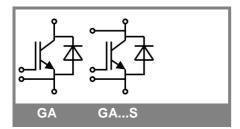


IGBT Modules

SKM 500GA123D SKM 500GA123DS

Features


- MOS input (voltage controlled)
- N channel, homgeneous Si
- · Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
- · Latch-up free
- Fast & soft CAL diodes
- Isolated copper baseplate using DBC Direct Copper Bonding Technology
- Large clearance (12 mm) and creepage distances (20 mm)

Typical Applications

- AC inverter drives
- UPS

Absolute Maximum Ratings T _c = 25 °C, unless otherwise specified					
Symbol	Conditions		Values	Units	
IGBT					
V_{CES}	T _j = 25 °C		1200	V	
I _C	T _j = 150 °C	T _{case} = 25 °C	500	Α	
		T _{case} = 80 °C	420	Α	
I _{CRM}	I _{CRM} =2xI _{Cnom}		800	Α	
V_{GES}			± 20	V	
t _{psc}	V_{CC} = 600 V; $V_{GE} \le 20$ V; $V_{CES} < 1200$ V	T _j = 125 °C	10	μs	
Inverse D	iode				
I _F	T _j = 150 °C	T_{case} = 25 °C	500	Α	
		T _{case} = 80 °C	350	Α	
I_{FRM}	I _{FRM} =2xI _{Fnom}		800	Α	
I _{FSM}	t _p = 10 ms; sin.	T _j = 150 °C	3600	Α	
Module					
$I_{t(RMS)}$			500	Α	
T_{vj}			- 40+ 150	°C	
T _{stg}			- 40+ 125	°C	
V _{isol}	AC, 1 min.		2500	V	

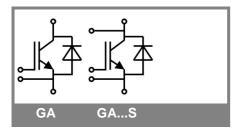
Characteristics $T_c =$			25 °C, unless otherwise specified			
Symbol	Conditions		min.	typ.	max.	Units
IGBT						
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_{C} = 16 \text{ mA}$		4,5	5,5	6,5	V
I _{CES}	$V_{GE} = 0 V, V_{CE} = V_{CES}$	T _j = 25 °C		0,1	0,3	mA
V_{CE0}		T _j = 25 °C		1,4	1,6	V
		T _j = 125 °C		1,6	1,8	V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		2,75	3,5	mΩ
		T _j = 125°C		3,75	4,75	mΩ
V _{CE(sat)}	I _{Cnom} = 400 A, V _{GE} = 15 V	T _j = °C _{chiplev} .		2,5	3	V
C _{ies}				26	40	nF
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz		4	5,2	nF
C _{res}				2	2,6	nF
R _{Gint}	$T_j = {^{\circ}C}$			1,25		Ω
t _{d(on)}				250	600	ns
t _r `´ E _{on}	R_{Gon} = 3,3 Ω	V _{CC} = 600V		170	340	ns
E _{on}		I _{Cnom} = 400A		45		mJ
t _{d(off)}	R_{Goff} = 3,3 Ω	T _j = 125 °C		900	1100	ns
t _f		$V_{GE} = \pm 15V$		100	125	ns
E _{off}						mJ
R _{th(j-c)}	per IGBT				0,041	K/W

IGBT Modules

SKM 500GA123D SKM 500GA123DS

Features

- MOS input (voltage controlled)
- N channel, homgeneous Si
- · Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
- Latch-up free
- Fast & soft CAL diodes
- Isolated copper baseplate using DBC Direct Copper Bonding Technology
- Large clearance (12 mm) and creepage distances (20 mm)


Typical Applications

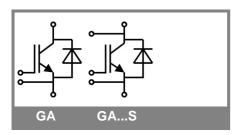
- AC inverter drives
- UPS

Characte	ristics					
Symbol	Conditions		min.	typ.	max.	Units
Inverse D						
$V_F = V_{EC}$	I_{Fnom} = 400 A; V_{GE} = 0 V			2	2,5	V
		$T_j = 125 ^{\circ}\text{C}_{\text{chiplev.}}$ $T_j = 25 ^{\circ}\text{C}$		1,8		V
V_{F0}		T _j = 25 °C		1,1	1,2	V
		$T_j = 125 ^{\circ}\text{C}$ $T_j = 25 ^{\circ}\text{C}$				V
r_{F}				2,3	3,3	mΩ
		$T_{j} = 125 ^{\circ}\text{C}$ $T_{j} = 25 ^{\circ}\text{C}$				mΩ
I _{RRM}	I _{Fnom} = 400 A	T _j = 25 °C		90		Α
Q _{rr}	di/dt = 2000 A/μs			15		μC
E _{rr}	V _{GE} = 0 V; V _{CC} = 600 V					mJ
$R_{th(j-c)D}$	per diode				0,09	K/W
Freewhee	eling Diode					_
$V_F = V_{EC}$	$I_{Fnom} = A; V_{GE} = V$	$T_j = {^{\circ}C_{chiplev.}}$				V
V_{F0}		$T_{j} = {^{\circ}C_{chiplev.}}$ $T_{j} = 25 {^{\circ}C}$				V
		$T_j = 125 ^{\circ}\text{C}$ $T_j = 25 ^{\circ}\text{C}$				V
r _F		T _j = 25 °C				V
		$T_j = 125 \degree C$ $T_j = \degree C$				V
I _{RRM}	I _{Fnom} = A	T _j = °C				Α
Q _{rr}						μC
E _{rr}	V _{GE} = 0 V; V _{CC} = 600 V					mJ
	per diode					K/W
Module						
L _{CE}				15	20	nΗ
R _{CC'+EE'}	res., terminal-chip	T _{case} = 25 °C		0,18		mΩ
		T _{case} = 125 °C		0,22		mΩ
R _{th(c-s)}	per module				0,038	K/W
M _s	to heat sink M6		3		5	Nm
M _t	to terminals M6 (M4)		2,5 (1,1)		5 (2)	Nm
w					330	g

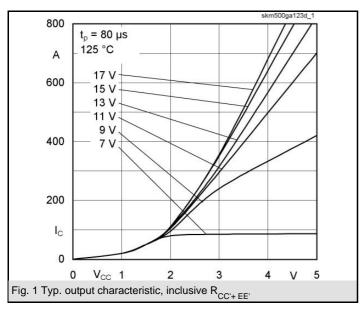
This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

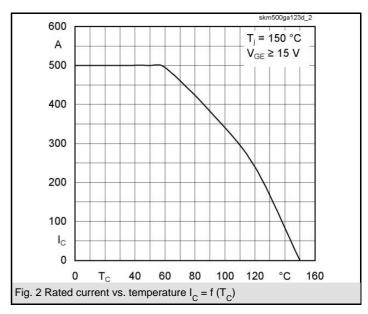
This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

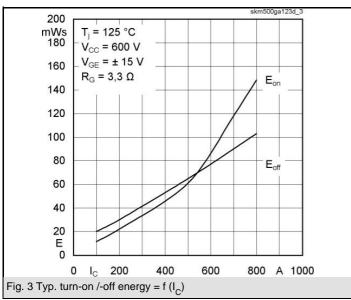
IGBT Modules

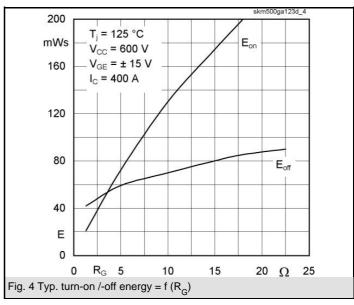

SKM 500GA123D SKM 500GA123DS

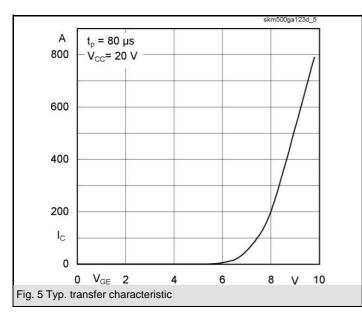
Features

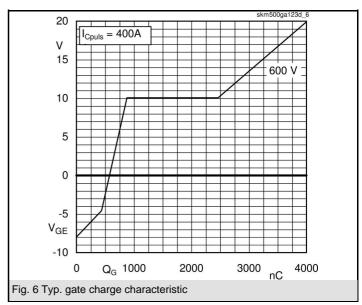

- MOS input (voltage controlled)
- N channel, homgeneous Si
- · Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
- · Latch-up free
- Fast & soft CAL diodes
- Isolated copper baseplate using DBC Direct Copper Bonding Technology
- Large clearance (12 mm) and creepage distances (20 mm)

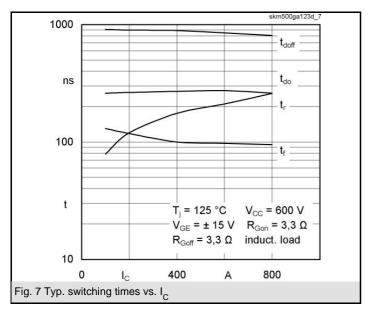

Typical Applications

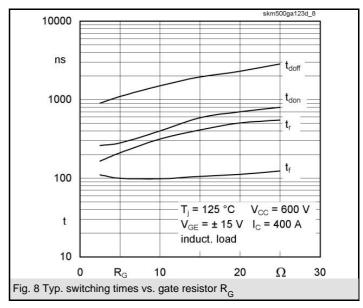

- AC inverter drives
- UPS

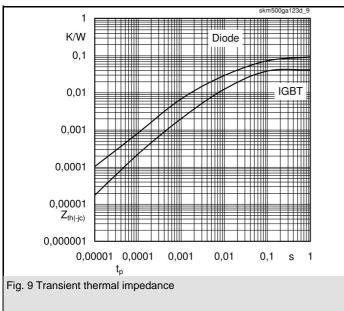


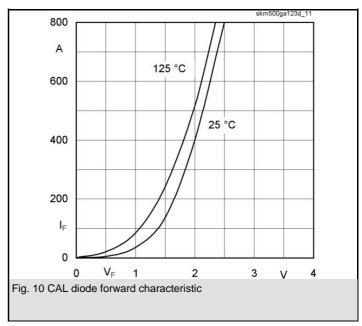

Z _{th} Symbol	Conditions	Values	Units
Z R _i			
R _i	i = 1	29	mk/W
R _i	i = 2	10	mk/W
R_i	i = 3	1,8	mk/W
R_{i}	i = 4	0,2	mk/W
tau _i	i = 1	0,04	S
tau _i	i = 2	0,0189	s
tau _i	i = 3	0,0017	s
tau _i	i = 4	0,001	s
Z _{th(j-c)D}			·
R _i	i = 1	60	mk/W
R _i	i = 2	23	mk/W
R _i R _i	i = 3	6,2	mk/W
R _i	i = 4	0,8	mk/W
tau _i	i = 1	0,0366	s
tau _i	i = 2	0,042	s
tau _i	i = 3	0,0009	s
tau _i	i = 4	0,002	s

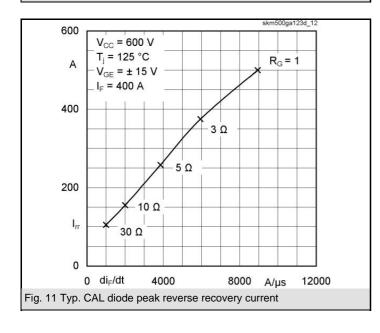


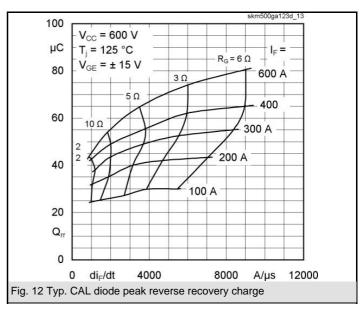


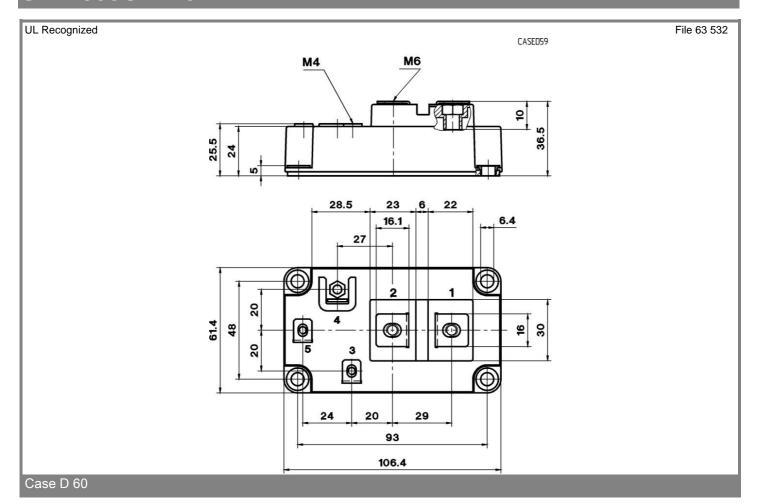


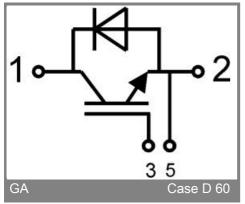


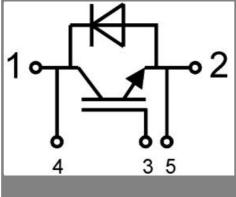












6 11-09-2006 RAA © by SEMIKRON