16-bit Proprietary Microcontroller

CMOS

F²MC-16LX MB90360E Series

MB90362E, MB90362ES, MB90362TE, MB90362TES, MB90F362E, MB90F362ES, MB90F362TE, MB90F362TES, MB90367E, MB90367TE, MB90367TES, MB90F367E, MB90F367ES, MB90F367ES, MB90F367ES, MB90F367ES, MB90V340E-101, MB90V340E-102, MB90V340E-103, MB90V340E-104

■ DESCRIPTION

The MB90360E-series, loaded 1 channel FULL-CAN* interface and Flash ROM, is general-purpose FUJITSU 16-bit microcontroller designing for automotive and industrial applications. Its main feature is the on-board CAN Interfaces, which conform to Ver 2.0 Part A and Part B, while supporting a very flexible message buffer scheme and so offering more functions than a normal FULL-CAN approach. With the new 0.35 μm CMOS technology, Fujitsu now offers on-chip Flash ROM program memory up to 64 Kbytes.

The power supply (3 V) is supplied to the MCU core from an internal regulator circuit. This creates a major advantage in terms of EMI and power consumption.

The internal PLL clock frequency multiplier provides an internal 42 ns instruction execution time from an external 4 MHz clock. Also, main and sub clock can be monitored independently using the clock supervisor function.

The unit features a 4-channel input capture unit 1 channel 16-bit free running timer, 2-channel UART, and 16-channel 8/10-bit A/D converter as the peripheral resource.

*: Controller Area Network (CAN) - License of Robert Bosch GmbH

Note: F²MC is the abbreviation of FUJITSU Flexible Microcontroller.

Be sure to refer to the "Check Sheet" for the latest cautions on development.

"Check Sheet" is seen at the following support page

URL: http://www.fujitsu.com/global/services/microelectronics/product/micom/support/index.html

"Check Sheet" lists the minimal requirement items to be checked to prevent problems beforehand in system development.

■ FEATURES

Clock

- Built-in PLL clock frequency multiplication circuit
- Selection of machine clocks (PLL clocks) is allowed among frequency division by 2 on oscillation clock and multiplication of 1 to 6 times of oscillation clock (for 4 MHz oscillation clock, 4 MHz to 24 MHz)
- Operation by sub clock: internal operating clock frequency: up to 50 kHz (for operating with 100 kHz oscillation clock divided two and devices without S-suffix only) is available
- Minimum execution time of instruction: 42 ns (when operating with 4-MHz oscillation clock and 6-time multiplied PLL clock)

Clock supervisor (MB90x367x only)

- · Main clock or sub clock is monitored independently
- Internal CR oscillation clock (100 kHz typical) can be used as sub clock

• Instruction system best suited to controller

- 16 Mbytes CPU memory space
- · 24-bit internal addressing
- Wide choice of data types (bit, byte, word, and long word)
- Wide choice of addressing modes (23 types)
- · Enhanced multiply-divide instructions with sign and RETI instructions
- Enhanced high-precision computing with 32-bit accumulator

• Instruction system compatible with high-level language (C language) and multitask

- · Employing system stack pointer
- Enhanced various pointer indirect instructions
- · Barrel shift instructions

• Increased processing speed

4-byte instruction queue

Powerful interrupt function

- Powerful 8-level, 34-condition interrupt feature
- Up to 8 channels external interrupts are supported

Automatic data transfer function independent of CPU

Expanded intelligent I/O service function (El²OS): up to 16 channels

Low power consumption (standby) mode

- Sleep mode (a mode that halts CPU operating clock)
- Main timer mode (timebase timer mode that is transferred from main clock mode)
- PLL timer mode (timebase timer mode that is transferred from PLL clock mode)
- Watch mode (a mode that operates sub clock and watch timer only, devices without S-suffix)
- Stop mode (a mode that stops oscillation clock and sub clock)
- CPU blocking operation mode

Process

CMOS technology

• I/O port

General purpose input/output port (CMOS output):

- 34 ports (devices without S-suffix)
- 36 ports (devices with S-suffix)

Sub clock pin (X0A and X1A)

- · Provided (used for external oscillation), devices without S-suffix
- Not provided (used with internal CR oscillation in sub clock mode) , devices with S-suffix

(Continued)

Timer

- Timebase timer, watch timer (device without S-suffix), watchdog timer: 1 channel
- 8/16-bit PPG timer: 8-bit × 2 channels or 16-bit × 1 channel
- 16-bit reload timer: 2 channels
- 16- bit input/output timer
 - 16-bit free-run timer: 1 channel (FRT0: ICU 0/1/2/3)
 - 16- bit input capture: (ICU): 4 channels

• FULL-CAN interface : up to 1 channel

- Compliant with CAN specifications Version 2.0 Part A and B
- 16 message buffers are built in
- CAN wake-up function

• UART (LIN/SCI) : up to 2 channels

- Equipped with full-duplex double buffer
- · Clock-asynchronous or clock-synchronous serial transmission is available

• DTP/External interrupt : up to 8 channels, CAN wakeup : up to 1 channel

Module for activation of expanded intelligent I/O service (El²OS) and generation of external interrupt by external input

• Delay interrupt generator module

Generates interrupt request for task switching

• 8/10-bit A/D converter : 16 channels

- Resolution is selectable between 8-bit and 10-bit
- Activation by external trigger input is allowed
- Conversion time: 3 µs (at 24-MHz machine clock, including sampling time)

Program patch function

Address matching detection for 6 address pointers

Low voltage/CPU operation detection reset (devices with T-suffix)

- \bullet Detects low voltage (4.0 V \pm 0.3 V) and resets automatically
- Resets automatically when program is runaway and counter is not cleared within interval time (approx. 262 ms: external 4 MHz)

Capable of changing input voltage for port

Automotive/CMOS-Schmitt input level (initial level is Automotive in single-chip mode)

• Flash memory security function

Protects the content of Flash memory (MB90F362x, MB90F367x only)

■ PRODUCT LINEUP

Features	MB90362E	MB90362TE	MB90362ES	MB90362TES	MB90V340E- 101	MB90V340E- 102
Туре		MASK RC		Evaluatio	n product	
CPU			F ² MC-1	6LX CPU		
System clock		•	•	$3, \times 4, \times 6, 1/2$ 12 ns (4 MHz os		•
Sub clock pin (X0A, X1A)	Υ	es	1	No	No	Yes
Clock supervisor			1	No		
ROM		MASK ROM	Л, 64 Kbytes		External	
RAM capacitance		3 KI	oytes		30 Kbytes	
CAN interface		1 ch	annel		3 cha	ınnels
Low voltage/CPU operation detection reset	No	Yes	No	Yes	No	
Package		LQFI	PGA-	-299C		
Emulator-specific power supply *	— Yes					es
Corresponding evaluation product	MB90V3	340E-102	MB90V3	340E-101	_	_

^{*:} It is setting of Jumper switch (TOOL VCC) when emulator (MB2147-01) is used. Please refer to the Emulator hardware manual for the details.


Features	MB90F362E	MB90F362TE	MB90F362ES	MB90F362TES		
Туре		Flash mem	nory product			
CPU		F ² MC-1	6LX CPU			
System clock	(PLL clock multiplier $ (\times 1, \times 2, \times 3, \times 4, \times 6, 1/2 \text{ when PLL stops}) $ Minimum instruction execution time : 42 ns $ (4 \text{ MHz oscillation clock, PLL} \times 6) $				
Sub clock pin (X0A, X1A)	Yes No					
Clock supervisor		No				
ROM		Flash memo	ry, 64 Kbytes			
RAM capacitance		3 KI	bytes			
CAN interface		1 ch	annel			
Low voltage/CPU operation detection reset	No Yes No Yes					
Package	LQFP-48P					
Corresponding evaluation product	MB90V340E-101 MB90V340E-101					

Features	MB90367E	MB90367TE	MB90367ES	MB90367TES	MB90V340E- 103	MB90V340E- 104	
Туре		MASK ROM product Eva					
CPU			F ² MC-1	I6LX CPU			
System clock				\times 3, \times 4, \times 6, 1/2 42 ns (4 MHz osc			
Sub clock pin (X0A, X1A)	Y	Yes (internal CR oscillation can be used as sub clock)					
Clock supervisor			`	Yes			
ROM		MASK ROM, 64 Kbytes					
RAM capacitance		3 Kbytes				bytes	
CAN interface		1 channel				nnels	
Low voltage/CPU operation detection reset	No	Yes	No	Yes	No		
Package	LQFP-48P					299C	
Emulator-specific power supply *	— Yes					es	
Corresponding EVA product	MB90V3	40E-104	MB90V3	340E-103	_	_	

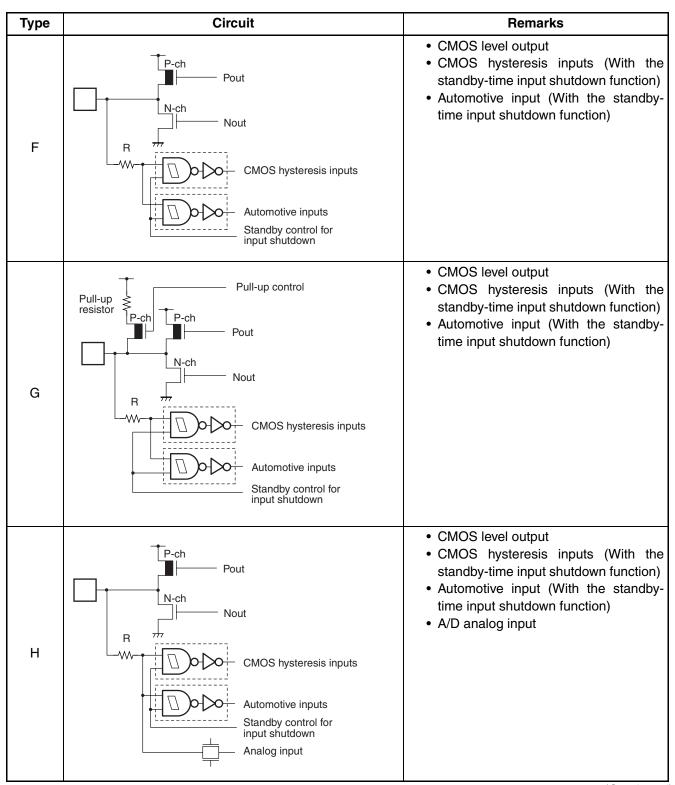
^{*:} It is setting of Jumper switch (TOOL VCC) when emulator (MB2147-01) is used. Please refer to the Emulator hardware manual for the details.

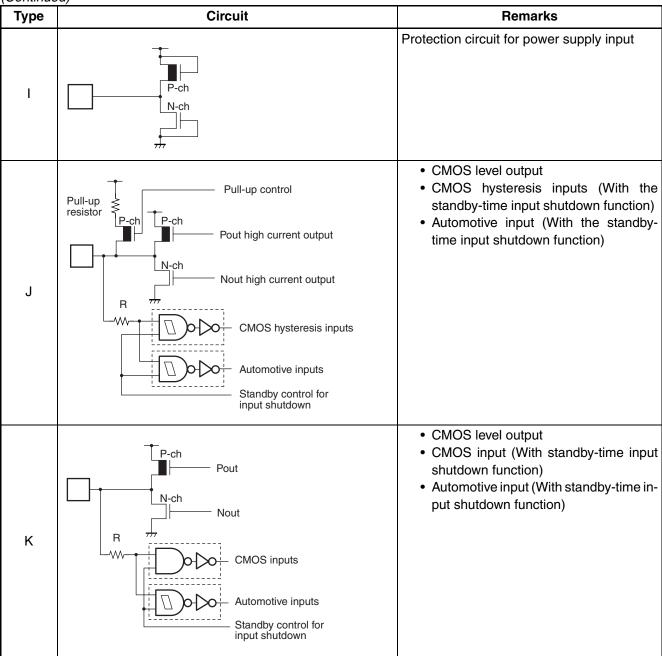
Features	MB90F367E	MB90F367TE	MB90F367ES	MB90F367TES			
Туре	Flash memory product						
CPU		F ² MC-16LX CPU					
System clock		PLL clock multiplier $(\times 1, \times 2, \times 3, \times 4, \times 6, 1/2 \text{ when PLL stops})$ Minimum instruction execution time: 42 ns $(4 \text{ MHz oscillation clock, PLL} \times 6)$					
Sub clock pin (X0A, X1A)	Yes (internal CR oscillation can be used as sometimes)						
Clock supervisor		,	Yes				
ROM		Flash mem	ory, 64 Kbytes				
RAM capacitance		3 k	Kbytes				
CAN interface		1 c	hannel				
Low voltage/CPU operation detection reset	No	No Yes No Yes					
Package	LQFP-48P						
Corresponding EVA product	MB90V340E-104 MB90V340E-103						

■ PIN ASSIGNMENT

■ PIN DESCRIPTION

Pin No.	Pin name	I/O circuit type*	Function
1	AVcc	I	Vcc power input pin for analog circuit.
2	AVR	_	Power (Vref+) input pin for A/D converter. It should be below Vcc.
3 to 8	P60 to P65	Н	General-purpose I/O port.
3 10 0	AN0 to AN5	П	Analog input pins for A/D converter.
	P66, P67		General-purpose I/O port.
9, 10	AN6, AN7	Н	Analog input pins for A/D converter.
0, 10	PPGC (D) , PPGE (F)		Output pins for PPG.
	P80		General-purpose I/O port.
11	ADTG	F	Trigger input pin for A/D converter.
	INT12R		External interrupt request input pin for INT12.
12 to 14	P50 to P52	Н	General-purpose I/O port (P50 has different I/O circuit type from MB90V340E) .
	AN8 to AN10		Analog input pins for A/D converter.
	P53		General-purpose I/O port.
15	AN11	Н	Analog input pin for A/D converter.
	TIN3		Event input pin for reload timer 3.
	P54		General-purpose I/O port.
16	AN12	Н	Analog input pin for A/D converter.
10	ТОТ3	П	Output pin for reload timer 3
	INT8		External interrupt request input pin for INT8.
	P55 to P57		General-purpose I/O port.
17 to 19	AN13 to AN15	Н	Analog input pins for A/D converter.
	INT10, INT11, INT13		External interrupt request input pins for INT10, INT11, INT13.
20	MD2	D	Input pin for operation mode specification.
21, 22	MD1, MD0	С	Input pins for operation mode specification.
23	RST	E	Reset input pin.
24	Vcc	_	Power input pin (3.5 V to 5.5 V) .
25	Vss	_	Power input pin (0 V) .
26	С	I	Power supply stabilization capacitor pin. It should be connected to a higher than or equal to 0.1 μF ceramic condenser.


Pin No.	Pin name	I/O circuit type*	Function
27	X0	A	Oscillation input pin.
28	X1		Oscillation output pin.
29 to 32	P27 to P24	G	General-purpose I/O port. The register can be set to select whether to use a pull-up resistor. This function is enabled in single-chip mode.
	IN3 to IN0	-	Event input pins for input capture 0 to 3.
33, 34	P23, P22	J	General-purpose I/O port. The register can be set to select whether to use a pull-up resistor. This function is enabled in single-chip mode. High current output port.
	PPGF (E) , PPGD (C)		Output pins for PPG.
35, 36	P21, P20	J	General-purpose I/O port. The register can be set to select whether to use a pull-up resistor. This function is enabled in single-chip mode. High current output port.
0.7	P85	K	General-purpose I/O port.
37	37 SIN1		Serial data input pin for UART1.
20	P87	F	General-purpose I/O port.
38	SCK1	т Г	Clock I/O pin for UART1.
39	P86	F	General-purpose I/O port.
39	SOT1	т Г	Serial data output pin for UART1.
40	P43	- F	General-purpose I/O port.
40	TX1]	TX output pin for CAN1 interface.
	P42		General-purpose I/O port.
41	RX1	F	RX input pin for CAN1 interface.
	INT9R		External interrupt request input pin for INT9 (Sub) .
	P83		General-purpose I/O port.
42	SOT0	F	Serial data output pin for UART0.
	TOT2		Output pin for reload timer 2.
	P84		General-purpose I/O port.
43	SCK0	F	Clock I/O pin for UART0.
	INT15R		External interrupt request input pin for INT15.


Pin No.	Pin name	I/O circuit type*	Function
	P82		General-purpose I/O port.
4.4	SIN0	К	Serial data input pin for UART0.
44	44 INT14R TIN2		External interrupt request input pin for INT14.
			Event input pin for reload timer 2.
45	P44	F	General-purpose I/O port (Different I/O circuit type from MB90V340E) .
	FRCK0		Free-run timer 0 clock pin.
46, 47	P40, P41 F		General-purpose I/O port (Devices with S-suffix and MB90V340E-101/103 only) .
40, 47	X0A, X1A	В	Oscillation pins for sub clock (Devices without S-suffix and MB90V340E-102/104 only) .
48	AVss	I	Vss power input pin for analog circuit.

^{*:} For the I/O circuit type, refer to "■ I/O CIRCUIT TYPE".

■ I/O CIRCUIT TYPE

Туре	Circuit	Remarks
А	X1 Xout Xout Standby control signal	Oscillation circuit : High-speed oscillation feedback resistor = approx. 1 MΩ
В	X1A Xout XOA Standby control signal	Oscillation circuit : Low-speed oscillation feedback resistor = approx. 10 $M\Omega$
С	R CMOS hysteresis inputs	MASK ROM product : CMOS hysteresis input pin Flash memory product : CMOS input pin
D	R CMOS hysteresis inputs Pull-down resistor	MASK ROM product: CMOS hysteresis input pin Flash memory product: - CMOS input pin No Pull-down
E	Pull-up resistor R CMOS hysteresis inputs	CMOS hysteresis input pin

■ HANDLING DEVICES

1. Preventing latch-up

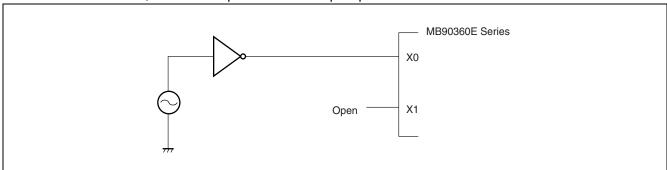
CMOS IC chips may suffer latch-up under the following conditions:

- A voltage higher than Vcc pin or lower than Vss pin is applied to an input or output pin.
- A voltage higher than the rated voltage is applied between Vcc pin and Vss pin.
- The AVcc power supply is applied before the Vcc voltage.

Latch-up may increase the power supply current drastically, causing thermal damage to the device.

Use meticulous care not to exceed the rating.

For the same reason, also be careful not to let the analog power-supply voltage (AVcc, AVR) exceed the digital power-supply voltage.


2. Treatment of unused pins

Leaving unused input pins open may result in permanent damage of the device due to misbehavior or latch-up. Therefore, they must be pulled up or pulled down through resistors. In this case, those resistors should be more than $2 \text{ k}\Omega$.

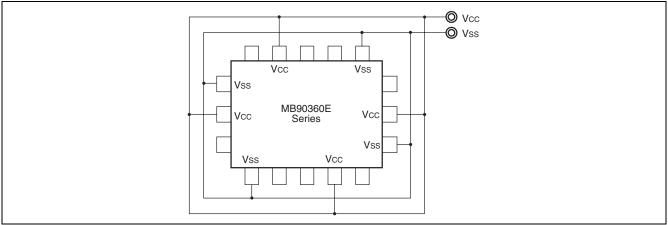
Unused bidirectional pins should be set to the output state and can be left open, or the input state with the above described connection.

3. Using external clock

To use external clock, drive the X0 pin and leave X1 pin open.

4. Precautions for when not using a sub clock signal

If you do not connect pins X0A and X1A to an oscillator, use pull-down handling on the X0A pin and leave the X1A pin open.


5. Notes on during operation of PLL clock mode

On this microcontroller, if in case the crystal oscillator breaks off or an external reference clock input stops while the PLL clock mode is selected, a self-oscillator circuit contained in the PLL may continue its operation at its self-running frequency. However, Fujitsu will not guarantee results of operations if such failure occurs.

6. Power supply pins (Vcc/Vss)

- If there are multiple Vcc and Vss pins, from the point of view of device design, pins to be of the same potential are connected the inside of the device to prevent malfunction such as latch-up.
 - To reduce unnecessary radiation, prevent malfunctioning of the strobe signal due to the rise of ground level, and observe the standard for total output current, be sure to connect the Vcc and Vss pins to the power supply and ground externally.
- Connect Vcc and Vss pins to the device from the current supply source at a low impedance.

 As a measure against power supply noise, connect a capacitor of about 0.1 μF as a bypass capacitor between Vcc pin and Vss pin in the vicinity of Vcc and Vss pins of the device.

7. Pull-up/down resistors

The MB90360E Series does not support internal pull-up/down resistors (Port 2 : built-in pull-up resistors) . Use external components where needed.

8. Crystal oscillator circuit

Noises around X0 or X1 pin may be possible causes of abnormal operations. Make sure to provide bypass capacitors via shortest distance from X0, X1 pins, crystal oscillator (or ceramic resonator) and ground lines, and make sure, to the utmost effort, that lines of oscillation circuit do not cross the lines of other circuits.

It is highly recommended to provide a printed circuit board artwork surrounding X0 and X1 pins with a ground area for stabilizing the operation. Please ask the crystal maker to evaluate the oscillational characteristics of the crystal and this device.

9. Turning-on sequence of power supply to A/D converter and analog inputs

Make sure to turn on the A/D converter power supply (AV $_{\text{CC}}$ and AVR) and analog inputs (AN0 to AN15) after turning-on the digital power supply (V $_{\text{CC}}$).

Turn-off the digital power after turning off the A/D converter power supply and analog inputs. In this case, make sure that the voltage does not exceed AVRH or AVcc.

10. Connection of unused pins of A/D converter if A/D converter is not used

Connect unused pins of A/D converter to AVcc = Vcc, AVss = AVR = Vss.

11. Notes on energization

To prevent the internal regulator circuit from malfunctioning, set the voltage rise time during energization at $50 \mu s$ or more (0.2 V to 2.7 V).

12. Stabilization of power supply voltage

A sudden change in the power supply voltage may cause the device to malfunction even within the specified Vcc power supply voltage operating guarantee range. Therefore, the Vcc power supply voltage should be stabilized.

For reference, the power supply voltage should be controlled so that Vcc ripple variations (peak-to-peak value) at commercial frequencies (50 Hz/60 Hz) fall below 10% of the standard Vcc power supply voltage and the coefficient of transient fluctuation does not exceed 0.1 V/ms at instantaneous power switching.

13. Initialization

In the device, there are internal registers which are initialized only by a power-on reset. To initialize these registers, turn on the power again.

14. Notes on using CAN function

To use CAN function, please set '1' to DIRECT bit of CAN direct mode register (CDMR). If DIRECT bit is set to '0' (initial value), wait states will be performed when accessing CAN registers.

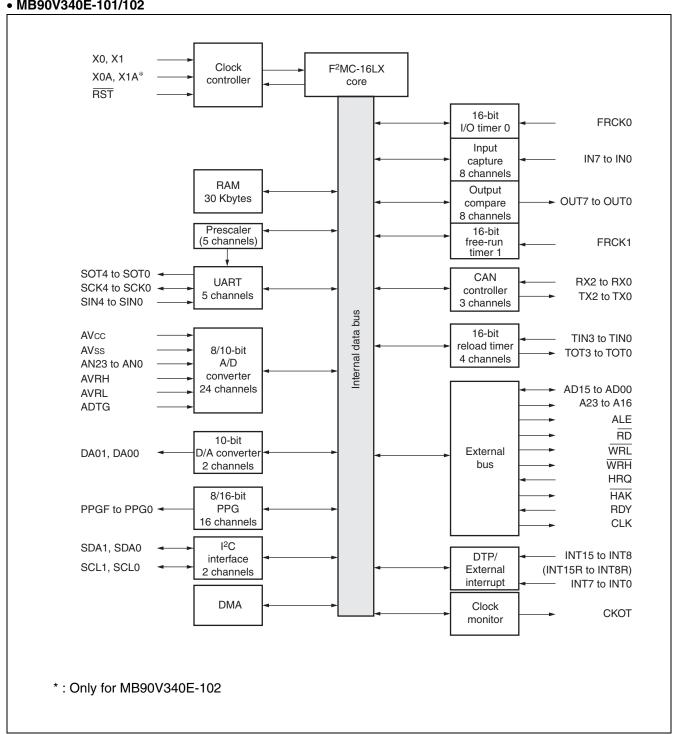
Note: Please refer to Hardware Manual of "MB90360E series for detail of CAN Direct Mode Register".

15. Flash security function

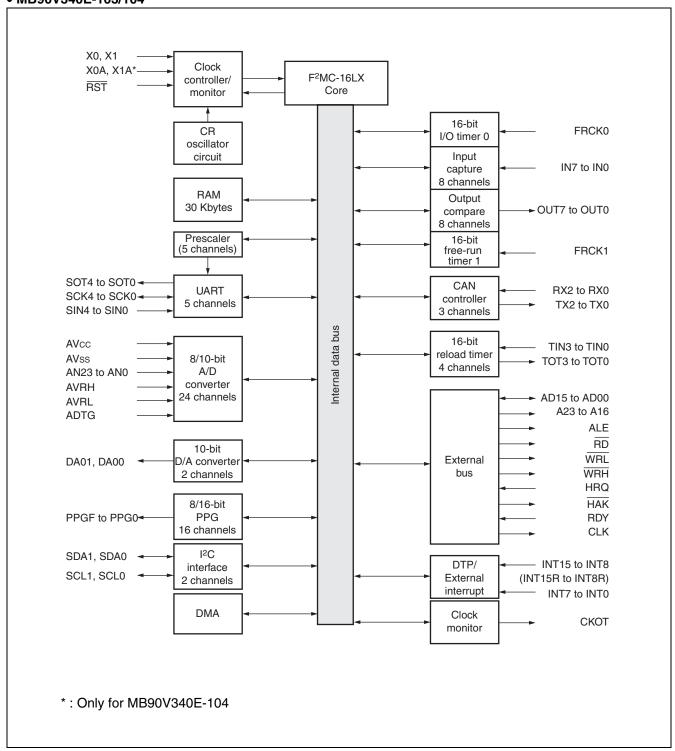
The security bit is located in the area of the Flash memory.

If protection code 01_H is written in the security bit, the Flash memory is in the protected state by security. Therefore, please do not write 01_H in this address if you do not use the security function.

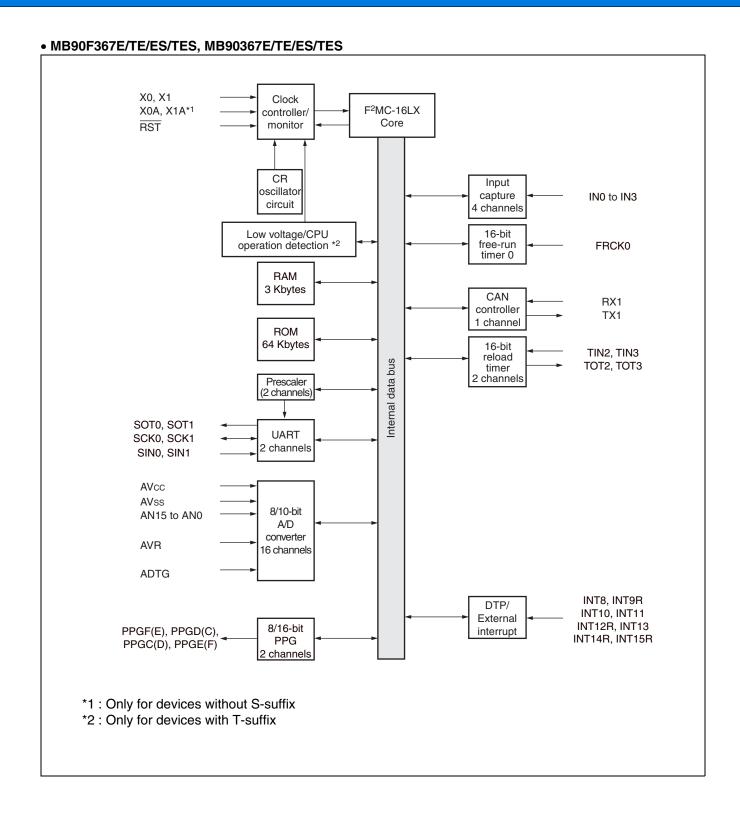
Please refer to following table for the address of the security bit.

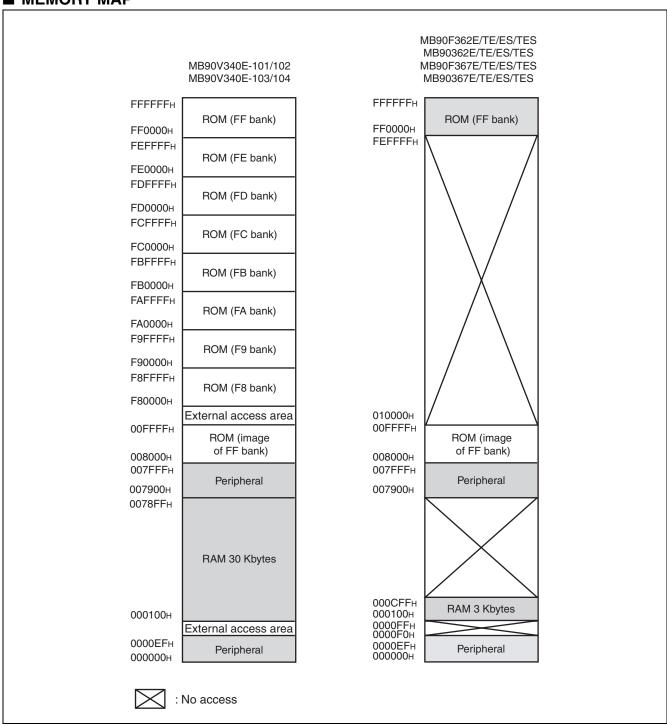

	Flash memory size	Address for security bit
MB90F362E MB90F362ES MB90F362TE MB90F367ES MB90F367ES MB90F367TE MB90F367TES	Embedded 512 Kbits Flash Memory	FF0001 _H

16. Correspondence with $T_A = +105$ °C or more


If used exceeding $T_A = +105$ °C, please consult with us due to the restricted reliability. It is ensured to write/erase data to the Flash memory between $T_A = -40$ °C and +105 °C.

■ BLOCK DIAGRAMS


• MB90V340E-101/102


• MB90V340E-103/104

• MB90F362E/TE/ES/TES, MB90362E/TE/ES/TES X0, X1 F2MC-16LX Clock X0A, X1A*1 controller core RST Input capture IN0 to IN3 4 channels Low voltage/CPU 16-bit operation detection *2 free-run FRCK0 timer 0 RAM 3 Kbytes CAN RX1 controller TX1 1 channel **ROM** 64 Kbytes 16-bit TIN2, TIN3 reload Internal data bus TOT2, TOT3 timer 2 channels Prescaler (2 channels) SOT0, SOT1 ◀ **UART** SCK0, SCK1 -2 channels SIN0, SIN1 **AVcc AV**ss 8/10-bit AN15 to AN0 A/D converter AVR 16 channels **ADTG** INT8, INT9R DTP/ INT10, INT11 External INT12R, INT13 8/16-bit PPGF(E), PPGD(C), interrupt INT14R, INT15R PPGC(D), PPGE(F) PPG 2 channels *1 : Only for devices without S-suffix *2 : Only for devices with T-suffix

■ MEMORY MAP

Note: The high-order portion of bank 00 gives the image of the FF bank ROM to make the small model of the C compiler effective. Since the low-order 16 bits are the same, the table in ROM can be referred without using the far specification in the pointer declaration.

For example, an attempt to access 00C000_H practically accesses the value at FFC000_H in ROM. The ROM area in bank FF exceeds 32 Kbytes, and its entire image cannot be shown in bank 00.

The image between FF8000 $_{\rm H}$ and FFFFFH is visible in bank 00, while the image between FF0000 $_{\rm H}$ and FF7FFFH is visible only in bank FF.

■ I/O MAP

Address	Register	Abbrevia- tion	Access	Resource name	Initial value		
000000н, 000001н		Reserved					
000002н	Port 2 Data Register	PDR2	R/W	Port 2	XXXXXXXX		
000003н		Reserve	d		•		
000004н	Port 4 Data Register	PDR4	R/W	Port 4	XXXXXXXX		
000005н	Port 5 Data Register	PDR5	R/W	Port 5	XXXXXXXXB		
000006н	Port 6 Data Register	PDR6	R/W	Port 6	XXXXXXXX		
000007н		Reserve	d		1		
000008н	Port 8 Data Register	PDR8	R/W	Port 8	XXXXXXXX		
000009н, 00000Ан		Reserve	d				
00000Вн	Port 5 Analog Input Enable Register	ADER5	R/W	Port 5, A/D	11111111В		
00000Сн	Port 6 Analog Input Enable Register	ADER6	R/W	Port 6, A/D	11111111В		
00000Дн		Reserve	d		•		
00000Ен	Input Level Select Register	ILSR0	R/W	Ports	XXXX0XXX _B		
00000Fн	Input Level Select Register	ILSR1	R/W	Ports	XXXXXXXX		
000010н, 000011н		Reserve	d				
000012н	Port 2 Direction Register	DDR2	R/W	Port 2	0000000В		
000013н		Reserve	d				
000014н	Port 4 Direction Register	DDR4	R/W	Port 4	XXX00000B		
000015н	Port 5 Direction Register	DDR5	R/W	Port 5	0000000В		
000016н	Port 6 Direction Register	DDR6	R/W	Port 6	0000000В		
000017н		Reserve	b		1		
000018н	Port 8 Direction Register	DDR8	R/W	Port 8	000000Х0в		
000019н		Reserve	d				
00001Ан	Port A Direction Register	DDRA	W	Port A	XXX00XXX _B		
00001Вн to 00001Dн	Reserved						
00001Ен	Port 2 Pull-up Control Register	PUCR2	R/W	Port 2	0000000В		
00001Fн		Reserve	t		1		

Address	Register	Abbrevia- tion	Access	Resource name	Initial value
000020н	Serial Mode Register 0	SMR0	W, R/W		0000000В
000021н	Serial Control Register 0	SCR0	W, R/W		0000000В
000022н	Reception/Transmission Data Register 0	RDR0/ TDR0	R/W		0000000в
000023н	Serial Status Register 0	SSR0	R, R/W	UART0	00001000в
000024н	Extended Communication Control Register 0	ECCR0	R, W, R/W		000000XXB
000025н	Extended Status/Control Register 0	ESCR0	R/W		00000100в
000026н	Baud Rate Generator Register 00	BGR00	R/W, R		0000000В
000027н	Baud Rate Generator Register 01	BGR01	R/W, R		0000000В
000028н	Serial Mode Register 1	SMR1	W, R/W		0000000В
000029н	Serial Control Register 1	SCR1	W, R/W		0000000В
00002Ан	Reception/Transmission Data Register 1	RDR1/ TDR1	R/W	UART1	00000000В
00002Вн	Serial Status Register 1	SSR1	R, R/W		00001000в
00002Сн	Extended Communication Control Register 1	ECCR1	R, W, R/W		000000XXB
00002Dн	Extended Status/Control Register 1	ESCR1	R/W		00000100в
00002Ен	Baud Rate Generator Register 10	BGR10	R/W, R		0000000В
00002Fн	Baud Rate Generator Register 11	BGR11	R/W, R		0000000В
000030н to 00003Ан		Reserve	d		
00003Вн	Address Detect Control Register 1	PACSR1	R/W	Address Match Detection 1	0000000в
00003Сн to 000047н		Reserve	d		
000048н	PPG C Operation Mode Control Register	PPGCC	W, R/W		0Х000ХХ1в
000049н	PPG D Operation Mode Control Register	PPGCD	W, R/W	16-bit PPG C/D	0Х00001в
00004Ан	PPG C/PPG D Count Clock Select Register	PPGCD	R/W	16-bit FFG C/D	000000Х0в
00004Вн		Reserve	d		
00004Сн	PPG E Operation Mode Control Register	PPGCE	W, R/W		0Х000ХХ1в
00004Dн	PPG F Operation Mode Control Register	PPGCF	W, R/W	16-bit PPG E/F	0Х000001в
00004Ен	PPG E/PPG F Count Clock Select Register	PPGEF	R/W		000000Х0в
00004Fн		Reserve	d		

Address	Register	Abbrevia- tion	Access	Resource name	Initial value		
000050н	Input Capture Control Status 0/1	ICS01	R/W	Input Conturo 0/1	0000000В		
000051н	Input Capture Edge 0/1	ICE01	R/W, R	Input Capture 0/1	XXX0X0XX _B		
000052н	Input Capture Control Status 2/3	ICS23	R/W	Innuit Conturo 0/0	0000000В		
000053н	Input Capture Edge 2/3	ICE23	R	Input Capture 2/3	XXXXXXXXB		
000054н to 000063н		Reserved					
000064н	Timer Control Status 2	TMCSR2	R/W	16-bit Reload Timer	0000000В		
000065н	Timer Control Status 2	TMCSR2	R/W	2	XXXX0000B		
000066н	Timer Control Status 3	TMCSR3	R/W	16-bit Reload Timer	0000000В		
000067н	Timer Control Status 3	TMCSR3	R/W	3	XXXX0000B		
000068н	A/D Control Status 0	ADCS0	R/W		000XXXX0 _B		
000069н	A/D Control Status 1	ADCS1	R/W, W		000000XB		
00006Ан	A/D Data 0	ADCR0	R	A /D . C	0000000В		
00006Вн	A/D Data 1	ADCR1	R	A/D Converter	XXXXXX00 _B		
00006Сн	ADC Setting 0	ADSR0	R/W		0000000В		
00006Dн	ADC Setting 1	ADSR1	R/W		0000000В		
00006Ен	Low Voltage/CPU Operation Detection Reset Control Register	LVRC	R/W, W	Low voltage/CPU operation detection reset	00111000в		
00006Fн	ROM Mirror Function Select	ROMM	W	ROM Mirror	XXXXXXX1 _B		
000070н to 00007Fн		Reserv	ed				
000080н to 00008Fн	Reserved for CAN Inte	erface 1. Refe	er to " ■ CAI	N CONTROLLERS"			
000090н to 00009Dн		Reserv	ed				
00009Ен	Address Detect Control Register 0	PACSR0	R/W	Address Match Detection 0	0000000В		
00009Fн	Delayed Interrupt/Release Register	DIRR	R/W	Delayed Interrupt generation module	XXXXXXX0 _B		
0000А0н	Low-power Consumption Mode Control Register	LPMCR	W, R/W	Low-Power consumption Control Circuit	00011000в		
0000А1н	Clock Selection Register	CKSCR	R, R/W	Low-Power consumption Control Circuit	11111100в		

Address	Register	Abbrevia- tion	Access	Resource name	Initial value		
0000A2н to 0000A7н	Reserved						
0000А8н	Watchdog Control Register	WDTC	R, W	Watchdog Timer	XXXXX111 _B		
0000А9н	Timebase Timer Control Register	TBTC	W, R/W	Timebase Timer	1XX00100 _B		
0000ААн	Watch Timer Control register	WTC	R, R/W	Watch Timer	1Х001000в		
0000ABн to 0000ADн		Reserv	red		,		
0000АЕн	Flash Control Status (Flash Devices only. Otherwise reserved)	FMCS	R, R/W	Flash Memory	000Х0000в		
0000АFн		Reserv	ed				
0000В0н	Interrupt Control Register 00	ICR00	W, R/W		00000111в		
0000В1н	Interrupt Control Register 01	ICR01	W, R/W		00000111в		
0000В2н	Interrupt Control Register 02	ICR02	W, R/W		00000111в		
0000ВЗн	Interrupt Control Register 03	ICR03	W, R/W		00000111в		
0000В4н	Interrupt Control Register 04	ICR04	W, R/W		00000111в		
0000В5н	Interrupt Control Register 05	ICR05	W, R/W		00000111в		
0000В6н	Interrupt Control Register 06	ICR06	W, R/W		00000111в		
0000В7н	Interrupt Control Register 07	ICR07	W, R/W	Interrupt Control	00000111в		
0000В8н	Interrupt Control Register 08	ICR08	W, R/W	interrupt Control	00000111в		
0000В9н	Interrupt Control Register 09	ICR09	W, R/W		00000111в		
0000ВАн	Interrupt Control Register 10	ICR10	W, R/W		00000111в		
0000ВВн	Interrupt Control Register 11	ICR11	W, R/W		00000111в		
0000ВСн	Interrupt Control Register 12	ICR12	W, R/W		00000111в		
0000ВДн	Interrupt Control Register 13	ICR13	W, R/W		00000111в		
0000ВЕн	Interrupt Control Register 14	ICR14	W, R/W		00000111в		
0000ВFн	Interrupt Control Register 15	ICR15	W, R/W		00000111в		
0000С0н to 0000С9н		Reserv	red				
0000САн	External Interrupt Enable 1	ENIR1	R/W		0000000В		
0000СВн	External Interrupt Source 1	EIRR1	R/W		XXXXXXX		
0000ССн	Detection Level Setting 1	ELVD1	R/W	External Interrupt 1	0000000В		
0000СDн	Detection Level Setting 1	ELVR1	I 17/ V V		0000000В		
0000СЕн	External Interrupt Source Select	EISSR	R/W		0000000В		
0000СFн	PLL/Sub clock Control Register	PSCCR	W	PLL	XXXX0000B		

Address	Register	Abbrevia- tion	Access	Resource name	Initial value			
0000D0н		_	_		1			
to 0000FF _H	Reserved							
007900н								
to 007917н	Reserved							
007918н	Reload Register LC	PRLLC	R/W		XXXXXXXX			
007919н	Reload Register HC	PRLHC	R/W	40 kii DDO 0/D	XXXXXXXX			
00791Ан	Reload Register LD	PRLLD	R/W	16-bit PPG C/D	XXXXXXXX			
00791Вн	Reload Register HD	PRLHD	R/W		XXXXXXXX			
00791Сн	Reload Register LE	PRLLE	R/W		XXXXXXXX			
00791Dн	Reload Register HE	PRLHE	R/W	10111 000 5/5	XXXXXXXX			
00791Ен	Reload Register LF	PRLLF	R/W	16-bit PPG E/F	XXXXXXXX			
00791Fн	Reload Register HF	PRLHF	R/W		XXXXXXXX			
007920н	Input Capture 0	IPCP0	R		XXXXXXXX			
007921н	Input Capture 0	IPCP0	R		XXXXXXXX			
007922н	Input Capture 1	IPCP1	R	Input Capture 0/1	XXXXXXXX			
007923н	Input Capture 1	IPCP1	R		XXXXXXXXB			
007924н	Input Capture 2	IPCP2	R		XXXXXXXX			
007925н	Input Capture 2	IPCP2	R		XXXXXXXX			
007926н	Input Capture 3	IPCP3	R	Input Capture 2/3	XXXXXXXX			
007927н	Input Capture 3	IPCP3	R		XXXXXXXX			
007928н to 00793Fн		Reserv	ed					
007940н	Timer Data 0	TCDT0	R/W		0000000В			
007941н	Timer Data 0	TCDT0	R/W	I/O Timer 0	0000000В			
007942н	Timer Control Status 0	TCCSL0	R/W	i/O Timei o	0000000В			
007943н	Timer Control Status 0	TCCSH0	R/W		0XXXXXXXB			
007944н to 00794Вн		Reserv	ed					
00794Сн	Timer 2/Reload 2	TMR2/	R/W	16-bit Reload	XXXXXXXXB			
00794Dн	Timer Z/nei0au Z	TMRLR2	R/W	Timer 2	XXXXXXXXB			
00794Ен	Times 0/Deleged 0	TMR3/	R/W	16-bit Reload	XXXXXXXX			
00794Fн	Timer 3/Reload 3	TMRLR3	R/W	Timer 3	XXXXXXXX			
007950н to 00795Fн		Reserv	ed		•			

Address	Register	Abbrevia- tion	Access	Resource name	Initial value		
007960н	Clock Supervisor Control Register	CSVCR	R, R/W	Clock supervisor	00011100в		
007961н to 00796Dн	Reserved						
00796Ен	CAN Direct Mode Register (MB90V340E only)	CDMR	R/W	CAN clock sync	XXXXXXX0 _B		
00796Fн to 0079DFн		Reserve	ed				
0079Е0н	Detect Address Setting 0	PADR0	R/W		XXXXXXXX		
0079Е1н	Detect Address Setting 0	PADR0	R/W		XXXXXXXX		
0079Е2н	Detect Address Setting 0	PADR0	R/W		XXXXXXXX		
0079ЕЗн	Detect Address Setting 1	PADR1	R/W	Address Match Detection 0	XXXXXXXXB		
0079Е4н	Detect Address Setting 1	PADR1	R/W		XXXXXXXXB		
0079Е5н	Detect Address Setting 1	PADR1	R/W		XXXXXXXX		
0079Е6н	Detect Address Setting 2	PADR2	R/W		XXXXXXXX		
0079Е7н	Detect Address Setting 2	PADR2	R/W		XXXXXXXX		
0079Е8н	Detect Address Setting 2	PADR2	R/W		XXXXXXXX		
0079Е9н to 0079ЕFн		Reserve	ed				
0079F0н	Detect Address Setting 3	PADR3	R/W		XXXXXXXX		
0079F1н	Detect Address Setting 3	PADR3	R/W		XXXXXXXX		
0079F2н	Detect Address Setting 3	PADR3	R/W		XXXXXXXX		
0079F3н	Detect Address Setting 4	PADR4	R/W	A alalys a a Madala	XXXXXXXX		
0079F4н	Detect Address Setting 4	PADR4	R/W	Address Match Detection 1	XXXXXXXX		
0079F5н	Detect Address Setting 4	PADR4	R/W		XXXXXXXX		
0079F6н	Detect Address Setting 5	PADR5	R/W		XXXXXXXX		
0079F7н	Detect Address Setting 5	PADR5	R/W		XXXXXXXX		
0079F8н	Detect Address Setting 5	PADR5	R/W		XXXXXXXX		
0079F9н		_			•		
to 007BFF _H		Reserve	ed				
007С00н to 007СFFн	Reserved for CAN Interface 1. Refer to "■ CAN CONTROLLERS"						
007D00н to 007DFFн	Reserved for CAN Inte	erface 1. Refe	r to " ■ CAN	I CONTROLLERS"			

(Continued)

Address	Register	Abbrevia- tion	Access	Resource name	Initial value		
007Е00н							
to		Reserved					
007FFFн							

Notes: • Initial value of "X" represents unknown value.

• Any write access to reserved addresses in I/O map should not be performed. A read access to reserved addresses results in reading "X".

■ CAN CONTROLLERS

- Conforms to CAN Specification Ver 2.0 Part A and Part B
 - Supports transmission/reception in standard frame and extended frame formats
- Supports transmitting of data frames by receiving remote frames
- 16 transmitting/receiving message buffers
 - 29-bit ID and 8-byte data
 - Multi-level message buffer configuration
- Provides full-bit comparison, full-bit mask, acceptance register 0/acceptance register 1 for each message buffer as ID acceptance mask
 - 2 acceptance mask registers in either standard frame format or extended frame formats
- Bit rate programmable from 10 kbps/s to 2 Mbps/s (when input clock is at 16 MHz)

List of Control Registers (1)

Address	Domintor	Abbreviation	A	Initial Value	
CAN1	Register	Appreviation	Access	initiai value	
000080н	Message buffer valid register	BVALR	B/W	0000000 00000000	
000081н	Wessage buller vallu register	DVALN	Γ1/ V V	0000000 0000000B	
000082н	Transmit request register	TREOR	R/W	00000000 00000000	
000083н	Transmit request register	INEQN		00000000 0000000B	
000084н	Transmit cancel register	TCANR	W	0000000 00000000	
000085н	Transmit cancer register	ICANH	VV	00000000 0000000B	
000086н	Transmission complete register	TCR	R/W	00000000 00000000	
000087н	Transmission complete register	ICh		00000000 0000000	
000088н	Pagaiya complete register	RCR	R/W	0000000 00000000	
000089н	Receive complete register	non		00000000 0000000B	
00008Ан	Remote request receiving	RRTRR	B/W	0000000 00000000	
00008Вн	register	nninn		00000000 0000000B	
00008Сн	Doggivo overrup register	ROVRR	B/W	00000000 00000000	
00008Dн	Receive overrun register	novnn		00000000 00000000В	
00008Ен	Reception interrupt enable	RIER	B/W	00000000 00000000	
00008Fн	register	NICH	IT/VV	UUUUUUUU UUUUUUUB	

List of Control Registers (2)

Address	Dogiotor	Abbreviation	A	Initial Value	
CAN1	- Register	Appreviation	Access	miliai value	
007D00н	Control status register	CSR	R/W, W	0XXXX0X1 00XXX000в	
007D01н	Outiful status register	0011	R/W, R	OXXXXOX I OOXXXOOOB	
007D02н	Last event indicator register	LEIR	R/W	000X0000 XXXXXXXX	
007D03н	Last event indicator register	LEIN	□/ V V		
007D04н	Receive and transmit error	RTEC	R	0000000 00000000	
007D05н	counter	RIEC	n	00000000 0000000В	
007D06н	Bit timing register	BTR	R/W	11111111 X1111111в	
007D07н	Dit tillling register	DIII	1 1/ V V	TITITITI XITITIB	
007D08н	IDE register	IDER	R/W	XXXXXXXX XXXXXXXX	
007D09н	ibe register	IDEN	□/ V V	ANANANA NANANAB	
007D0Ан	Transmit DTD register	TRTRR	R/W	0000000 00000000	
007D0Вн	- Transmit RTR register	ININN		00000000 0000000В	
007D0Сн	Remote frame receive	RFWTR	R/W	XXXXXXXX XXXXXXXX	
007D0Dн	waiting register	HEVVIA	□/ V V	VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV	
007D0Ен	Transmit interrupt enable	TIER	R/W	0000000 00000000	
007D0Fн	register	HEN	□/ V V	0000000 0000000	
007D10н				XXXXXXXX XXXXXXXX	
007D11н	Acceptance mask select	AMSB	R/W	VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV	
007D12н	register	AMOIT	1 1/ V V	XXXXXXXX XXXXXXXX	
007D13н				AAAAAAA AAAAAAAA	
007D14н				XXXXXXXX XXXXXXXX	
007D15н	Acceptance mask register 0	AMR0	R/W	VVVVVVVVVVVVVVVVV	
007D16н	Acceptance mask register 0	AIVINU	[[]/ V V	XXXXXXXX XXXXXXXX	
007D17н					
007D18н				XXXXXXXX XXXXXXXX	
007D19н	Acceptance mask register 1	AMR1	R/W		
007D1Aн	Acceptance mask register 1	AIVID I	□	XXXXXXXX XXXXXXXX	
007D1Bн					

List of Message Buffers (ID Registers)

Address	Davista.	Aldenadallan		Lettel Velor
CAN1	Register	Abbreviation	Access	Initial Value
007С00н to 007С1Fн	General-purpose RAM	_	R/W	XXXXXXXB to XXXXXXXXB
007С20н				XXXXXXXX XXXXXXXX
007С21н	ID register 0	IDR0	R/W	AAAAAAA AAAAAAAA
007С22н	ib register o	IDITO	1 1/ VV	XXXXXXXX XXXXXXXX
007С23н				XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
007С24н				XXXXXXXX XXXXXXXX
007С25н	ID register 1	IDR1	R/W	AAAAAAA AAAAAAAA
007С26н	ib register i	ЮП	1 1/ V V	XXXXXXXX XXXXXXXX
007С27н				XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
007С28н				XXXXXXXX XXXXXXXX
007С29н	ID register 2	IDR2	R/W	AMMAMA AMMAMA
007С2Ан	ID register 2	IDNE	1 1/ V V	XXXXXXXX XXXXXXXX
007С2Вн				AXXXXXXX XXXXXXXXX
007С2Сн	ID register 3			XXXXXXXX XXXXXXXX
007C2Dн		IDR3	R/W	AXXXXXXX XXXXXXXXX
007С2Ен				XXXXXXXX XXXXXXXX
007С2Fн				700000000000000000000000000000000000000
007С30н		IDR4	R/W	XXXXXXXX XXXXXXXX
007С31н	ID register 4			700000000000000000000000000000000000000
007С32н	12 Toglotor T			XXXXXXXX XXXXXXXX
007С33н				700000000000000000000000000000000000000
007С34н				XXXXXXXX XXXXXXXX
007С35н	ID register 5	IDR5	R/W	700000000000000000000000000000000000000
007С36н	12 Toglotor o	15110	1,000	XXXXXXXX XXXXXXXX
007С37н				700000000000000000000000000000000000000
007С38н				XXXXXXXX XXXXXXXX
007С39н	ID register 6	IDR6	R/W	
007С3Ан	59.0.0.			XXXXXXXX XXXXXXXX
007С3Вн				
007С3Сн			R/W	XXXXXXXX XXXXXXXX
007С3Dн	ID register 7	IDR7		
007С3Ен	5 9.0.0. /			XXXXXXXX XXXXXXXX
007С3Гн				

Address	Poglotor	Abbreviation	Access	Initial Value	
CAN1	Register	Appreviation	Access	illitiai value	
007С40н				XXXXXXXX XXXXXXXX	
007С41н	ID register 8	IDR8	R/W	AAAAAAA AAAAAAAB	
007С42н	ib register o	IDITO	1 1/ V V	XXXXXXXX XXXXXXXX	
007С43н				XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
007С44н				XXXXXXXX XXXXXXXX	
007С45н	ID register 9	IDR9	R/W	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
007С46н	ib register 5	10119	1 1/ VV	XXXXXXXX XXXXXXXX	
007С47н				XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
007С48н				XXXXXXXX XXXXXXXX	
007С49н	ID register 10	IDR10	R/W	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
007С4Ан	ib register to	IDITIO	□/ VV	XXXXXXXX XXXXXXXX	
007С4Вн				YYYYYYY XXXXXXX	
007С4Сн				XXXXXXXX XXXXXXXX	
007С4Dн	ID register 11	IDR11	R/W	YYYYYYY XXXXXXX	
007С4Ен	ib register i i			XXXXXXXX XXXXXXXXB	
007С4Гн				ANNANA ANNANAB	
007С50н			R/W	XXXXXXXX XXXXXXXX	
007С51н	ID register 12	IDR12		ANNANA ANNANAB	
007С52н	ib register 12	IDNIZ		XXXXXXXX XXXXXXXX	
007С53н				XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
007С54н				XXXXXXXX XXXXXXXX	
007С55н	ID register 13	IDR13	R/W	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
007С56н	ib register to	IDITIO	1 1/ V V	XXXXXXXX XXXXXXXX	
007С57н				700000000000000000000000000000000000000	
007С58н				XXXXXXXX XXXXXXXX	
007С59н	ID register 14	IDR14	R/W	700000000000000000000000000000000000000	
007С5Ан	ib register 14	101114	1 1/ V V	XXXXXXXX XXXXXXXXB	
007С5Вн				WWWWWW	
007С5Сн			R/W	XXXXXXXX XXXXXXXX	
007С5Дн	ID register 15	IDR15			
007С5Ен	ib legister 13	IDITIO	1 1/ V V	XXXXXXXX XXXXXXXX	
007С5Гн				VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVV	

List of Message Buffers (DLC Registers and Data Registers)

Address	Dogistor	Abbreviation	A00000	Initial Value	
CAN1	Register	Appreviation	Access		
007С60н	DLC register 0	DLCR0	R/W	XXXXXXX	
007С61н	DLC register 0	DLONU	Π/ VV	VVVVVVR	
007С62н	DLC register 1	DLCR1	R/W	XXXXXXX	
007С63н	DLC register 1	DLONI	Π/ V V	VVVVVVR	
007С64н	DLC register 2	DLCR2	R/W	XXXXXXX	
007С65н	DLC register 2	DLONZ	Π/ VV	VVVVVV	
007С66н	DLC register 2	DLCR3	R/W	XXXXXXX	
007С67н	DLC register 3	DLONS	Π/ VV	VVVVVV	
007С68н	DLC register 4	DI CD4	DAM	VVVVVV-	
007С69н	DLC register 4	DLCR4	R/W	XXXXXXXXB	
007С6Ан	DI C register 5	DLCR5	R/W	VVVVVVV.	
007С6Вн	DLC register 5	DLCH5	H/VV	XXXXXXXXB	
007С6Сн	DI C register 6	DI CD6	DAM	VVVVVV-	
007С6Dн	DLC register 6	DLCR6	R/W	XXXXXXXXB	
007С6Ен	DI C va sista v 7	DI CD7	DAM	VVVVVVV	
007С6Fн	DLC register 7	DLCR7	R/W	XXXXXXXXB	
007С70н	DI C va sista v 0	DI CDO	DAM	VVVVVVV	
007С71н	DLC register 8	DLCR8	R/W	XXXXXXXXB	
007С72н	DI C va sista v O	DI ODO	DAM	VVVVVVV	
007С73н	DLC register 9	DLCR9	R/W	XXXXXXXB	
007С74н	DI C ve siete v 10	DI CD10	DAM	VVVVVVV	
007С75н	DLC register 10	DLCR10	R/W	XXXXXXXXB	
007С76н	DI C rogistor 11	DI CD11	DAM	VVVVVV.	
007С77н	DLC register 11	DLCR11	R/W	XXXXXXXXB	
007С78н	DI C register 10	DLCR12	R/W	XXXXXXXXB	
007С79н	DLC register 12	DLONIZ	I I I I I I I I I I I I I I I I I I I	AAAAAAAB	
007С7Ан	DI C register 12	DLCR13	R/W	XXXXXXXXB	
007С7Вн	DLC register 13	DLCRIS	I I I I I I I I I I I I I I I I I I I	AAAAAAAB	
007С7Сн	DI C rogistor 14	DI CD14	DAM	VVVVVVV.	
007С7Dн	DLC register 14	DLCR14	R/W	XXXXXXXXB	
007С7Ен	DI C vociete 45	DI CD45	DAM	VVVVVVV	
007С7Гн	DLC register 15	DLCR15	R/W	XXXXXXXXB	
		1	1		

Address	Dogistor	Abbussistism	A 000000	Initial Value	
CAN1	Register	Abbreviation	Access	Initial Value	
007С80н to 007С87н	Data register 0 (8 bytes)	DTR0	R/W	XXXXXXXXB to XXXXXXXXB	
007С88н to 007С8Fн	Data register 1 (8 bytes)	DTR1	R/W	XXXXXXXXB to XXXXXXXXB	
007С90н to 007С97н	Data register 2 (8 bytes)	DTR2	R/W	XXXXXXXXB to XXXXXXXXB	
007С98н to 007С9Fн	Data register 3 (8 bytes)	DTR3	R/W	XXXXXXXXB to XXXXXXXXB	
007САОн to 007СА7н	Data register 4 (8 bytes)	DTR4	R/W	XXXXXXXXB to XXXXXXXXB	
007СА8н to 007САFн	Data register 5 (8 bytes)	DTR5	R/W	XXXXXXXXB to XXXXXXXXB	
007СВ0н to 007СВ7н	Data register 6 (8 bytes)	DTR6	R/W	XXXXXXXXB to XXXXXXXXB	
007СВ8н to 007СВFн	Data register 7 (8 bytes)	DTR7	R/W	XXXXXXXXB to XXXXXXXXB	
007ССОн to 007СС7н	Data register 8 (8 bytes)	DTR8	R/W	XXXXXXXXB to XXXXXXXXB	
007СС8н to 007ССFн	Data register 9 (8 bytes)	DTR9	R/W	XXXXXXXXB to XXXXXXXXB	
007CD0н to 007CD7н	Data register 10 (8 bytes)	DTR10	R/W	XXXXXXXXB to XXXXXXXXB	
007CD8н to 007CDFн	Data register 11 (8 bytes)	DTR11	R/W	XXXXXXXXB to XXXXXXXXXB	
007СЕОн to 007СЕ7н	Data register 12 (8 bytes)	DTR12	R/W	XXXXXXXXB to XXXXXXXXXB	
007СЕ8н to 007СЕFн	Data register 13 (8 bytes)	DTR13	R/W	XXXXXXXXB to XXXXXXXXB	

Address	Pagiotor	Abbreviation	Access	Initial Value
CAN1	Register	Abbreviation	Access	illitiai value
007СF0н to 007СF7н	Data register 14 (8 bytes)	DTR14	R/W	XXXXXXXB to XXXXXXXXB
007CF8н to 007CFFн	Data register 15 (8 bytes)	DTR15	R/W	XXXXXXXB to XXXXXXXXB

■ INTERRUPT FACTORS, INTERRUPT VECTORS, INTERRUPT CONTROL REGISTER

Interrupt cause	El ² OS	Interrupt vector		Interrupt control register	
	corresponding	Number	Address	Number	Address
Reset	N	#08	FFFFDC⊦	_	_
INT9 instruction	N	#09	FFFFD8 _H	_	_
Exception	N	#10	FFFFD4 _H	_	_
Reserved	N	#11	FFFFD0 _H	ICR00	0000В0н
Reserved	N	#12	FFFFCCH	ICHUU	ООООВОН
CAN 1 reception	N	#13	FFFFC8 _H	ICD01	0000D1
CAN 1 transmission/node status	N	#14	FFFFC4 _H	ICR01	0000В1н
Reserved	N	#15	FFFFC0 _H	ICR02	000000
Reserved	N	#16	FFFFBCH	ICHU2	0000В2н
Reserved	N	#17	FFFFB8 _H	ICR03	0000ВЗн
Reserved	N	#18	FFFFB4 _H	ICHU3	
16-bit reload timer 2	Y1	#19	FFFFB0 _H	ICR04	0000В4н
16-bit reload timer 3	Y1	#20	FFFFAC _H	ICH04	
Reserved	N	#21	FFFFA8 _H	ICR05	0000В5н
Reserved	N	#22	FFFFA4 _H	ICHUS	
PPG C/D	N	#23	FFFFA0 _H	ICR06	0000В6н
PPG E/F	N	#24	FFFF9C _H	ICHUO	ООООВОН
Timebase timer	N	#25	FFFF98 _H	ICD07	0000B7
External interrupt 8 to 11	Y1	#26	FFFF94 _H	ICR07	0000В7н
Watch timer	N	#27	FFFF90 _H	ICR08	0000В8н
External interrupt 12 to 15	Y1	#28	FFFF8C _H	ICHUO	ООООВОН
A/D converter	Y1	#29	FFFF88 _H	ICDOO	0000В9н
I/O timer 0	N	#30	FFFF84 _H	ICR09	ООООБЭН
Reserved	N	#31	FFFF80 _H	ICD10	000000
Reserved	N	#32	FFFF7C _H	ICR10	0000ВАн
Input capture 0 to 3	Y1	#33	FFFF78 _H	ICD11	000000
Reserved	N	#34	FFFF74 _H	ICR11	0000ВВн
UART 0 reception	Y2	#35	FFFF70 _H	ICD40	000000
UART 0 transmission	Y1	#36	FFFF6C _H	ICR12	0000ВСн
UART 1 reception	Y2	#37	FFFF68 _H	ICD10	000000
UART 1 transmission	Y1	#38	FFFF64 _H	ICR13	0000ВDн

(Continued)

Interrupt cause	El ² OS corresponding	Interrupt vector		Interrupt control register	
		Number	Address	Number	Address
Reserved	N	#39	FFFF60⊦	ICR14	0000ВЕн
Reserved	N	#40	FFFF5C _H		
Flash memory	N	#41	FFFF58⊦	ICR15	0000ВFн
Delayed interrupt generation module	N	#42	FFFF54 _H		

Y1: Usable

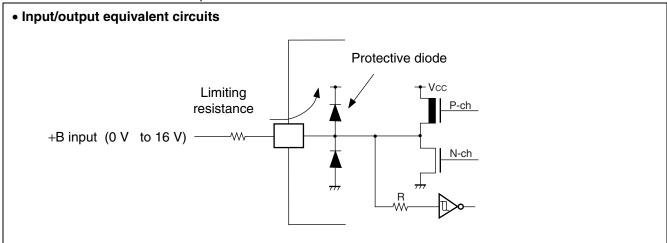
Y2: Usable, with El2OS stop function

N : Unusable

Notes: • The peripheral resources sharing the ICR register have the same interrupt level.

- When the peripheral resources sharing the ICR register use extended intelligent I/O service, only one can use extended intelligent I/O service at a time.
- When either of the 2 peripheral resources sharing the ICR register specifies extended intelligent I/O service, the other one cannot use interrupts.

■ ELECTRICAL CHARACTERISTICS


1. Absolute Maximum Ratings

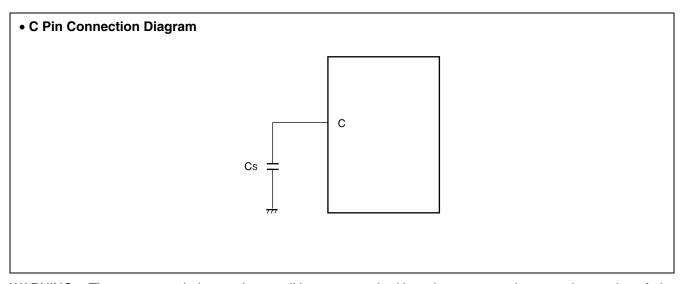
Davamatav	Cymbol	Rat	ing	Unit	Remarks
Parameter	Symbol	Min	Max	Unit	nemarks
	Vcc	Vss - 0.3	Vss + 6.0	V	
Power supply voltage*1	AVcc	Vss - 0.3	Vss + 6.0	V	$Vcc = AVcc^{*2}$
	AVR	Vss - 0.3	Vss + 6.0	V	AVcc ≥ AVR*2
Input voltage*1	Vı	Vss - 0.3	Vss + 6.0	V	*3
Output voltage*1	Vo	Vss - 0.3	Vss + 6.0	V	*3
Maximum clamp current	ICLAMP	-2.0	+2.0	mA	*6
Total Maximum clamp current	Σ ICLAMP	_	40	mA	*6
"I " lovel moving on the standard	l _{OL1}	_	15	mA	*4
"L" level maximum output current	lol2	_	40	mA	*5
"I " lovel overes output overes	lolav1	_	4	mA	*4
"L" level average output current	lolav2	_	30	mA	*5
"I " lovel movimum overall output ourrent	Σ lol1		125	mA	*4
"L" level maximum overall output current	Σlol2	_	160	mA	*5
	Σ lolav1		40	A	*4 +105 °C < T _A ≤ +125 °C
"I " lovel average averall autout average	Σ lolav2	_	40	mA	*5 +105 °C < T _A ≤ +125 °C
"L" level average overall output current	Σ I OLAV1		40	A	*4 -40 °C ≤ T _A ≤ +105 °C
	Σ I OLAV2	_	40	mA	*5 -40 °C ≤ T _A ≤ +105 °C
"L" lovel maximum autout aurrent	І он1	_	-15	mA	*4
"H" level maximum output current	І он2		-40	mA	*5
"I I" lovel over a content over a	lohav1	_	-4	mA	*4
"H" level average output current	lohav2	_	-30	mA	*5
"L!" lavel maximum averall output aurrent	ΣІон1		-125	mA	*4
"H" level maximum overall output current	Σl _{OH2}		-160	mA	*5
	ΣΙομαν1		-40	mΛ	*4 +105 °C < T _A ≤ +125 °C
"I !" level evere se everell evere t evere	Σ I OHAV2	_	-4 0	mA	*5 +105 °C < T _A ≤ +125 °C
"H" level average overall output current	ΣΙομαν1		40	A	*4 -40 °C ≤ T _A ≤ +105 °C
	Σ I OHAV2	_	-4 0	mA	*5 -40 °C ≤ T _A ≤ +105 °C
Power consumption	PD	_	300	mW	
Operating temperature	TA	-40	+105	°C	
Operating temperature	I A	-40	+125	°C	*7
Storage temperature	Tstg	-55	+150	°C	

(Continued)

(Continued)

- *1: This parameter is based on Vss = AVss = 0 V.
- *2: Set AVcc and Vcc to the same voltage. Make sure that AVcc does not exceed Vcc and that the voltage at the analog inputs does not exceed AVcc when the power is switched on.
- *3: V_I and V_O should not exceed V_{CC} + 0.3 V. V_I should not exceed the specified ratings. However, if the maximum current to/from an input is limited by some means with external components, the I_{CLAMP} rating supersedes the V_I rating.
- *4: Applicable to pins: P24 to P27, P40 to P44, P50 to P57, P60 to P67, P80, P82 to P87
- *5: Applicable to pins: P20 to P23
- *6: Applicable to pins: P20 to P27, P40 to P44, P50 to P57, P60 to P67, P80, P82 to P87
 - Use within recommended operating conditions.
 - Use at DC voltage (current) .
 - The +B signal should always be applied a connecting limit resistance between the +B signal and the microcontroller.
 - The value of the limiting resistance should be set so that when the +B signal is applied the input current to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.
 - Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input
 potential may pass through the protective diode and increase the potential at the Vcc pin, and this may affect
 other devices.
 - Note that if a +B signal is inputted when the microcontroller power supply is off (not fixed at 0 V), the power supply is provided from the pins, so that incomplete operation may result.
 - Note that if the +B input is applied during power-on, the power supply is provided from the pins and the resulting power supply voltage may not be sufficient to operate the power-on reset.
 - Care must be taken not to leave the +B input pin open.
 - Recommended circuit sample :

*7: If used exceeding $T_A = +105$ °C, please consult with us due to the restricted reliability. It is ensured to write/erase data to the Flash memory between $T_A = -40$ °C and +105 °C.


WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

2. Recommended Conditions

(Vss = AVss = 0 V)

Parameter	Symbol		Value		Unit	Remarks
Parameter	Syllibol	Min	Тур	Max	Offic	nemarks
		4.0	5.0	5.5	V	Under normal operation
Power supply voltage	Vcc, AVcc	3.5	5.0	5.5	٧	Under normal operation when not using the A/D converter and not Flash programming.
		3.0	_	5.5	V	Maintains RAM data in stop mode
Smoothing capacitor	Cs	0.1	_	1.0	μF	Use a ceramic capacitor or comparable capacitor of the AC characteristics. Bypass capacitor at the Vcc pin should be greater than this capacitor.
Operating temperature	TA	-40	_	+105	°C	
Operating temperature	IA	-40		+125	°C	*

^{*:} If used exceeding $T_A = +105$ °C, please consult with us due to the restricted reliability. It is ensured to write/erase data to the Flash memory between $T_A = -40$ °C and +105 °C.

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

3. DC Characteristics

(Ta = -40 °C to +125 °C, Vcc = 5.0 V \pm 10%, fcp \leq 24 MHz, Vss = AVss = 0 V)

Parameter	Sym-	Pin	Condition		Value		Unit	Remarks
Parameter	bol	PIII	Condition	Min	Тур	Max	Ollit	nemarks
	Vihs	_		0.8 Vcc		Vcc + 0.3	V	Pin inputs if CMOS hysteresis input levels are selected (except P82, P85)
Input "H"	VIHA	_		0.8 Vcc	_	Vcc + 0.3	V	Pin inputs if Automotive input levels are selected
voltage	VIHS	_		0.7 Vcc	_	Vcc + 0.3	V	P82, P85 inputs if CMOS input levels are selected
	VIHR	_		0.8 Vcc	_	Vcc + 0.3	٧	RST input pin (CMOS hysteresis)
	VIHM	_		Vcc - 0.3		Vcc + 0.3	V	MD input pin
	VILS	_	_	Vss - 0.3	_	0.2 Vcc	V	Pin inputs if CMOS hysteresis input levels are selected (except P82, P85)
Input "L"	VILA	_	_	Vss - 0.3	_	0.5 Vcc	V	Pin inputs if Automotive input levels are selected
voltage	VILS	_	_	Vss - 0.3		0.3 Vcc	V	P82, P85 inputs if CMOS input levels are selected
	VILR	_		Vss - 0.3	_	0.2 Vcc	V	RST input pin (CMOS hysteresis)
	V_{ILM}	_	_	Vss - 0.3		Vss + 0.3	V	MD input pin
Output "H"	Vон	Other than P20 to P23	$V_{CC} = 4.5 \text{ V},$ $I_{OH} = -4.0 \text{ mA}$	Vcc - 0.5	_	_	V	
voltage	Vohi	P20 to P23	$V_{\text{CC}} = 4.5 \text{ V},$ $I_{\text{OH}} = -14.0 \text{ mA}$	Vcc - 0.5	_	_	V	
Output "L"	Vol	Other than P20 to P23	$V_{CC} = 4.5 \text{ V},$ $I_{OL} = 4.0 \text{ mA}$	_	_	0.4	V	
voltage	Voli	P20 to P23	$V_{CC} = 4.5 \text{ V},$ $I_{OL} = 20.0 \text{ mA}$	_	_	0.4	V	
Input leak current	lıL	_	$\begin{aligned} V_{\text{CC}} &= 5.5 \text{ V}, \\ V_{\text{SS}} &< V_{\text{I}} < V_{\text{CC}} \end{aligned}$	-1	_	+ 1	μΑ	
Pull-up resistance	Rup	P20 to P27, RST		25	50	100	kΩ	

(Continued)

(Ta = -40 °C to +125 °C, Vcc = 5.0 V \pm 10%, fcp \leq 24 MHz, Vss = AVss = 0 V)

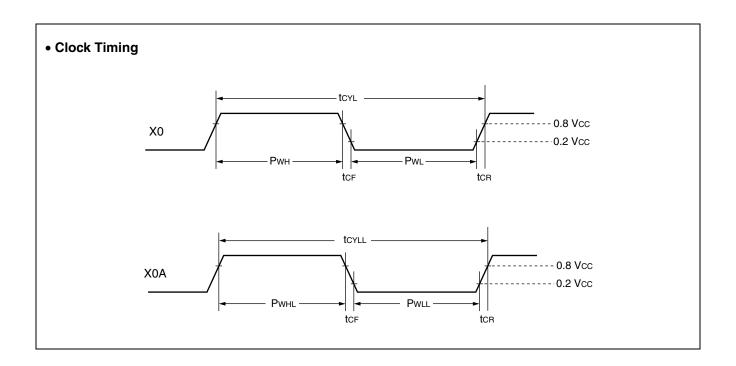
Doromotor	Sym-	Pin	Condition		Value		Unit	Remarks	
Parameter	bol	Pin	Condition	OH	Min	Тур	Max	Unit	Remarks
Pull-down resistance	RDOWN	MD2	_		25	50	100	kΩ	MB90362E, MB90362ES, MB90362TE, MB90362TES
			Vcc = 5.0 V, Internal frequency : At normal operation		35	45	mA		
Iccs	Icc		Vcc = 5.0 V, Internal frequency : At writing Flash me			50	60	mA	Flash memory devices
			Vcc = 5.0 V, Internal frequency : At erasing Flash me			50	60	mA	Flash memory devices
	Iccs		Vcc = 5.0 V, Internal frequency : At sleep mode.	24 MHz,		12	20	mA	
		Vcc = 5.0 V,	_	0.3	0.8	4	Devices without T-suffix		
	ICTS		Internal frequency : 2 MHz, At main timer mode			0.4	1.0	- mA	Devices with T-suffix
Power supply	ICTSPLL6		Vcc = 5.0 V, Internal frequency : At PLL timer mode, External frequency	_	4	7	mA		
current*		Vcc	Vcc = 5.0 V Internal frequency:	Stopping clock supervisor		40	100		MB90F362E, MB90F367E, MB90362E, MB90367E
	1			Operating clock supervisor	_	60	150		MB90F367E, MB90367E
	ICCL	Iccl	8 kHz, At sub operation, $T_A = +25^{\circ}C$	Stopping clock supervisor		90	200	- μΑ	MB90F362TE, MB90F367TE, MB90362TE, MB90367TE
				Operating clock supervisor		110	250		MB90F367TE, MB90367TE
			V FOV	Stopping clock supervisor		10	50		MB90F362E, MB90F367E, MB90362E, MB90367E
			Vcc = 5.0 V Internal frequency:	Operating clock supervisor	_	30	100	^	MB90F367E, MB90367E
	Iccls		8 kHz, At sub sleep, $T_A = +25^{\circ}C$	Stopping clock supervisor		60	150	μΑ	MB90F362TE, MB90F367TE, MB90362TE, MB90367TE
				Operating clock supervisor	_	80	200		MB90F367TE, MB90367TE

(Continued)

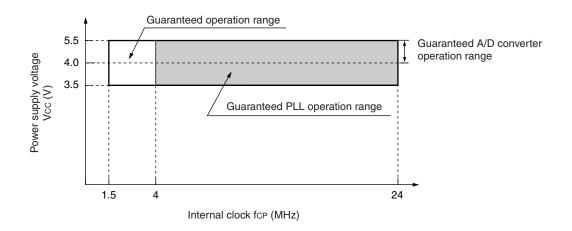
(Continued)

(Ta = -40 °C to +125 °C, Vcc = 5.0 V \pm 10%, fcp \leq 24 MHz, Vss = AVss = 0 V)

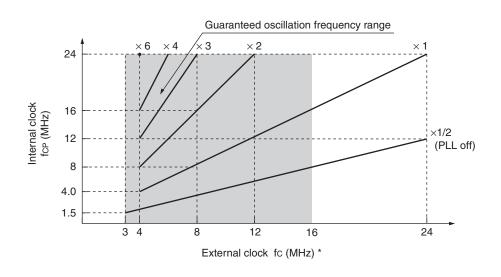
Parameter	Sym-	Pin	Condition	nn.		Value		Unit	Remarks
raiailletei	bol	FIII	Condition	ווכ	Min	Тур	Max		nemarks
Iсст Power supply current*			Vcc = 5.0 V	Stopping clock supervisor		8	30		MB90F362E, MB90F367E, MB90362E, MB90367E
	Ісет		Internal frequency: 8 kHz,	Operating clock supervisor		30	70	μA	MB90F367E, MB90367E
	1001	Vcc	At watch mode, T _A = +25°C	Stopping clock supervisor		60	130	μΑ	MB90F362TE, MB90F367TE, MB90362TE, MB90367TE
				Operating clock supervisor		80	170		MB90F367TE, MB90367TE
	Іссн		Vcc = 5.0 V,	_	5	25	μΑ	Devices without T-suffix	
	ICCH		At stop mode, $T_A = +25^{\circ}C$			50	130	μΑ	Devices with T-suffix
Input capacity	Cin	Other than AVcc, AVss, AVR, Vcc, Vss, C	_	_	5	15	pF		


^{*:} The power supply current is measured with an external clock.

4. AC Characteristics

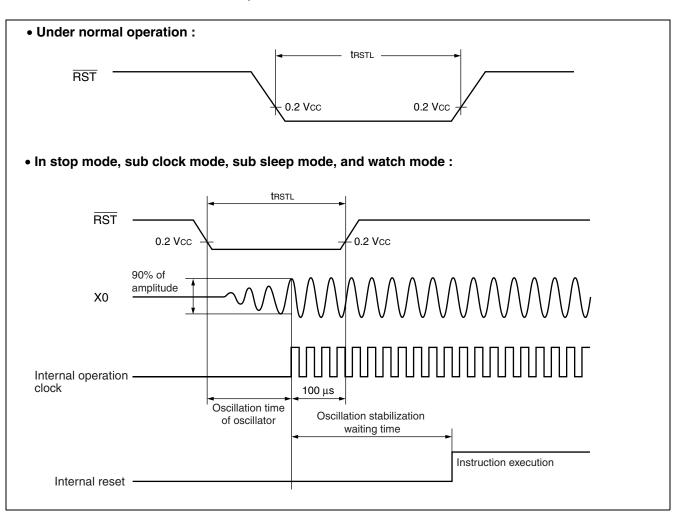

(1) Clock Timing

(T_A = -40 °C to +125 °C, Vcc = 5.0 V \pm 10%, fcp \leq 24 MHz, Vss = AVss = 0 V)


Down and a se	,			Value			, ICP ≤ 24 IVIHZ, VSS = AVSS = 0 V)
Parameter	Symbol	Pin	Min	Тур	Max	Unit	Remarks
			3	_	16	MHz	1/2 when PLL stops, When using an oscillation circuit
			4		16	MHz	$\begin{array}{l} \text{PLL}\times \textbf{1},\\ \text{When using an oscillation circuit} \end{array}$
		X0, X1	4		12	MHz	$\begin{array}{c} \text{PLL} \times 2, \\ \text{When using an oscillation circuit} \end{array}$
		Χ0, Χ1	4		8	MHz	$\begin{array}{c} \text{PLL} \times 3, \\ \text{When using an oscillation circuit} \end{array}$
			4		6	MHz	$\begin{array}{c} \text{PLL} \times 4, \\ \text{When using an oscillation circuit} \end{array}$
	f c		4	_	4	MHz	$\begin{array}{c} \text{PLL} \times 6, \\ \text{When using an oscillation circuit} \end{array}$
Clock frequency			3	1	24	MHz	1/2 when PLL stops, When using an external clock
			4		24	MHz	PLL × 1, When using an external clock
		X0, X1	4	_	12	MHz	PLL × 2, When using an external clock
			4		8	MHz	PLL × 3, When using an external clock
			4	_	6	MHz	PLL × 4, When using an external clock
			4		4	MHz	PLL × 6, When using an external clock
	fcL	X0A, X1A	_	32.768	100	kHz	
	tcyL	X0, X1	62.5		333	ns	When using an oscillation circuit
Clock cycle time	LOYL	X0, X1	41.67		333	ns	When using an external clock
	t CYLL	X0A, X1A	10	30.5	1	μs	
Input clock pulse width	Pwh, Pwl	X0	10			ns	Duty ratio is about 30% to 70%.
Input Glock pulse width	Pwhl, Pwll	X0A	5	15.2	_	μs	Daty ratio is about 50% to 70%.
Input clock rise and fall time	tcr, tcr	X0			5	ns	When using external clock
Internal operating clock	f CP		1.5		24	MHz	When using main clock
frequency (machine clock)	f CPL	_		8.192	50	kHz	When using sub clock
Internal operating clock	t cp		41.67	_	666	ns	When using main clock
cycle time (machine clock)	t CPL		20	122.1	_	μs	When using sub clock

• Guaranteed PLL Operation Range

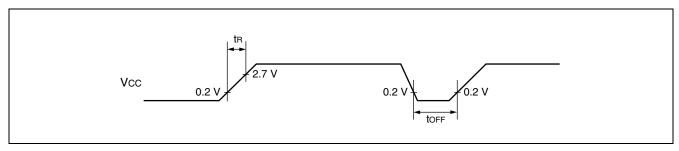
Guaranteed operation range of MB90360E series

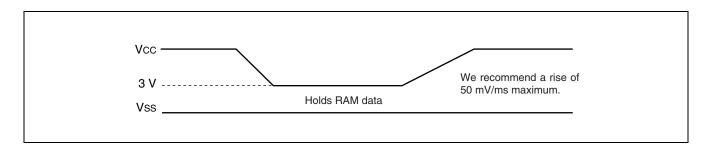

*: When using the oscillation circuit, the maximum oscillation clock frequency is 16 MHz.

(2) Reset Standby Input

(TA = -40 °C to +125 °C, Vcc = 5.0 V \pm 10%, fcp \leq 24 MHz, Vss = AVss = 0 V)

Parameter	Symbol	Pin	Value	Unit	Remarks		
Parameter	ameter Symbol 1 m		Min M		Oill	Hemarks	
			500	_	ns	Under normal operation	
Reset input time	t rstl	Oscillation time of oscillator* + 100 μs		_	ns	In stop mode, sub clock mode, sub sleep mode, and watch mode	
			100	_	μs	In timebase timer mode	

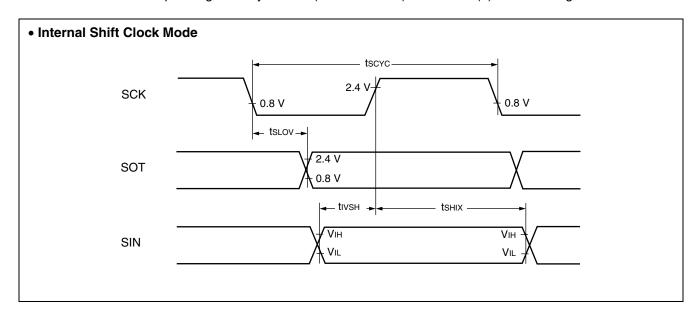

 * : Oscillation time of oscillator is the time that the amplitude reaches 90%. In the crystal oscillator, the oscillation time is between several ms and tens of ms. In ceramic oscillators, the oscillation time is between hundreds of μ s and several ms. With an external clock, the oscillation time is 0 ms.

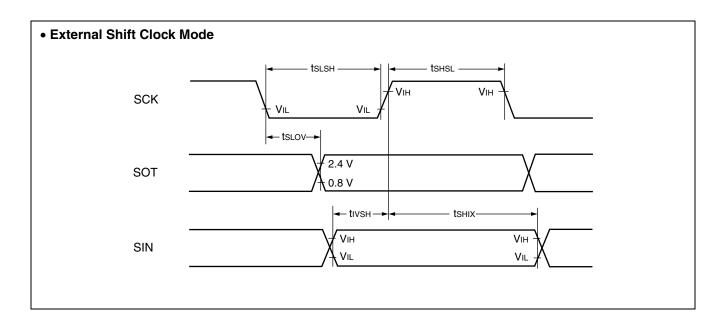

(3) Power-on Reset

(Ta = -40 °C to +125 °C, Vcc = 5.0 V \pm 10%, fcp \leq 24 MHz, Vss = AVss = 0 V)

Parameter	Symbol	Pin	Condition	Value		Unit	Remarks	
raiailletei	Syllibol	FIII	Condition	Min Max		Oilit	Hemarks	
Power on rise time	t⊓	Vcc		0.05	30	ms		
Power off time	toff	Vcc		1		ms	Due to repetitive operation	

Note: If you change the power supply voltage too rapidly, a power-on reset may occur. We recommend that you start up smoothly by restraining voltages when changing the power supply voltage during operation, as shown in the figure below. Perform while not using the PLL clock. However, if voltage drops are within 1 V/s, you can operate while using the PLL clock.

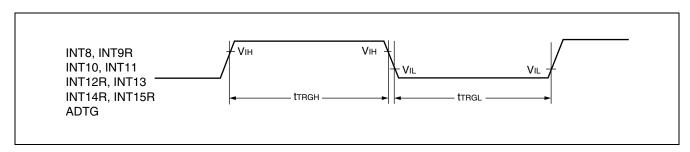

(4) UARTO/UART1


(Ta = -40 °C to +125 °C, Vcc = 5.0 V \pm 10%, fcp \leq 24 MHz, Vss = 0 V)

Parameter	Symbol	Pin	Condition	Va	lue	Unit
raiailletei	Syllibol	FIII	Condition	Min	Max	Oilit
Serial clock cycle time	tscyc	SCK0, SCK1		8 tcp		ns
$SCK \downarrow \; o \; SOT \; delay \; time$	tsLov	SCK0, SCK1, SOT0, SOT1	Internal shift clock	-80	+80	ns
Valid SIN → SCK ↑	tıvsн	SCK0, SCK1, SIN0, SIN1	mode output pins : $C_L = 80 \text{ pF} + 1 \text{ TTL}.$	100	_	ns
$SCK \! \uparrow \! \to Valid SIN hold time$	tsнıх	SCK0, SCK1, SIN0, SIN1		60	_	ns
Serial clock "H" pulse width	t shsl	SCK0, SCK1		4 tcp		ns
Serial clock "L" pulse width	t slsh	SCK0, SCK1		4 tcp		ns
$SCK \downarrow \; o \; SOT \; delay \; time$	tsLov	SCK0, SCK1, SOT0, SOT1	External shift clock mode output pins :	_	150	ns
Valid SIN → SCK ↑	tıvsн	SCK0, SCK1, SIN0, SIN1	C _L = 80 pF + 1 TTL.	60		ns
$SCK \! \uparrow \to Valid SIN hold time$	tsнıx	SCK0, SCK1, SIN0, SIN1		60	_	ns

Notes: • AC characteristic in CLK synchronized mode.

- C_L is load capacity value of pins when testing.
- tcp is internal operating clock cycle time (machine clock) . Refer to " (1) Clock Timing".

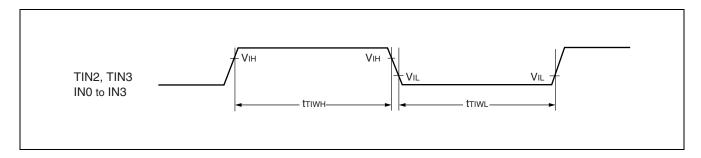


(5) Trigger Input Timing

(Ta = -40 °C to +125 °C, Vcc = 5.0 V \pm 10%, fcp \leq 24 MHz, Vss = 0 V)

Parameter	Symbol	Pin	Condition	Va	Unit	
	Symbol	FIII	Condition	Min	Max	Oill
Input pulse width	tтядн tтядL	INT8, INT9R INT10, INT11 INT12R, INT13 INT14R, INT15R ADTG	_	5 tcp	_	ns

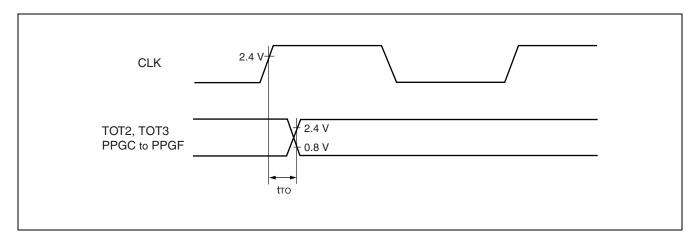
Note: tcp is internal operating clock cycle time (machine clock). Refer to "(1) Clock Timing".



(6) Timer Related Resource Input Timing

 $(T_A = -40 \, ^{\circ}\text{C to} + 125 \, ^{\circ}\text{C}, \, \text{Vcc} = 5.0 \, \text{V} \pm 10\%, \, \text{fcp} \le 24 \, \text{MHz}, \, \text{Vss} = 0 \, \text{V})$

Parameter	Symbol	Pin	Condition	Va	Unit		
Parameter	Зуппоп	PIII	Condition	Min	Max	Oill	
Input pulse width	tтıwн	TIN2, TIN3		4 tcp		ns	
Imput puise width	t TIWL	IN0 to IN3		4 (CP		113	

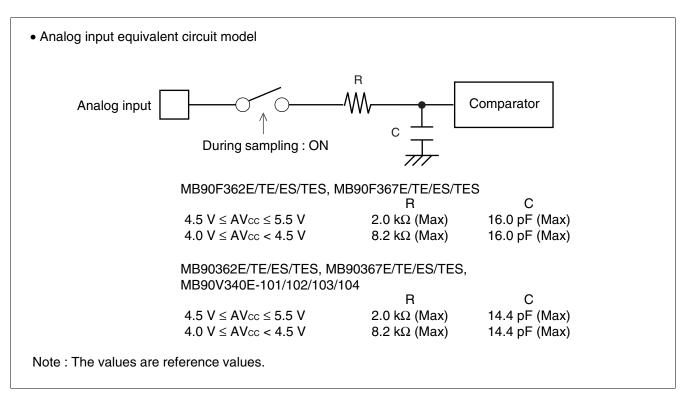

Note: tcp is internal operating clock cycle time (machine clock). Refer to "(1) Clock Timing".

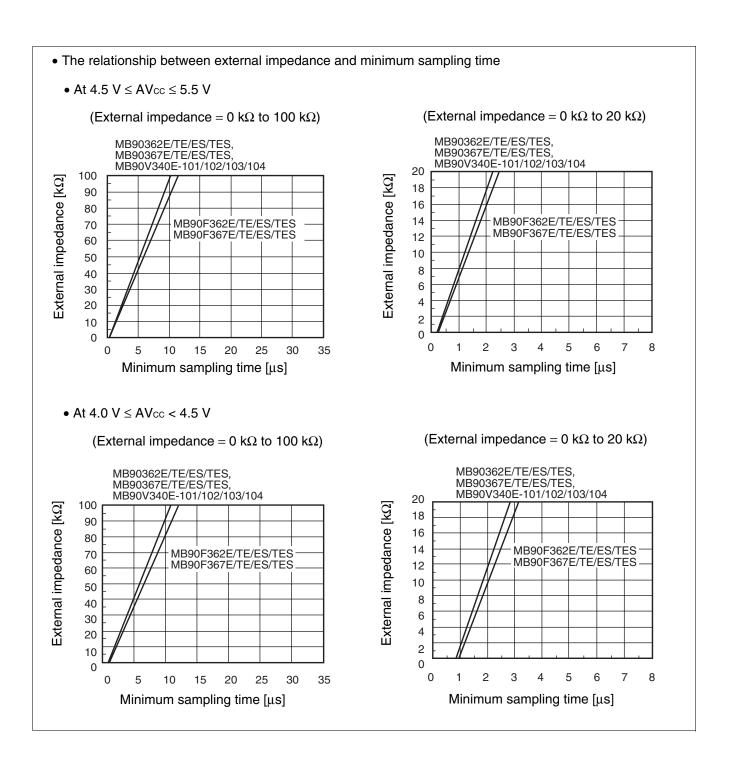
(7) Timer Related Resource Output Timing

 $(T_A = -40^{\circ}\text{C to } +125^{\circ}\text{C}, \text{ Vcc} = 5.0 \text{ V} \pm 10\%, \text{ fcp} \le 24 \text{ MHz}, \text{ Vss} = 0 \text{ V})$

Parameter	Symbol	Pin	Condition	Val	Unit		
Parameter	Syllibol	FIII	Condition	Min	Max	Oill	
CLK $\uparrow \to T_OUT$ change time	t то	TOT2, TOT3 PPGC to PPGF	_	30	_	ns	

5. A/D Converter


 $(T_{\text{A}} = -40~^{\circ}\text{C to } + 125~^{\circ}\text{C},~3.0~\text{V} \leq \text{AVR} - \text{AVss},~\text{Vcc} = \text{AVcc} = 5.0~\text{V} \pm 10\%,~\text{fcp} \leq 24~\text{MHz},~\text{Vss} = \text{AVss} = 0~\text{V})$


Parameter	Symbol	Pin	Value				Domostro
Parameter			Min	Тур	Max	Unit	Remarks
Resolution		_	_	_	10	bit	
Total error	_	_	_	_	±3.0	LSB	
Nonlinearity error	_	_	_	_	±2.5	LSB	
Differential nonlinearity error	_	_	_	_	±1.9	LSB	
Zero reading voltage	Vот	AN0 to AN15	AVss - 1.5	AVss + 0.5	AVss + 2.5	V	
Full scale reading voltage	VFST	AN0 to AN15	AVR – 3.5	AVR – 1.5	AVR + 0.5	٧	
Compare time	_	_	1.0	_	16500	μs	4.5 V ≤ AVcc ≤ 5.5 V
			2.0				4.0 V ≤ AVcc < 4.5 V
Sampling time	_	_	0.5		8	μs	4.5 V ≤ AVcc ≤ 5.5 V
			1.2				4.0 V ≤ AVcc < 4.5 V
Analog port input current	lain	AN0 to AN15	-0.3	_	+0.3	μА	
Analog input voltage range	Vain	AN0 to AN15	AVss	_	AVR	٧	
Reference voltage range	_	AVR	AVss + 2.7	_	AVcc	٧	
Power supply current	lΑ	AVcc	_	3.5	7.5	mA	
	Іан	AVcc	_	_	5	μА	*
Reference voltage supply current	IR	AVR	_	600	900	μΑ	
	IRH	AVR	_	_	5	μΑ	*
Offset between input channels	_	AN0 to AN15	_	_	4	LSB	

^{*:} If A/D converter is not operating, a current when CPU is stopped is applicable (Vcc = AVcc = AVR = 5.0 V).

About the external impedance of analog input and its sampling time

A/D converter with sample and hold circuit. If the external impedance is too high to keep sufficient sampling time, the analog voltage changed to the internal sample and hold capacitor is insufficient, adversely affecting A/D conversion precision. Therefore, to satisfy the A/D conversion precision standard, consider the relationship between the external impedance and minimum sampling time and either adjust the resistor value and operating frequency or decrease the external impedance so that the sampling time is longer than the minimum value. And, if the sampling time cannot be sufficient, connect a capacitor of about 0.1 μ F to the analog input pin.

About errors

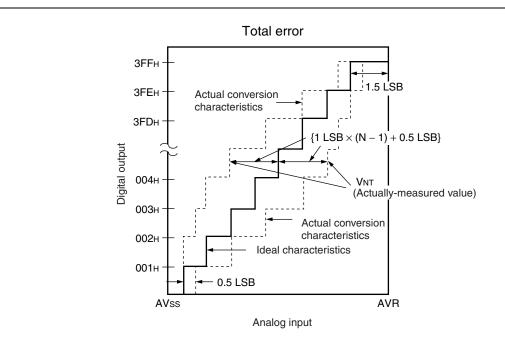
As | AVR – AVss | becomes smaller, values of relative errors grow larger.

6. Definition of A/D Converter Terms

Resolution : Analog variation that is recognized by an A/D converter.

Non linearity : Deviation between a line across zero-transition line ("00 0000 0000B" ← → "00 0000 0001B") error

and full-scale transition line ("11 1111 1110 $_B$ " \leftarrow \rightarrow "11 1111 1111 $_B$ ") and actual conversion


characteristics.

Differential : Deviation of input voltage, which is required for changing output code by 1 LSB, from an ideal

linearity error value.

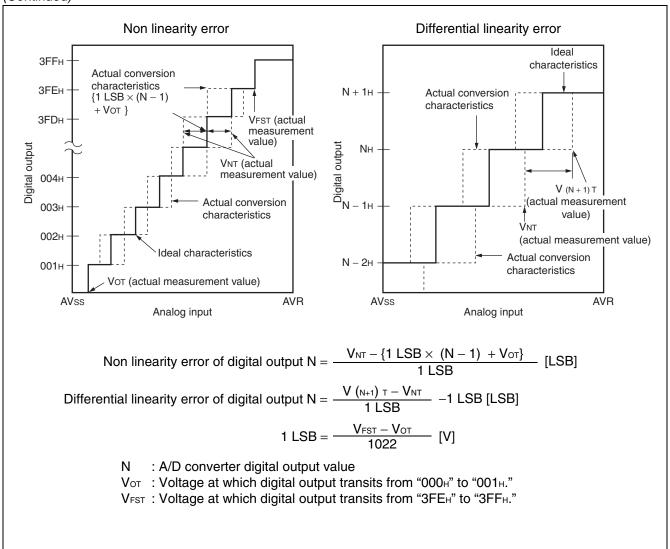
Total error : Difference between an actual value and an theoretical value. A total error includes zero transi-

tion error, full-scale transition error, and linear error.

Total error of digital output "N" =
$$\frac{V_{NT} - \{1 \text{ LSB} \times (N-1) + 0.5 \text{ LSB}\}}{1 \text{ LSB}}$$
 [LSB]
$$AVB - AVCC$$

1 LSB (Ideal value) =
$$\frac{AVR - AVss}{1024}$$
 [V]

N: A/D converter digital output value

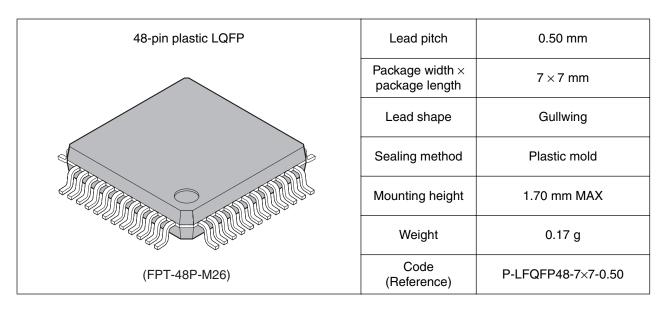

Vot (Ideal value) = AVss + 0.5 LSB [V]

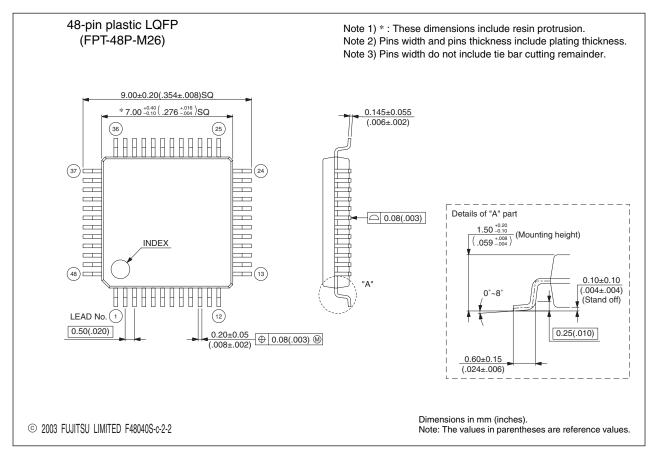
V_{FST} (Ideal value) = AVR - 1.5 LSB [V]

 V_{NT} : A voltage at which digital output transits from (N-1) to N.

(Continued)

7. Flash Memory Program/Erase Characteristics


Parameter	Conditions	Value			Unit	Remarks
Farameter	Conditions	Min	Тур	Max	Ollit	nemarks
Chip erase time	$T_A = -40 ^{\circ}\text{C} \text{ to } +105 ^{\circ}\text{C}$	_	1	15	s	Excludes programming prior to erasure
Word (16-bit width) programming time	Vcc = 5.0 V		16	3600	μs	Except for the overhead time of the system level
Program/Erase cycle	_	10000	_	_	cycle	
Flash memory data retention time	Average T _A = +85 °C	20			year	*


 $^{^*}$: Corresponding value comes from the technology reliability evaluation result (using Arrhenius equation to translate high temperature measurements into normalized value at +85 °C).

■ ORDERING INFORMATION

Part number	Package	Remarks		
MB90F362EPMT				
MB90F362TEPMT				
MB90F362ESPMT				
MB90F362TESPMT				
MB90F367EPMT				
MB90F367TEPMT				
MB90F367ESPMT				
MB90F367TESPMT	48-pin plastic LQFP			
MB90362EPMT	(FPT-48P-M26)			
MB90362TEPMT				
MB90362ESPMT				
MB90362TESPMT				
MB90367EPMT				
MB90367TEPMT				
MB90367ESPMT				
MB90367TESPMT				
MB90V340E-101				
MB90V340E-102	299-pin ceramic PGA	For evaluation		
MB90V340E-103	(PGA-299C-A01)			
MB90V340E-104				

■ PACKAGE DIMENSION

Please confirm the latest Package dimension by following URL. http://edevice.fujitsu.com/fj/DATASHEET/ef-ovpklv.html

■ MAIN CHANGES IN THIS EDITION

Page	Section	Change Results
_	_	Added the following part numbers. (MB90367E(S)/TE(S), MB90F367E(S)/TE(S), MB90V340E-103/104)
1	■ DESCRIPTION	Added a description of the "Clock supervisor".
2	■ FEATURES	Added a description of the "Clock supervisor".
26	■ I/O MAP	Added the "Clock supervisor Control Register".
41	■ ELECTRICAL CHARACTERISTICS 3. DC Characteristics	Added the ratings for the "Clock supervisor" to the "Iccl" section of the power supply current ratings.
		Added the ratings for the "Clock supervisor" to the "Iccls" section of the power supply current ratings.
42		Added the ratings for the "Clock supervisor" to the "Icct" section of the power supply current ratings.

The vertical lines marked in the left side of the page show the changes.

The information for microcontroller supports is shown in the following homepage. http://www.fujitsu.com/global/services/microelectronics/product/micom/support/index.html

FUJITSU LIMITED

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of Fujitsu semiconductor device; Fujitsu does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. Fujitsu assumes no liability for any damages whatsoever arising out of the use of the information.

Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of Fujitsu or any third party or does Fujitsu warrant non-infringement of any third-party's intellectual property right or other right by using such information. Fujitsu assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

The company names and brand names herein are the trademarks or registered trademarks of their respective owners.

Edited Business Promotion Dept.