

### TS3021-TS3022

### Rail-to-rail 1.8V high-speed comparator

#### **Features**

■ Propagation delay: 33ns

■ Low current consumption: 64µA

■ Rail-to-rail inputs

■ Push-pull outputs

■ Supply operation from 1.8V to 5V

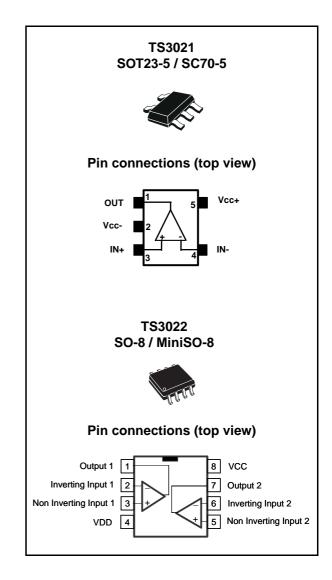
■ Wide temperature range: -40°C to +125°C

ESD tolerance: 2kV HBM / 200V MM

■ Latch-up immunity: 200mA

SMD packages

#### **Applications**


- Telecom
- Instrumentation
- Signal conditioning
- High-speed sampling systems
- Portable communication systems

#### **Description**

The TS3021 and TS3022 single and dual comparators feature high-speed response time with rail-to-rail inputs. Specified from 2V to 5V supply voltage, these comparators can operate over a wide temperature range: -40°C to +125°C.

The TS3021 and TS3022 comparators offer micropower consumption as low as a few tens of microamperes thus providing an excellent ratio of power consumption current versus response time.

The TS3021 and TS3022 include push-pull outputs and are available in small packages (SMD).



### 1 Absolute maximum ratings and operating conditions

Table 1. Absolute maximum ratings

| Symbol            | Parameter                                                                          | Value                          | Unit |
|-------------------|------------------------------------------------------------------------------------|--------------------------------|------|
| V <sub>CC</sub>   | Supply voltage <sup>(1)</sup>                                                      | 5.5                            | V    |
| V <sub>ID</sub>   | Differential input voltage <sup>(2)</sup>                                          | ±5                             | V    |
| V <sub>IN</sub>   | Input voltage range                                                                | $V_{DD}$ -0.3 to $V_{CC}$ +0.3 | V    |
| R <sub>thja</sub> | Thermal resistance junction to ambient <sup>(3)</sup> SC70-5 SOT23-5 SO-8 MiniSO-8 | 205<br>250<br>125<br>190       | °C/W |
| R <sub>thjc</sub> | Thermal resistance junction to case <sup>(3)</sup> SC70-5 SOT23-5 SO-8 MiniSO-8    | 172<br>81<br>40<br>39          | °C/W |
| $P_{D}$           | Power dissipation <sup>(4)</sup> SC70-5 SOT23-5 SO-8 MiniSO-8                      | 600<br>500<br>1000<br>650      | mW   |
| T <sub>stg</sub>  | Storage temperature                                                                | -65 to +150                    | °C   |
| Tj                | Junction temperature                                                               | 150                            | °C   |
| T <sub>LEAD</sub> | Lead temperature (soldering 10 seconds)                                            | 260                            | °C   |
| ESD               | Human body model (HBM) <sup>(5)</sup>                                              | 2000                           | V    |
| EOD               | Machine model (MM) <sup>(6)</sup>                                                  | 200                            | V    |
|                   | Latch-up immunity                                                                  | 200                            | mA   |

- 1. All voltage values, except differential voltage, are referenced to  $V_{\text{DD}}$ .
- 2. The magnitude of input and output voltages must never exceed the supply rail ±0.3V.
- 3. Short-circuits can cause excessive heating. These values are typical.
- 4.  $P_D$  is calculated with  $T_{amb}$ =+25°C,  $T_j$  =+150°C and corresponding  $R_{thja}$  .
- 5. Human body model: A 100pF capacitor is charged to the specified voltage, then discharged through a  $1.5k\Omega$  resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating.
- Machine model: A 200pF capacitor is charged to the specified voltage, then discharged directly between
  two pins of the device with no external series resistor (internal resistor < 5Ω). This is done for all couples of
  connected pin combinations while the other pins are floating.</li>

Table 2. Operating conditions

| Symbol            | Parameter                                                                                                | Value                                                                              | Unit |
|-------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|------|
| T <sub>oper</sub> | Operating temperature range                                                                              | -40 to +125                                                                        | °C   |
| V <sub>CC</sub>   | Supply voltage<br>0°C < T <sub>amb</sub> < +125°C<br>-40°C < T <sub>amb</sub> < +125°C                   | 1.8 to 5<br>2 to 5                                                                 | ٧    |
| V <sub>icm</sub>  | Common mode input voltage range<br>-40°C < T <sub>amb</sub> < +85°C<br>+85°C < T <sub>amb</sub> < +125°C | V <sub>DD</sub> -0.2 to V <sub>CC</sub> +0.2<br>V <sub>DD</sub> to V <sub>CC</sub> | V    |

## 2 Electrical characteristics

Table 3.  $V_{CC}$ =+2V,  $T_{amb}$  = +25°C, full  $V_{icm}$  range (unless otherwise specified)<sup>(1)</sup>

| Symbol           | Parameter                                     | Test conditions                                                                 | Min.         | Тур.     | Max.       | Unit  |
|------------------|-----------------------------------------------|---------------------------------------------------------------------------------|--------------|----------|------------|-------|
| V <sub>IO</sub>  | Input offset voltage                          | -40°C < T <sub>amb</sub> < +125°C                                               | -            | 0.5      | 8<br>10    | mV    |
| ΔV <sub>IO</sub> | Input offset voltage drift                    | -40°C < T <sub>amb</sub> < +125°C                                               | -            | 3        | 20         | μV/°C |
| I <sub>IO</sub>  | Input offset current <sup>(2)</sup>           | -40°C < T <sub>amb</sub> < +125°C                                               | -            | 1        | 20<br>100  | nA    |
| I <sub>IB</sub>  | Input bias current <sup>(2)</sup>             | -40°C < T <sub>amb</sub> < +125°C                                               | -            | 80       | 160<br>300 | nA    |
| Icc              | Supply current                                | No load, output low, V <sub>icm</sub> =0V<br>-40°C < T <sub>amb</sub> < +125°C  | _            | 75       | 105<br>115 | μΑ    |
|                  |                                               | No load, output high, V <sub>icm</sub> =0V<br>-40°C < T <sub>amb</sub> < +125°C |              | 64       | 90<br>125  |       |
| I <sub>SC</sub>  | Short-circuit current                         | Source<br>Sink                                                                  | -            | 12<br>13 | -          | mA    |
| V <sub>OH</sub>  | Output voltage high                           | I <sub>source</sub> =1mA<br>-40°C < T <sub>amb</sub> < +125°C                   | 1.88<br>1.80 | 1.94     | -          | V     |
| V <sub>OL</sub>  | Output voltage low                            | I <sub>source</sub> =1mA<br>-40°C < T <sub>amb</sub> < +125°C                   |              | 50       | 100<br>150 | mV    |
| CMRR             | Common mode rejection ratio                   | 0 < V <sub>icm</sub> < 2V                                                       | -            | 67       | -          | dB    |
| SVR              | Supply voltage rejection                      | $\Delta V_{CC}$ = 2 to 5V                                                       | 58           | 69       | 1          | dB    |
| TP <sub>LH</sub> | Propagation delay Low to high output level    | $V_{icm}$ = 0V, f=10kHz, $C_L$ =50pF,<br>Overdrive = 20mV<br>Overdrive = 100mV  | -            | 39<br>33 | 75<br>60   | ns    |
| TP <sub>HL</sub> | Propagation delay<br>High to low output level | $V_{icm}$ = 0V, f=10kHz, $C_L$ =50pF,<br>Overdrive = 20mV<br>Overdrive = 100mV  | -            | 39<br>33 | 75<br>60   | ns    |
| T <sub>F</sub>   | Fall time                                     | f=10kHz, $C_L$ =50pF, $R_L$ =10k $Ω$<br>Overdrive = 100mV                       |              | 8        | -          | ns    |
| T <sub>R</sub>   | Rise time                                     | f=10kHz, $C_L$ =50pF, $R_L$ =10kΩ, Overdrive = 100mV                            | -            | 9        | -          | ns    |

<sup>1.</sup> All values over the temperature range are guaranteed through correlation and simulation. No production test is performed at the temperature range limits.

<sup>2.</sup> Maximum values include unavoidable inaccuracies of the industrial tests.

Table 4.  $V_{CC}$ =+3.3V,  $T_{amb}$  = +25°C, full  $V_{icm}$  range (unless otherwise specified)<sup>(1)</sup>

| Symbol           | Parameter                                     | Test conditions                                                                                | Min.         | Тур.     | Max.       | Unit  |
|------------------|-----------------------------------------------|------------------------------------------------------------------------------------------------|--------------|----------|------------|-------|
| V <sub>IO</sub>  | Input offset voltage                          | -40°C < T <sub>amb</sub> < +125°C                                                              | -            | 0.5      | 8<br>10    | mV    |
| $\Delta V_{1O}$  | Input offset voltage drift                    | -40°C < T <sub>amb</sub> < +125°C                                                              | -            | 3        | 20         | μV/°C |
| I <sub>IO</sub>  | Input offset current <sup>(2)</sup>           | -40°C < T <sub>amb</sub> < +125°C                                                              | -            | 1        | 20<br>100  | nA    |
| I <sub>IB</sub>  | Input bias current <sup>(2)</sup>             | -40°C < T <sub>amb</sub> < +125°C                                                              | -            | 80       | 160<br>300 | nA    |
| 1                | Supply current                                | No load, output low, V <sub>icm</sub> =0V<br>-40°C < T <sub>amb</sub> < +125°C                 | _            | 77       | 110<br>120 | μА    |
| I <sub>CC</sub>  | зарру сапен                                   | No load, output high, V <sub>icm</sub> =0V<br>-40°C < T <sub>amb</sub> < +125°C                |              | 65       | 90<br>125  | μΑ    |
| I <sub>SC</sub>  | Short circuit current                         | Source<br>Sink                                                                                 | -            | 33<br>28 | -          | mA    |
| $V_{OH}$         | Output voltage high                           | I <sub>source</sub> =1mA<br>-40°C < T <sub>amb</sub> < +125°C                                  | 3.20<br>3.10 | 3.26     | -          | V     |
| $V_{OL}$         | Output voltage low                            | I <sub>source</sub> =1mA<br>-40°C < T <sub>amb</sub> < +125°C                                  | -            | 30       | 80<br>150  | mV    |
| CMRR             | Common mode rejection ratio                   | 0 < V <sub>icm</sub> < 3.3V                                                                    | -            | 71       | -          | dB    |
| SVR              | Supply voltage rejection                      | $\Delta V_{CC}$ = 2 to 5V                                                                      | 58           | 69       | -          | dB    |
| TP <sub>LH</sub> | Propagation delay Low to high output level    | V <sub>icm</sub> = 0V, f=10kHz, C <sub>L</sub> =50pF,<br>Overdrive = 20mV<br>Overdrive = 100mV | -            | 42<br>34 | 85<br>65   | ns    |
| TP <sub>HL</sub> | Propagation delay<br>High to low output level | $V_{icm}$ = 0V, f=10kHz, $C_L$ =50pF,<br>Overdrive = 20mV<br>Overdrive = 100mV                 | -            | 41<br>34 | 80<br>65   | ns    |
| T <sub>F</sub>   | Fall time                                     | $f$ =10kHz, $C_L$ =50pF, $R_L$ =10k $Ω$<br>Overdrive = 100mV                                   | -            | 5        | -          | ns    |
| T <sub>R</sub>   | Rise time                                     | $f=10kHz$ , $C_L=50pF$ , $R_L=10kΩ$<br>Overdrive = 100mV                                       | -            | 7        | -          | ns    |

All values over the temperature range are guaranteed through correlation and simulation. No production test is performed at the temperature range limits.

<sup>2.</sup> Maximum values include unavoidable inaccuracies of the industrial tests.

Table 5.  $V_{CC}$ =+5V,  $T_{amb}$  = +25°C, full  $V_{icm}$  range (unless otherwise specified)<sup>(1)</sup>

| Symbol           | Parameter                                     | Test conditions                                                                 | Min.         | Тур.     | Max.       | Unit  |
|------------------|-----------------------------------------------|---------------------------------------------------------------------------------|--------------|----------|------------|-------|
| V <sub>IO</sub>  | Input offset voltage                          | -40°C < T <sub>amb</sub> < +125°C                                               | -            | 0.5      | 8<br>10    | mV    |
| $\Delta V_{IO}$  | Input offset voltage drift                    | -40°C < T <sub>amb</sub> < +125°C                                               | -            | 3        | 20         | μV/°C |
| I <sub>IO</sub>  | Input offset current <sup>(2)</sup>           | -40°C < T <sub>amb</sub> < +125°C                                               | -            | 1        | 20<br>100  | nA    |
| I <sub>IB</sub>  | Input bias current <sup>(2)</sup>             | -40°C < T <sub>amb</sub> < +125°C                                               | -            | 80       | 160<br>300 | nA    |
| I <sub>CC</sub>  | Supply current                                | No load, output low, V <sub>icm</sub> =0V<br>-40°C < T <sub>amb</sub> < +125°C  | _            | 80       | 115<br>125 | μА    |
| ·cc              | Cappy canon                                   | No load, output high, V <sub>icm</sub> =0V<br>-40°C < T <sub>amb</sub> < +125°C |              | 67       | 95<br>135  | , ,   |
| I <sub>SC</sub>  | Short circuit current                         | Source<br>Sink                                                                  |              | 62<br>47 | -          | mA    |
| V <sub>OH</sub>  | Output voltage high                           | I <sub>source</sub> =4mA<br>-40°C < T <sub>amb</sub> < +125°C                   | 4.80<br>4.70 | 4.87     | -          | ٧     |
| V <sub>OL</sub>  | Output voltage low                            | I <sub>source</sub> =4mA<br>-40°C < T <sub>amb</sub> < +125°C                   | -            | 110      | 180<br>250 | mV    |
| CMRR             | Common mode rejection ratio                   | 0 < V <sub>icm</sub> < 5V                                                       | -            | 72       | -          | dB    |
| SVR              | Supply voltage rejection                      | $\Delta V_{CC}$ = 2 to 5V                                                       | 58           | 69       | -          | dB    |
| TP <sub>LH</sub> | Propagation delay Low to high output level    | $V_{icm}$ = 0V, f=10kHz, $C_L$ =50pF,<br>Overdrive = 20mV<br>Overdrive = 100mV  | -            | 48<br>38 | 105<br>75  | ns    |
| TP <sub>HL</sub> | Propagation delay<br>High to low output level | $V_{icm}$ = 0V, f=10kHz, $C_L$ =50pF,<br>Overdrive = 20mV<br>Overdrive = 100mV  | -            | 46<br>38 | 95<br>75   | ns    |
| T <sub>F</sub>   | Fall time                                     | $f$ =10kHz, $C_L$ =50pF, $R_L$ =10k $Ω$<br>Overdrive = 100mV                    | -            | 4        | -          | ns    |
| T <sub>R</sub>   | Rise time                                     | $f$ =10kHz, $C_L$ =50pF, $R_L$ =10k $Ω$<br>Overdrive = 100mV                    | -            | 4        | -          | ns    |

All values over the temperature range are guaranteed through correlation and simulation. No production test is performed at the temperature range limits.

<sup>2.</sup> Maximum values include unavoidable inaccuracies of the industrial tests.

Figure 1. Current consumption vs. power supply voltage

Figure 2. Current consumption vs. power supply voltage

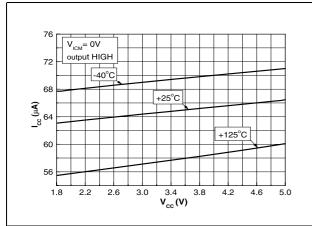
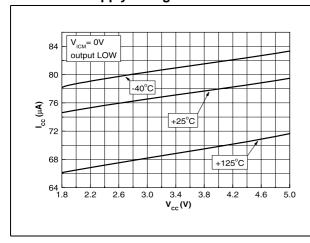




Figure 3. Current consumption vs. power supply voltage

Figure 4. Current consumption vs. power supply voltage



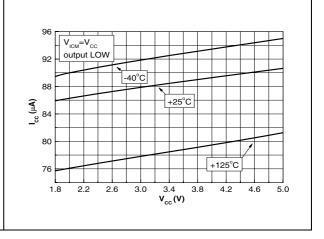
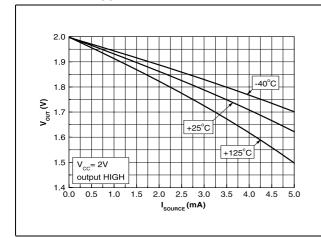




Figure 5. Output voltage vs. source current  $V_{CC}=2V$ 

Figure 6. Output voltage vs. sink current  $V_{CC}=2V$ 



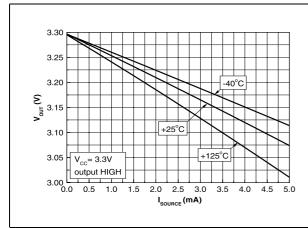
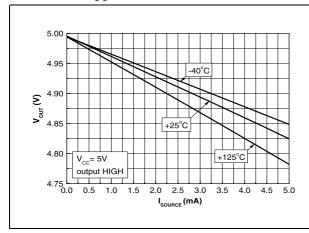




Figure 7. Output voltage vs. source current  $V_{CC}$ =3.3V


Figure 8. Output voltage vs. sink current  $V_{CC}$ =3.3V



V<sub>CC</sub>= 3.3V output LOW 0.20 +125°C 0.15 3 +25°C 0.10 -40°C 0.05 0.5 1.0 2.5 3.0 3.5 4.0 1.5 I<sub>SINK</sub> (mA)

Figure 9. Output Voltage vs. source current  $V_{CC}$ =5V

Figure 10. Output voltage vs. sink current  $V_{CC}$ =5V



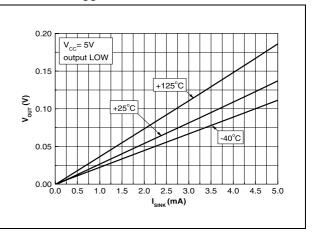
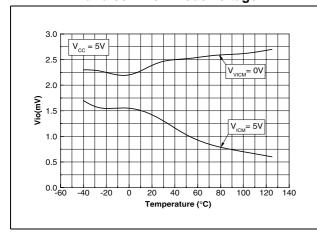




Figure 11. Input offset voltage vs. temperature Figure 12. Input bias current vs. temperature and common mode voltage and input voltage



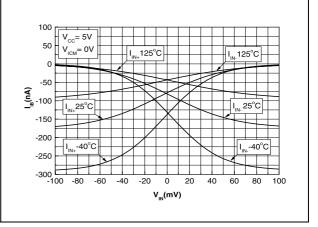



Figure 13. Current consumption vs. commutation frequency

Figure 14. Propagation delay vs. overdrive  $V_{CC}=2V$ 

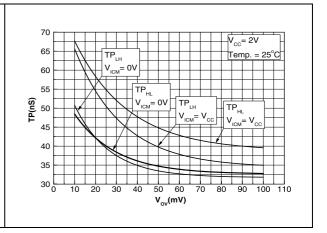



Figure 15. Propagation delay vs. overdrive  $V_{CC}$ =2V

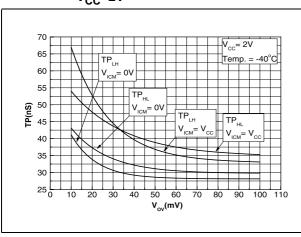



Figure 16. Propagation delay vs. overdrive  $V_{CC}$ =2V

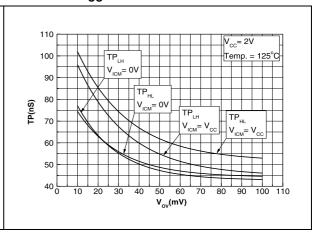



Figure 17. Propagation delay vs. overdrive  $V_{CC}$ =3.3V

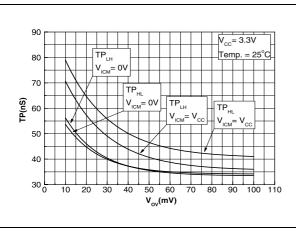



Figure 18. Propagation delay vs. overdrive  $V_{CC}$ =3.3V

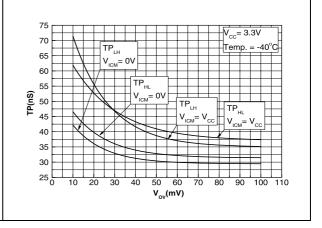
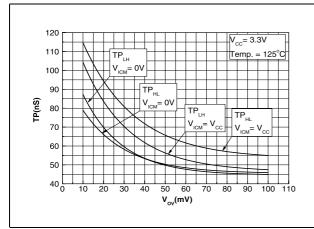
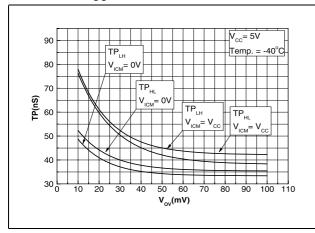




Figure 19. Propagation delay vs. overdrive  $V_{CC}$ =3.3V


Figure 20. Propagation delay vs. overdrive  $V_{CC}$ =5V



90 80 TP<sub>H</sub> V<sub>ICM</sub> = 0V TP<sub>HL</sub> V<sub>ICM</sub> = V<sub>CC</sub> = 5V Temp. = 25°C Temp. = 25°C Temp. = 25°C V<sub>ICM</sub> = V<sub>CC</sub> V<sub>ICM</sub> = V<sub>ICM</sub>

Figure 21. Propagation delay vs. overdrive  $V_{CC}$ =5V

Figure 22. Propagation delay vs. overdrive  $V_{CC}$ =5V



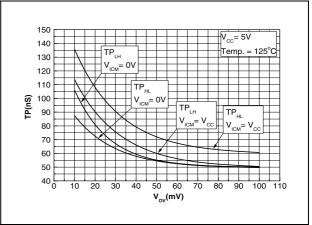
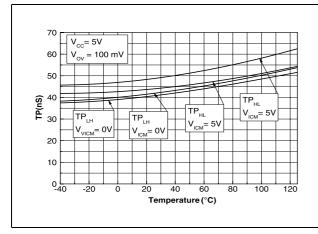
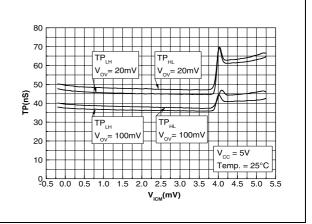
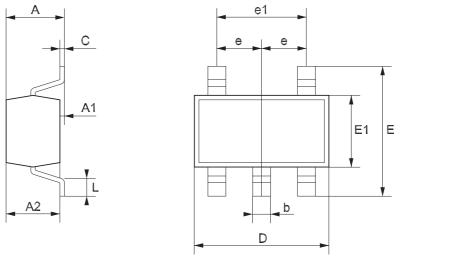





Figure 23. Propagation delay vs. temperature  $V_{CC}$ =5V, overdrive=100mV

Figure 24. Propagation delay vs. common mode voltage, V<sub>CC</sub>=5V



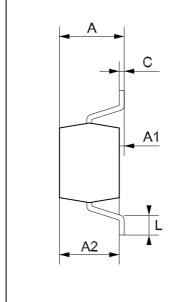


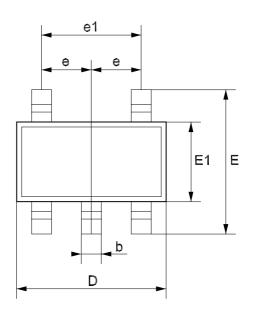

TS3021-3022 Package information

## 3 Package information

In order to meet environmental requirements, STMicroelectronics offers these devices in ECOPACK® packages. These packages have a lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an STMicroelectronics trademark. ECOPACK specifications are available at: <a href="https://www.st.com">www.st.com</a>.

### 3.1 SOT23-5 package mechanical data

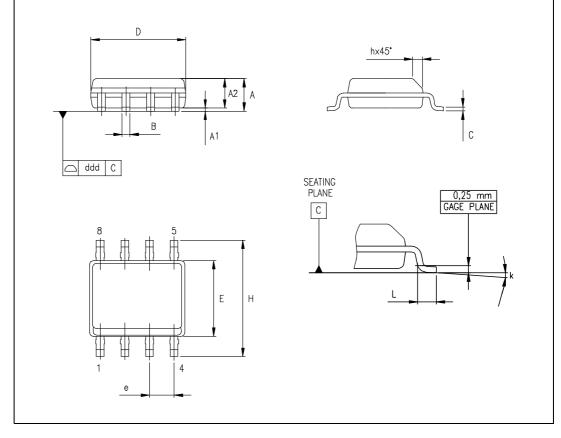

|      | Dimensions |             |      |       |      |       |  |  |
|------|------------|-------------|------|-------|------|-------|--|--|
| Ref. |            | Millimeters |      |       | Mils |       |  |  |
|      | Min.       | Тур.        | Max. | Min.  | Тур. | Max.  |  |  |
| Α    | 0.90       |             | 1.45 | 35.4  |      | 57.1  |  |  |
| A1   | 0.00       |             | 0.15 | 0.00  |      | 5.9   |  |  |
| A2   | 0.90       |             | 1.30 | 35.4  |      | 51.2  |  |  |
| b    | 0.35       |             | 0.50 | 13.7  |      | 19.7  |  |  |
| С    | 0.09       |             | 0.20 | 3.5   |      | 7.8   |  |  |
| D    | 2.80       |             | 3.00 | 110.2 |      | 118.1 |  |  |
| Е    | 2.60       |             | 3.00 | 102.3 |      | 118.1 |  |  |
| E1   | 1.50       |             | 1.75 | 59.0  |      | 68.8  |  |  |
| е    |            | 0.95        |      |       | 37.4 |       |  |  |
| e1   |            | 1.9         |      |       | 74.8 |       |  |  |
| L    | 0.35       |             | 0.55 | 13.7  |      | 21.6  |  |  |
|      | 0.35       | 1.9         | 0.55 | 13.7  | 74.8 | 2     |  |  |




Package information TS3021-3022

# 3.2 SC70-5 (SOT323-5) package mechanical data

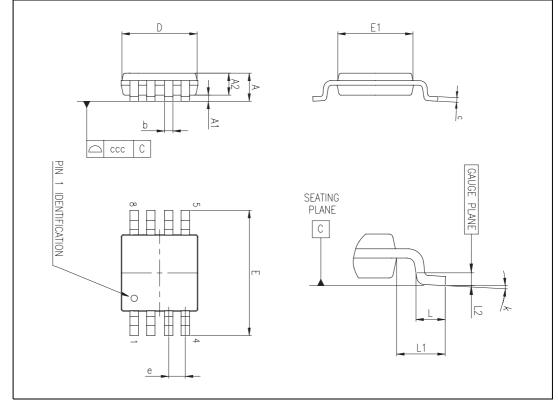
|     | Dimensions |             |      |      |      |      |  |  |
|-----|------------|-------------|------|------|------|------|--|--|
| Ref |            | Millimeters |      |      | Mils |      |  |  |
|     | Min        | Тур         | Max  | Min  | Тур  | Max  |  |  |
| Α   | 0.80       |             | 1.10 | 31.5 |      | 43.3 |  |  |
| A1  | 0.00       |             | 0.10 | 0.0  |      | 3.9  |  |  |
| A2  | 0.80       |             | 1.00 | 31.5 |      | 39.4 |  |  |
| b   | 0.15       |             | 0.30 | 5.9  |      | 11.8 |  |  |
| С   | 0.10       |             | 0.18 | 3.9  |      | 7.1  |  |  |
| D   | 1.80       |             | 2.20 | 70.9 |      | 86.6 |  |  |
| E   | 1.80       |             | 2.40 | 70.9 |      | 94.5 |  |  |
| E1  | 1.15       |             | 1.35 | 45.3 |      | 53.1 |  |  |
| е   |            | 0.65        |      |      | 25.6 |      |  |  |
| e1  |            | 1.3         |      |      | 51.2 |      |  |  |
| L   | 0.10       |             | 0.30 | 3.9  |      | 11.8 |  |  |






12/16

# 3.3 SO-8 package mechanical data


|      | Dimensions |             |       |       |        |       |  |  |
|------|------------|-------------|-------|-------|--------|-------|--|--|
| Ref. |            | Millimeters |       |       | Inches |       |  |  |
|      | Min.       | Тур.        | Max.  | Min.  | Тур.   | Max.  |  |  |
| Α    | 1.35       |             | 1.75  | 0.053 |        | 0.069 |  |  |
| A1   | 0.10       |             | 0.25  | 0.04  |        | 0.010 |  |  |
| A2   | 1.10       |             | 1.65  | 0.043 |        | 0.065 |  |  |
| В    | 0.33       |             | 0.51  | 0.013 |        | 0.020 |  |  |
| С    | 0.19       |             | 0.25  | 0.007 |        | 0.010 |  |  |
| D    | 4.80       |             | 5.00  | 0.189 |        | 0.197 |  |  |
| E    | 3.80       |             | 4.00  | 0.150 |        | 0.157 |  |  |
| е    |            | 1.27        |       |       | 0.050  |       |  |  |
| Н    | 5.80       |             | 6.20  | 0.228 |        | 0.244 |  |  |
| h    | 0.25       |             | 0.50  | 0.010 |        | 0.020 |  |  |
| L    | 0.40       |             | 1.27  | 0.016 |        | 0.050 |  |  |
| k    |            |             | 8° (ı | max.) | •      |       |  |  |
| ddd  |            |             | 0.1   |       |        | 0.04  |  |  |



Package information TS3021-3022

# 3.4 MiniSO-8 package mechanical data

|      |      |             | Dime | nsions |        |       |
|------|------|-------------|------|--------|--------|-------|
| Ref. |      | Millimeters |      |        | Inches |       |
|      | Min. | Тур.        | Max. | Min.   | Тур.   | Max.  |
| Α    |      |             | 1.1  |        |        | 0.043 |
| A1   | 0    |             | 0.15 | 0      |        | 0.006 |
| A2   | 0.75 | 0.85        | 0.95 | 0.030  | 0.033  | 0.037 |
| b    | 0.22 |             | 0.40 | 0.009  |        | 0.016 |
| С    | 0.08 |             | 0.23 | 0.003  |        | 0.009 |
| D    | 2.80 | 3.00        | 3.20 | 0.11   | 0.118  | 0.126 |
| E    | 4.65 | 4.90        | 5.15 | 0.183  | 0.193  | 0.203 |
| E1   | 2.80 | 3.00        | 3.10 | 0.11   | 0.118  | 0.122 |
| е    |      | 0.65        |      |        | 0.026  |       |
| L    | 0.40 | 0.60        | 0.80 | 0.016  | 0.024  | 0.031 |
| L1   |      | 0.95        |      |        | 0.037  |       |
| L2   |      | 0.25        |      |        | 0.010  |       |
| k    | 0°   |             | 8°   | 0°     |        | 8°    |
| ccc  |      |             | 0.10 |        |        | 0.004 |



# 4 Ordering information

Table 6. Order codes

| Part number | Temperature range | Package  | Packaging   | Marking |
|-------------|-------------------|----------|-------------|---------|
| TS3021ILT   |                   | SOT23-5  | Tape & reel | K520    |
| TS3021ICT   |                   | SC70-5   | Tape & reel | K52     |
| TS3022ID    | -40°C, +125°C     | SO-8     | Tube        | 30221   |
| TS3022IDT   |                   | SO-8     | Tape & reel | 30221   |
| TS3022IST   |                   | MiniSO-8 | Tape & reel | K521    |

# 5 Revision history

| Date        | Revision | Changes                                                                                                                |
|-------------|----------|------------------------------------------------------------------------------------------------------------------------|
| 1-Jun-2006  | 1        | Initial release.                                                                                                       |
| 1-Sep-2006  | 2        | Dual version added. Pinout of single TS3021 corrected. Modified temperature range for input common mode voltage.       |
| 22-Feb-2007 | 3        | Addition of MiniSO-8 package for dual version.                                                                         |
| 17-Oct-2007 | 4        | Marking corrected for SO-8 package. Thermal resistance values corrected in AMR table. Notes on ESD added in AMR table. |

#### Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2007 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com