RELIABILITY REPORT

FOR

MAX6605MXK

PLASTIC ENCAPSULATED DEVICES

June 4, 2002

MAXIM INTEGRATED PRODUCTS

120 SAN GABRIEL DR.
SUNNYVALE, CA 94086

Conclusion

The MAX6605 successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim's continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim's quality and reliability standards.

Table of Contents

I.Device Description
II.Manufacturing Information
III.Packaging Information
IV.Die Information
V.Quality Assurance Information
VI.Reliability Evaluation
......Attachments

I. Device Description

A. General

The MAX6605 precision, low-power, analog output temperature sensor is available in a 5 -pin SC70 package. The device has a +2.7 V to +5.5 V supply voltage range and $10 \mu \mathrm{~A}$ supply current over the $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range. For the $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$ temperature range, the supply voltage can go as low as +2.4 V . Accuracy is $\pm 1^{\circ} \mathrm{C}$ at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ and $\pm 3^{\circ} \mathrm{C}$ from $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

The MAX6605 output voltage is dependent on its die temperature and has a slope of $11.9 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ and an offset of 744 mV at $0^{\circ} \mathrm{C}$. The output typically shows only $+0.4^{\circ} \mathrm{C}$ of nonlinearity over the $-20^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

B. Absolute Maximum Ratings

Item

VCC to GND
OUT,A,B to GND
Current into Any Pin
Output Short-Circuit Duration
VCC Rise or Fall rate
Maximum Current (Input/Output)
Operating Temperature Range
Storage Temp.
Lead Temp. (10 sec.)
Continuous Power Dissipation $\left(+70^{\circ} \mathrm{C}\right)$
5-Pin SC70
Derates above $+70^{\circ} \mathrm{C}$
5-Pin SC70

Rating

-0.3 V to +6 V
-0.3 V to (VCC+0.3V)
10 mA
Continuous
$0.05 \mathrm{~V} / \mathrm{uS}$
20 mA
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$+300^{\circ} \mathrm{C}$

245 mW
$3.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$

II. Manufacturing Information

A. Description/Function: Low-Power Analog Temperature Sensor
B. Process: S8
C. Number of Device Transistors: 573
D. Fabrication Location: California, USA
E. Assembly Location: Malaysia or Philippines
F. Date of Initial Production: November, 2000

III. Packaging Information

A. Package Type:
B. Lead Frame:
C. Lead Finish:
D. Die Attach:
E. Bondwire:
F. Mold Material:
G. Assembly Diagram:
H. Flammability Rating:
I. Classification of Moisture Sensitivity per JEDEC standard JESD22-A112:

5-Lead SC70

Alloy 42
Solder Plate
Silver-Filled Epoxy
Gold (1 mil dia.)
Epoxy with silica filler
Buildsheet \# 05-2901-0003
Class UL94-V0

Level 1

IV. Die Information

A. Dimensions:
31×30 mils
B. Passivation:
$\mathrm{Si}_{3} \mathrm{~N}_{4} / \mathrm{SiO}_{2}$ (Silicon nitride/ Silicon dioxide)
C. Interconnect:
Aluminum/Copper/Si
D. Backside Metallization: None
E. Minimum Metal Width: 8 microns (as drawn)
F. Minimum Metal Spacing: .8 microns (as drawn)
G. Bondpad Dimensions: 5 mil. Sq.
H. Isolation Dielectric: $\quad \mathrm{SiO}_{2}$
I. Die Separation Method: Wafer Saw

V. Quality Assurance Information

A. Quality Assurance Contacts: Jim Pedicord (Reliability Lab Manager) Bryan Preeshl (Executive Director of QA) Kenneth Huening (Vice President)
B. Outgoing Inspection Level: 0.1% for all electrical parameters guaranteed by the Datasheet. 0.1% For all Visual Defects.
C. Observed Outgoing Defect Rate: < 50 ppm
D. Sampling Plan: Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the $135^{\circ} \mathrm{C}$ biased (static) life test are shown in Table 1. Using these results, the Failure Rate (λ) is calculated as follows:

This low failure rate represents data collected from Maxim's reliability qualification and monitor programs. Maxim also performs weekly Burn-In on samples from production to assure reliability of its processes. The reliability required for lots which receive a burn-in qualification is 59 F.I.T. at a 60% confidence level, which equates to 3 failures in an 80 piece sample. Maxim performs failure analysis on rejects from lots exceeding this level. The attached Burn-In Schematic (Spec. \# 06-5603) shows the static circuit used for this test. Maxim also performs 1000 hour life test monitors quarterly for each process. This data is published in the Product Reliability Report (RR1M).
B. Moisture Resistance Tests

Maxim evaluates pressure pot stress from every assembly process during qualification of each new design. Pressure Pot testing must pass a 20% LTPD for acceptance. Additionally, industry standard $85^{\circ} \mathrm{C} / 85 \% \mathrm{RH}$ or HAST tests are performed quarterly per device/package family.
C. E.S.D. and Latch-Up Testing

The TS07 die type has been found to have all pins able to withstand a transient pulse of ± 2500 V, per Mil-Std-883 Method 3015 (reference attached ESD Test Circuit). Latch-Up testing has shown that his device withstands a current of $\pm 250 \mathrm{~mA}$.

Table 1
Reliability Evaluation Test Results
MAX6605MXK

TEST ITEM	TEST CONDITION	FAILURE IDENTIFICATION	SAMPLE SIZE	NUMBER OF FAILURES
Static Life Test (Note 1)				
	$\mathrm{Ta}=135^{\circ} \mathrm{C}$	DC Parameters	80	0
	Biased	\& functionality		
	Time = 192 hrs.			
Moisture Testing (Note 2)				
Pressure Pot	$\mathrm{Ta}=121^{\circ} \mathrm{C}$	DC Parameters \& functionality	100	0
	$\begin{aligned} & P=15 \text { psi. } \\ & R H=100 \% \end{aligned}$			
	Time $=168 \mathrm{hrs}$.			
85/85	$\mathrm{Ta}=85^{\circ} \mathrm{C}$	DC Parameters \& functionality	77	0
	RH $=85 \%$			
	Biased			
	Time $=1000 \mathrm{hrs}$.			

Mechanical Stress (Note 2)

Temperature	$-65^{\circ} \mathrm{C} / 150^{\circ} \mathrm{C}$	DC Parameters	77	0
Cycle	1000 Cycles			
	Method 1010			

Note 1: Life Test Data may represent plastic DIP qualification lots.
Note 2: Generic package/process data.

TABLE II. $\underline{\text { Pin combination to be tested. } 1 / 2 / 2 / 20}$

	Terminal A (Each pin individually connected to terminal A with the other floating)	Terminal B (The common combination of all like-named pins connected to terminal B)
1.	All pins except $\mathrm{V}_{\text {PS1 }}$ 3/	All $\mathrm{V}_{\text {PS } 1}$ pins
2.	All input and output pins	All other input-output pins

1/ Table II is restated in narrative form in 3.4 below.
2/ No connects are not to be tested.
3/ Repeat pin combination I for each named Power supply and for ground
(e.g., where $\mathrm{V}_{\mathrm{PS} 1}$ is $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{SS}}, \mathrm{V}_{\mathrm{BB}}, G N D,+\mathrm{V}_{\mathrm{S}},-\mathrm{V}_{\mathrm{S}}, \mathrm{V}_{\mathrm{REF}}$, etc).

3.4 Pin combinations to be tested.

a. Each pin individually connected to terminal A with respect to the device ground pin(s) connected to terminal B. All pins except the one being tested and the ground pin(s) shall be open.
b. Each pin individually connected to terminal A with respect to each different set of a combination of all named power supply pins (e.g., $V_{S S 1}$, or $V_{S S 2}$ or $V_{S S 3}$ or $V_{C C 1}$, or $V_{C C 2}$) connected to terminal B. All pins except the one being tested and the power supply pin or set of pins shall be open.
c. Each input and each output individually connected to terminal A with respect to a combination of all the other input and output pins connected to terminal B. All pins except the input or output pin being tested and the combination of all the other input and output pins shall be open.

Z B BNDABLE AREA

NQTE: CAVITY DZWN

PKE. CODE: $\times 5-1$		SIGNATURES	DATE	CINNIIDNTIAL \& Propril	
CAV./PAD SIZE:	PKG.			BLND DIAGRAM \#:	REV:
35×34	DESIGN			05-2901-0003	A

