYLE 5: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN

PACKAGE DIMENSIONS

D²PAK CASE 418B-03 ISSUE D

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION: INCH.

	INCHES		MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.340	0.380	8.64	9.65	
В	0.380	0.405	9.65	10.29	
C	0.160	0.190	4.06	4.83	
D	0.020	0.035	0.51	0.89	
E	0.045	0.055	1.14	1.40	
G	0.100 BSC		2.54 BSC		
Н	0.080	0.110	2.03	2.79	
J	0.018	0.025	0.46	0.64	
K	0.090	0.110	2.29	2.79	
S	0.575	0.625	14.60	15.88	
٧	0.045	0.055	1.14	1.40	

STYLE 2: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN

ON Semiconductor and without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada

N. American Technical Support: 800–282–9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor – European Support

- German Phone: (+1) 303–308–7140 (Mon–Fri 2:30pm to 7:00pm CET) Email: ONlit–german@hibbertco.com
- French Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET) Email: ONlit-french@hibbertco.com
- English Phone: (+1) 303–308–7142 (Mon–Fri 12:00pm to 5:00pm GMT) Email: ONlit@hibbertco.com

EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781 *Available from Germany, France, Italy, UK, Ireland

CENTRAL/SOUTH AMERICA:

Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST) Email: ONlit–spanish@hibbertco.com Toll–Free from Mexico: Dial 01–800–288–2872 for Access –

then Dial 866–297–9322

ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong & Singapore: 001–800–4422–3781 Email: ONlit–asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031 Phone: 81–3–5740–2700 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.