TOSHIBA

TOSHIBA Original CMOS 16-Bit Microcontroller

TLCS-900/L1 Series

TMP91C025FG

TOSHIBA CORPORATION

Semiconductor Company

Preface

Thank you very much for making use of Toshiba microcomputer LSIs. Before use this LSI, refer the section, "Points of Note and Restrictions". Especially, take care below cautions.

CAUTION How to release the HALT mode

Usually, interrupts can release all halts status. However, the interrupts = (INT0 to INT3, INTRTC, INTALM0 to INTALM4, INTKEY), which can release the HALT mode may not be able to do so if they are input during the period CPU is shifting to the HALT mode (for about 5 clocks of f_{FPH}) with IDLE1 or STOP mode (IDLE2 is not applicable to this case). (In this case, an interrupt request is kept on hold internally.)

If another interrupt is generated after it has shifted to HALT mode completely, halt status can be released without difficultly. The priority of this interrupt is compare with that of the interrupt kept on hold internally, and the interrupt with higher priority is handled first followed by the other interrupt.

CMOS 16-Bit Microcontrollers TMP91C025FG/JTMP91C025-S

1. Outline and Features

TMP91C025 is a high-speed 16-bit microcontroller designed for the control of various mid- to large-scale equipment.

TMP91C025FG comes in a 100-pin flat package. JTMP91C025-S comes in a 100-pad chip.

Listed below are the features.

- (1) High-speed 16-bit CPU (900/L1 CPU)
 - Instruction mnemonics are upward-compatible with TLCS-90
 - 16 Mbytes of linear address space
 - General-purpose registers and register banks
 - 16-bit multiplication and division instructions; bit transfer and arithmetic instructions
 - Micro DMA: 4 channels (444 ns/ 2 bytes at 36 MHz)
- (2) Minimum instruction execution time: 111 ns (at 36 MHz)

RESTRICTIONS ON PRODUCT USE

070208EBP

- The information contained herein is subject to change without notice. 021023_D
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc. 021023_A
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk. 021023_B
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations. 060106_Q
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patents or other rights of TOSHIBA or the third parties. 021023_C
- The products described in this document are subject to foreign exchange and foreign trade control laws. 060925_E
- For a discussion of how the reliability of microcontrollers can be predicted, please refer to Section 1.3 of the chapter entitled Quality and Reliability Assurance/Handling Precautions. 030619_S

- (3) Built-in RAM: None Built-in ROM: None
- (4) External memory expansion
 - Expandable up to 104 Mbytes (Shared program/data area)
 - Can simultaneously support 8-/16-bit width external data bus ... Dynamic data bus sizing
 - Separate bus system
- (5) 8-bit timers: 4 channels
- (6) General-purpose serial interface: 2 channels
 - UART/Synchronous mode: 2 channels
 - IrDA Ver.1.0 (115.2 kbps) mode selectable: 1 channel
- (7) LCD controller
 - Adapt to both shift register type and built-in RAM type LCD driver
- (8) Timer for real-time clock (RTC)
 - Based on TC8521A
- (9) Key-on wakeup (Interrupt key input)
- (10) 10-bit AD converter: 4 channels
- (11) Touch screen interface
 - Available to reduce external components
- (12) Watchdog timer

(13) Melody/alarm generator

- Melody: Output of clock 4 to 5461 Hz
- Alarm: Output of the 8 kinds of alarm pattern
- Output of the 5 kinds of interval interrupt

(14) Chip select/wait controller: 4 channels

(15) MMU

• Expandable up to 104 Mbytes

(16) Interrupts: 37 interrupt

- 9 CPU interrupts: Software interrupt instruction and illegal instruction
- 23 internal interrupts: 7 priority levels are selectable
- 5 external interrupts: 7 priority levels are selectable (among 4 interrupts are selectable edge mode)

(17) Input/output ports: 49 pins (Except Data bus (8bit), Address bus (24bit) and RD pin)

(18) Standby function

Three HALT modes: IDLE2 (Programmable), IDLE1 and STOP

(19) Hardware standby function (Power save function)

(20) Triple-clock controller

- Clock doubler (DFM) circuit is inside
- Clock gear function: Select a high-frequency clock fc/1 to fc/16
- SLOW mode (fs = 32.768 kHz)

(21) Operating voltage

- $V_{CC} = 3.0 \text{ V to } 3.6 \text{ V (fc max} = 36 \text{ MHz})$
- $V_{CC} = 2.7 \text{ V to } 3.6 \text{ V (fc max} = 27 \text{ MHz})$
- $V_{CC} = 2.4 \text{ V to } 3.6 \text{ V (fc max} = 16 \text{ MHz})$

(22) Package

• 100-pin QFP: P-LQFP100-1414-0.50F, chip form supply also available. For details, contact your local Toshiba sales representative.

(): Initial function after reset

2. Pin Assignment and Pin Functions

The assignment of input/output pins for the TMP91C025, their names and functions are as follows:

2.1 Pin Assignment Diagram

Figure 2.1.1 shows the pin assignment of the TMP91C025FG.

Figure 2.1.1 Pin Assignment Diagram (100-pin QFP)

2.2 PAD Layout

(Chip size 4.58 mm imes 4.63 mm)

	(Chip siz	e 4.58 m	${\sf m} imes$ 4.6	3 mm)							<u>Unit (μm</u>)
Pin No.	Name	X Point	Y Point	Pin No.	Name	X Point	Y Point	Pin No.	Name	X Point	Y Point
1	VREFL	-2151	1627	44	D0	852	-2175	87	RD	210	2175
2	AVSS	-2151	1502	45	D1	977	-2175	88	WR	83	2175
3	AVCC	-2151	1376	46	D2	1103	-2175	89	PZ2	-42	2175
4	P80	-2151	1251	47	D3	1228	-2175	90	PZ3	-169	2175
5	P81	-2151	1126	48	D4	1353	-2175	91	P56	-296	2175
6	P82	-2151	1001	49	D5	1478	-2175	92	P60	-421	2175
7	P83	-2151	876	50	D6	1603	-2175	93	P61	-548	2175
8	PB5	-2151	751	51	D7	2151	-1636	94	P62	-674	2175
9	PB6	-2151	625	52	P10	2151	-1490	95	P63	-801	2175
10	P90	-2151	336	53	P11	2151	-1359	96	P64	-926	2175
11	P91	-2151	211	54	P12	2151	-1228	97	P65	-1051	2175
12	P92	-2151	86	55	P13	2151	-1096	98	PD7	-1177	2175
13	P93	-2151	-38	56	P14	2151	-965	99	PB3	-1302	2175
14	P94	-2151	-163	57	P15	2151	-834	100	VREFH	-1606	2175
15	P95	-2151	-289	58	P16	2151	-703				
16	P96	-2151	-414	59	P17	2151	-571				
17	P97	-2151	-539	60	P27	2151	-440				
18	PA0	-2151	-664	61	P26	2151	-309				
19	PA1	-2151	-789	62	DVSS2	2151	-153				
20	PA2	-2151	-914	63	PB4	2151	2				
21	PA3	-2151	-1040	64	DVCC2	2151	158				
22	PC0	-2151	-1165	65	P25	2151	315				
23	PC1	-2151	-1290	66	P24	2151	446				
24	AM0	-2151	-1415	67	P23	2151	577				
25	DVCC1	-2151	-1636	68	P22	2151	708				
26	X2	-1603	-2175	69	P21	2151	839				
27	DVSS1	-1438	-2175	70	P20	2151	971				
28	X1	-1273	-2175	71	A15	2151	1102				
29	AM1	-1147	-2175	72	A14	2151	1233				
30	RESET	-1022	-2175	73	A13	2151	1364				
31	XT1	-897	-2175	74	A12	2151	1495				
32	XT2	-649	-2175	75	A11	2151	1627				
33	EMU0	-524	-2175	76	A10	1603	2175				
34	EMU1	-398	-2175	77	A9	1477	2175		-		
35	PC2	-273	-2175	78	A8	1350	2175		-		
36	PC3	-148	-2175	79	A7	1224	2175				
37	PC4	-23	-2175	80	A6	1097	2175				
38	PC5	101	-2175	81	A5	970	2175				
39	PD0	226	-2175	82	A4	844	2175				
40	PD1	352	-2175	83	A3	717	2175				
41	PD2	477	-2175	84	A2	590	2175				
42	PD3	602	-2175	85	A1	464	2175				
43	PD4	727	-2175	86	A0	337	2175				

2.3 Pin Names and Functions

The names of the input/output pins and their functions are described below.

Pin Name	Number of Pins	I/O	Functions
D0 to D7	8	I/O	Data (lower): bits 0 to 7 of data bus
P10 to P17	8	I/O	Port 1: I/O port that allows I/O to be selected at the bit level
			(When used to the external 8bit bus)
D8 to D15		I/O	Data (upper): Bits 8 to15 of data bus
P20 to P27	8	Output	Port 2: Output port
A16 to A23		Output	Address: Bits 16 to 23 of address bus
A8 to A15	8	Output	Address: Bits 8 to 15 of address bus
A0 to A7	8	Output	Address: Bits 0 to 7 of address bus
RD	1	Output	Read: Strobe signal for reading external memory
WR	1	Output	Write: Strobe signal for writing data to pins D0 to D7
PZ2	1	I/O	Port Z2: I/O port (with pull-up resistor)
HWR		Output	High Write: Strobe signal for writing data to pins D8 to D15
PZ3	1	I/O	Port Z3: I/O port (with pull-up resistor)
R/\overline{W}		Output	Read/Write: 1 represents read or dummy cycle; 0 represents write cycle.
SRWR		Output	Write: Strobe signal for writing data to pins D0 to D15 for SRAM
P56	1	I/O	Port 56: I/O port (with pull-up resistor)
WAIT		Input	Wait: Pin used to request CPU bus wait
P60	1	Output	Port 60:Output port
CS0		Output	Chip select 0: Outputs 0 when address is within specified address area.
P61	1	Output	Port 61:Output port
CS1		Output	Chip select 1: Outputs 0 when address is within specified address area
P62	1	Output	Port 62: Output port
CS2		Output	Chip select 2: Outputs 0 when address is within specified address area
CS2A		Output	Expand chip select: 2A: Outputs 0 when address is within specified address
			area
P63	1	Output	Port 63:Output port
CS3		Output	Chip select 3: Outputs 0 when address is within specified address area
P64	1	Output	Port 64: Output port
EA24		Output	Chip select 24: Outputs 0 when address is within specified address area
CS2B		Output	Expand chip select: 2B: Outputs 0 when address is within specified address
			area
SRLB		Output	Low byte enable for SRAM
P65	1	Output	Port 65: Output port
EA25		Output	Chip select 25: Outputs 0 when address is within specified address area
CS2C		Output	Expand chip select: 2C: Outputs 0 when address is within specified address
		-	area
SRUB		Output	High byte enable for SRAM

Table 2.3.1 Pin Names and Functions (1/3)

Table 2.3.2	Pin Names and Functions	(2/3)
10010 2.0.2		(2,0)

P80 to P812InputPort 80 to 81 port: Pin used to input portsAN0 to AN1InputAnalog input 0 to 1: Pin used to input portsAN21InputPort 82 port: Pin used to input portsAN2InputAnalog input 2: Pin used to input portsAN3InputAN3Port 83 port: Pin used to input portsAN3AN3Port 83 port: Pin used to input portsAN3ADTRGAnalog input 3: Pin used to input portsAN3ADTRGADTRGP40 to P47P50 to P47R1P50 to P47R2P51 to P47R3P52P53P54P55P55P55P55P55P55P55P55	Pin Name	Number of Pins	I/O	Functions
P821InputPort 82 port: Pin used to input portsAN2InputAnalog input 2: Pin used to input to AD converterMXInputX-Minus: Pin connected to X- for touch screen panelP831InputPort 83 port: Pin used to input portsAN3InputAnalog input 3: Pin used to input to AD converterAN3InputAD trigger: Signal used to request AD startMYInputY-Minus: Pin connected to Y- for touch screen panelP90 to P978InputK10 to K17InputPA01OutputK00 to K17OutputPA01OutputK00 to K17OutputK001OutputRCARMOutputK011OutputRCARMOutputK011OutputRCARMOutputK020OutputK031OutputRCARMOutputK041OutputRCARMOutputRCARMOutputRCARMOutputRCARMOutputRCARMOutputRCARMOutputRCARMOutputRCARMOutputRCARMOutputRCARMOutputRCARMOutputRCARMOutputRCARMOutputRCARMOutputRCARMOutputRCARMOutputRCARMOutputRCARMOutputRCA	P80 to P81	2	Input	Port 80 to 81 port: Pin used to input ports
AN2 Input Analog input 2: Pin used to input to AD converter MX Input X-Minus: Pin connected to X-for touch screen panel P83 1 Input Analog input 3: Pin used to input to AD converter AN3 Input Analog input 3: Pin used to input ports AN7 Input Analog input 3: Pin used to input ports MY Input AD trigger: Signal used to request AD start MY Input Y-Minus: Pin connected to Y- for touch screen panel P90 to P97 8 Input Port: 90 to 97 port: Pin used to input ports Kl0 to Kl7 Input Key input 0 to 7: Pin used of key-son wakeup 0 to 7 (Schmitt input, with pull-up resistor) Control Control PA0 1 Output RT: Alarm output pin MEDALM Output RT: Alarm output pin MEDALM Output Port: A1 port: Pin used to output ports K00 Output Rey output 0: Pin used to key-scan strobe 1 TA1OUT Output Port: A1 port: Pin used to output ports K01 Output Rey output 2: Pin used of key-scan strobe 2 TA3OUT Output Port: A2 port: Pin used to supt ports K02 Output Rey output 3: Pin used to rey-scan strobe 3 SCOUT Output R	AN0 to AN1		Input	Analog input 0 to 1: Pin used to input to AD converter
AN2 Input Analog input 2: Pin used to input to AD converter MX Input X-Minus: Pin connected to X-for touch screen panel P83 1 Input Analog input 3: Pin used to input to AD converter AN3 Input Analog input 3: Pin used to input ports AN7 Input AD trigger: Signal used to request AD start MY Input Y-Minus: Pin connected to Y-for touch screen panel P90 to P97 8 Input Port: 90 to 97 port: Pin used to input ports Kl0 to Kl7 Input Key input 0 to 7: Pin used of key-on wakeup 0 to 7 (Schmitt input, with pull-up resistor) Control Control PA0 1 Output Rey output 0: Pin used of key-scan strobe 0 ALARM Output Rey output 0: Pin used to output ports KO0 Output Rey output 0: Pin used to key-scan strobe 1 TAAON Output Port: A1 port: Pin used to output ports KO1 Output Port: A1 port: Pin used to output ports KO2 Output Port: A2 port: Pin used of key-scan strobe 1 TAAOUT Output Port: A2 port: Pin used to output ports KO2 Output Rey output 2: Pin used of key-scan strobe 3 SCOUT Output Rey output 2: Pin used of key-scan strobe 3	P82	1	Input	Port 82 port: Pin used to input ports
MX Input X-Minus: Pin connected to X- for touch screen panel P83 1 Input Port 83 port: Pin used to input ports AN3 Input Analog input 3: Pin used to input to AD converter ADTRG Input AD trigger: Signal used to request AD start MY Input Port: 90 to 97 port: Pin used to input ports KI0 to KI7 Input Port: 90 to 97 port: Pin used to input ports KI0 to KI7 Input Regregation to the start of the sta	AN2			
P83 1 Input Port 83 port: Pin used to input ports AN3 Input Analog input 3: Pin used to input to AD converter ADTRG Input AD trigger: Signal used to request AD start MY Input Y-Minus: Pin connected to Y- for touch screen panel P90 to P97 8 Input Port: 90 to 97 port: Pin used to input ports Kl0 to KI7 Input Key input 0 to 7: Pin used to key-con wakeup 0 to 7 CK00 0 Output Rey output 0: Pin used to output ports K00 0 Output Rey output 0: Pin used to output ports K00 0 Output Rey output 0: Pin used to output ports K00 0 Output Rey output 0: Pin used to output ports K01 Output Rey output 0: Pin used to output ports K01 Output Rey output 0: Pin used to output ports K01 Output Rey output 1: Pin used to output ports K02 1 Output Bebit timer 1 output: Timer 0 input or timer 1 output FA30UT 0 Output Bebit timer 1 output: Timer 2 input or timer 1 output FA30UT 0 Output Bebit timer 3 output: Timer 2 input or timer 1 output FA30UT 0 Output Bebit titiner 3 output: Fine loads output ports	MX		•	
ADTRG MYInput InputAD trigger: Signal used to request AD start InputMYInputPort: 90 to 97 port: Pin used to ty - for touch screen panelP90 to P978InputPort: 90 to 97 port: Pin used to for touch screen panelKI0 to KI7InputKey input 0 to 7: Pin used of key-on wakeup 0 to 7 	P83	1	Input	
ADTRG MYInput InputAD trigger: Signal used to request AD start InputMYInputPort: 90 to 97 port: Pin used to ty - for touch screen panelP90 to P978InputPort: 90 to 97 port: Pin used to for touch screen panelKI0 to KI7InputKey input 0 to 7: Pin used of key-on wakeup 0 to 7 (Schmitt input, with pull-up resistor)PA01OutputPort: A0 port: Pin used of key-on wakeup 0 to 7 (Schmitt input, with pull-up resistor)PA01OutputPort: A0 port: Pin used of key-scan strobe 0MLDALMOutputRTC alarm output pin (Inverted)MDALMOutputRTC alarm output pin (Inverted)PA11OutputPort: A1 port: Pin used to output portsK01OutputPort: A1 port: Pin used to output portsK02OutputPort: A1 port: Pin used to output portsK03OutputPort: A2 port: Pin used to output portsK031OutputPort: A3 port: Pin used to output portsK030OutputPort: A3 port: Pin used of key-scan strobe 2TA3OUTOutputSystem clock output: Output portsK031OutputSystem clock output portsK031InputInterrupt request pin0: Interrupt request with programmable level/rising edgePB31I/OPort B3: I/O portINT0InputInterrupt request pin2: Interrupt request with programmable rising/falling edgePB41InputPort B5: Input portINT1InputPort B6: Input port <td>AN3</td> <td></td> <td>Input</td> <td>Analog input 3: Pin used to input to AD converter</td>	AN3		Input	Analog input 3: Pin used to input to AD converter
MYInputY-Minus: Pin connected to Y- for touch screen panelP90 to P978InputPort: 90 to 97 port: Pin used to input portsKl0 to Kl7InputPort: 90 to 97 port: Pin used to input portsPA01OutputPort: A0 port: Pin used to output portsK001OutputPort: A0 port: Pin used to output portsK001OutputKey output 0: Pin used to output portsK001OutputKey output 0: Pin used to eutput portsK011OutputRTC alarm output pin (Inverted)PA11OutputPort: A1 port: Pin used to output portsK010utputPort: A1 port: Pin used to eutput portsK020utputB-bit timer 1 output: Timer 0 input or timer 1 outputPA21OutputPort: A2 port: Pin used to key-scan strobe 1K020utputB-bit timer 3 output: Timer 2 input or timer 3 outputPA31OutputPort: A2 port: Pin used to eutput portsK030utputKey output 2: Pin used to suput portsK030utputKey output 3: Pin used to key-scan strobe 3SCOUT0utputSystem clock output: Output pregrammable level/rising edgePS1I/OPort B3: I/O portINT0InputInterrupt request pin0: Interrupt request with programmable rising/falling edgePA41I/OPort B4: I/O portINT1InputInputPort B5: Input portINT2InputPort B5: Input portINT3InputPort	ADTRG		Input	
Kl0 to Kl7InputKey input 0 to 7: Pin used of key-on wakeup 0 to 7 (Schmitt input, with pull-up resistor)PA01OutputPort: A0 port: Pin used to output persistor)RA01OutputKey output 0: Pin used of key-scan strobe 0ALARMOutputRC alarm output pinMLDALMOutputPort: A1 port: Pin used to valput portsK011OutputPort: A1 port: Pin used to valput portsK011OutputPort: A1 port: Pin used to output portsK011OutputPort: A1 port: Pin used to output portsK021OutputPort: A1 port: Pin used to output portsK021OutputPort: A2 port: Pin used to output portsK030OutputRey output 2: Pin used of key-scan strobe 2A30UT0OutputPort: A3 port: Pin used to key-scan strobe 3SCOUT0OutputSystem clock output oprtsK030OutputSystem clock output fort Hwy strobe 3SCOUT0OutputSystem clock output fort HW standby modePB31I/OPort B3: I/O portINT0InputInterrupt request pin0: Interrupt request with programmable level/rising edgeP51InputPort B4: I/O portINT1InputInterrupt request pin2: Interrupt request with programmable rising/falling edgeP841InputPort B4: I/O portINT2InputInterrupt request pin2: Interrupt request with programmable rising/falling edgeP651 <td>MY</td> <td></td> <td>•</td> <td></td>	MY		•	
Kl0 to Kl7InputKey input 0 to 7: Pin used of key-on wakeup 0 to 7 (Schmitt input, with pull-up resistor)PA01OutputPort: A0 port: Pin used to output persistor)RA01OutputKey output 0: Pin used of key-scan strobe 0ALARMOutputRC alarm output pinMLDALMOutputPort: A1 port: Pin used to valput portsK011OutputPort: A1 port: Pin used to valput portsK011OutputPort: A1 port: Pin used to output portsK011OutputPort: A1 port: Pin used to output portsK021OutputPort: A1 port: Pin used to output portsK021OutputPort: A2 port: Pin used to output portsK030OutputRey output 2: Pin used of key-scan strobe 2A30UT0OutputPort: A3 port: Pin used to key-scan strobe 3SCOUT0OutputSystem clock output oprtsK030OutputSystem clock output fort Hwy strobe 3SCOUT0OutputSystem clock output fort HW standby modePB31I/OPort B3: I/O portINT0InputInterrupt request pin0: Interrupt request with programmable level/rising edgeP51InputPort B4: I/O portINT1InputInterrupt request pin2: Interrupt request with programmable rising/falling edgeP841InputPort B4: I/O portINT2InputInterrupt request pin2: Interrupt request with programmable rising/falling edgeP651 <td>P90 to P97</td> <td>8</td> <td>Input</td> <td>Port: 90 to 97 port: Pin used to input ports</td>	P90 to P97	8	Input	Port: 90 to 97 port: Pin used to input ports
PA01OutputPort: A0 port: Pin used to output portsK001OutputKey output 0: Pin used of key-scan strobe 0ALARMOutputRTC alarm output pinMLDALMOutputMelody/alarm output pin (Inverted)PA11OutputPort: A1 port: Pin used to output portsK011OutputRelody/alarm output pin (Inverted)PA21OutputB-bit timer 1 output: Timer 0 input or timer 1 outputPA21OutputB-bit timer 1 output: Pin used to output portsK02OutputRey output 2: Pin used of key-scan strobe 2TA3OUTOutputB-bit timer 3 output: Timer 2 input or timer 3 outputPA31OutputPort: A2 port: Pin used to output portsK03OutputSystem clock output: Output portsK030OutputSystem clock output: Output portsK031I/OPort B3: I/O portINT0InputInterrupt request pin0: Interrupt request with programmable level/rising edgePS1I/OPort B3: I/O portINT1InputInterrupt request pin1: Interrupt request with programmable rising/falling edgeTA0INInputInterrupt request pin2: Interrupt request with programmable rising/falling edgePA41I/OPort B5: Input portINT2InputInterrupt request pin3: Interrupt request with programmable rising/falling edgePA51InputPort B6: Input portINT2InputPort B6: Input portINT3 <td></td> <td>_</td> <td>•</td> <td></td>		_	•	
PA01OutputPort: A0 port: Pin used to output portsK00OutputKey output 0: Pin used of key-scan strobe 0ALARMOutputRTC alarm output pinMLDALMOutputMelody/alarm output pin (Inverted)PA11OutputMelody/alarm output pin (Inverted)FA11OutputPort: A1 port: Pin used to output portsKO1OutputSebit timer 1 output: Timer 0 input or timer 1 outputFA21OutputPort: A2 port: Pin used to output portsKO2OutputSebit timer 3 output: Timer 2 input or timer 3 outputFA31OutputPort: A3 port: Pin used to output portsKO3OutputSebit timer 3 output: Timer 2 input or timer 3 outputPA31OutputSystem clock output: Output fFPH clockPB31I/OPort: B3: I/O portINT0InputInterrupt request pin0: Interrupt request with programmable level/rising edgePF51InputInterrupt request pin1: Interrupt request with programmable rising/falling edgeTAOINInputPort B4: I/O portINT1InputInterrupt request pin1: Interrupt request with programmable rising/falling edgePK41I/OPort B5: Input portINT3InputInterrupt request pin2: Interrupt request with programmable rising/falling edgePKOutputY-Pus: Pin connected to X+ for touch screen panelPK51InputInterrupt request pin2: Interrupt request with programmable rising/falling edgePK4				
KO0OutputKey output 0: Pin used of key-scan strobe 0ALARMOutputRTC alarm output pinMIDALMOutputMelody/alarm output pin (Inverted)PA11OutputPA11OutputPA11OutputAltonutPort: A1 port: Pin used to output portsKO1Output&-bit timer 1 output: Timer 0 input or timer 1 outputPA21OutputPA21OutputKO2OutputPort: A2 port: Pin used to output portsKO3OutputB-bit timer 3 output: Timer 2 input or timer 3 outputPA31OutputKO3OutputPort: A3 port: Pin used of key-scan strobe 2TA3OUTOutputB-bit timer 3 output: Timer 2 input or timer 3 outputPA31OutputKO3OutputSystem clock output: Output ortisKO3OutputPort B3: I/O portINT0InputInterrupt request pin0: Interrupt request with programmable level/rising edgePB41I/OPort B3: I/O portINT1InputInterrupt request pin1: Interrupt request with programmable rising/falling edgeTAOINInputPort B5: Input portINT2InputPort B5: Input portINT2InputInterrupt request pin3: Interrupt request with programmable rising/falling edgePA51InputInterrupt request pin3: Interrupt request with programmable rising/falling edgePA61InputPort B6: Input portINT2I	PA0	1	Output	
ALARMOutputRTC alarm output pin Melody/alarm output pin (Inverted)PA11OutputPort: A1 port: Pin used to output portsKO1OutputPort: A1 port: Pin used to output portsKO1OutputRey output 1: Pin used of key-scan strobe 1TA1OUTOutput8-bit timer 1 output: Timer 0 input or timer 1 outputPA21OutputPort: A2 port: Pin used to output portsKO2OutputRey output 2: Pin used to output portsKO31Output8-bit timer 3 output: Timer 2 input or timer 3 outputPA31OutputPort: A2 port: Pin used to output portsKO30OutputSystem clock output: Output of fep-ticokPB31OutputSystem clock output: Output frepH clockPB31I/OPort B3: I/O portINT0InputInterrupt request pin0: Interrupt request with programmable level/rising edgePSInputInterrupt request pin1: Interrupt request with programmable rising/falling edgePS1InputNot timer 0 input: Timer 0 inputPB51InputNot timer 0 input portINT1InputNot timer 0 input timer 0 inputPB51InputNot timerupt request pin2: Interrupt request with programmable rising/falling edgePXOutputX-Plus: Pin connected to X+ for touch screen panelPB61InputInterrupt request pin3: Interrupt request with programmable rising/falling edgePYOutputV-Plus: Pin connected to Y+ for touch screen panel				
MLDALMOutputMelody/alarm output pin (Inverted)PA11OutputPort: A1 port: Pin used to output portsKO1OutputRey output 1: Pin used of key-scan strobe 1TA1OUTOutput8-bit timer 1 output: Timer 0 input or timer 1 outputPA21OutputPort: A2 port: Pin used to output portsKO2OutputKey output 2: Pin used to sutput portsKO3Output8-bit timer 3 output: Timer 2 input or timer 3 outputPA31OutputKey output 3: Pin used to output portsKO3OutputKey output 3: Pin used of key-scan strobe 3SCOUTOutputSystem clock output: Output fFPH clockPB31I/OPort B3: I/O portINT0InputInterrupt request pin0: Interrupt request with programmable level/rising edgePF5InputPort B4: I/O portINT1InputInterrupt request pin1: Interrupt request with programmable rising/falling edgeINT2InputPort B5: Input portINT2InputPort B5: Input portINT2InputPort B5: Input portINT3InputPort B6: Input portINT3InputInterrupt request pin3: Interrupt request with programmable rising/falling edgePKOutputY-Pus: Pin connected to X+ for touch screen panelPF01I/OPort B6: Input portINT3InputInterrupt request pin3: Interrupt request with programmable rising/falling edgePC01I/OPort C1: I/O portTXD0 <t< td=""><td></td><td></td><td>•</td><td></td></t<>			•	
PA1 1 Output Port: A1 port: Pin used to output ports KO1 Output 8-bit timer 1 output: Timer 0 input or timer 1 output PA2 1 Output Port: A2 port: Pin used to output ports KO2 Output Port: A2 port: Pin used of key-scan strobe 2 TA3OUT Output 8-bit timer 3 output: Timer 2 input or timer 3 output PA3 1 Output Port: A3 port: Pin used to output ports KO3 Output Port: A3 port: Pin used to output ports KO3 Output Port: A3 port: Pin used to output ports KO3 Output Port: A3 port: Pin used of key-scan strobe 3 SCOUT Output System clock output: Output 6 key-scan strobe 3 SCOUT Output Nort B3: I/O port INT0 Input Interrupt request pin0: Interrupt request with programmable level/rising edge PB4 1 I/O Port B4: I/O port INT1 Input Interrupt request pin1: Interrupt request with programmable rising/falling edge PB5 1 Input Port B5: Input port INT2 Input Interrupt request pin2: Interrupt request with programmable rising/falling edge <t< td=""><td></td><td></td><td>•</td><td></td></t<>			•	
KO1OutputKey output 1: Pin used of key-scan strobe 1TA1OUTOutput8-bit timer 1 output: Timer 0 input or timer 1 outputPA21OutputPort: A2 port: Pin used to output portsKO2OutputRey output 2: Pin used of key-scan strobe 2TA3OUTOutput8-bit timer 3 output: Timer 2 input or timer 3 outputPA31OutputPort: A3 port: Pin used to output portsKO3OutputPort: A3 port: Pin used of key-scan strobe 3SCOUTOutputSystem clock output: Output fFPH clockPB31I/OPort B3: I/O portINTOInputInterrupt request pin0: Interrupt request with programmable level/rising edgeP51I/OPort B4: I/O portINT1InputInterrupt request pin1: Interrupt request with programmable rising/falling edgeP451I/OPort B5: Input portINT2InputPort B5: Input portINT2InputPort B5: Input portINT2InputPort B5: Input portINT3InputPort B6: Input portINT3InputPort B6: Input portINT3InputPort B6: Input portINT3PortPort B0: Input portINT3PortInterrupt request pin2: Interrupt request with programmable rising/falling edgePC01I/OPort C0: I/O portTXD01I/OPort C0: I/O portPC11I/OPort C0: I/O port		1	-	
TA1OUTOutput8-bit timer 1 output: Timer 0 input or timer 1 outputPA21OutputPort: A2 port: Pin used to output portsKO2OutputKey output 2: Pin used of key-scan strobe 2TA3OUTOutput8-bit timer 3 output: Timer 2 input or timer 3 outputPA31OutputPort: A3 port: Pin used to output portsKO3OutputPort: A3 port: Pin used of key-scan strobe 3SCOUTOutputSystem clock output: Output fFPH clockPB31I/OPort B3: I/O portINT0InputInterrupt request pin0: Interrupt request with programmable level/rising edgeP5InputInterrupt request pin1: Interrupt request with programmable level/rising edgeTAIOINInputInterrupt request pin1: Interrupt request with programmable rising/falling edgeTAIOINInputInputP551InputINT2InputPort B5: Input portINT2InputInterrupt request pin2: Interrupt request with programmable rising/falling edgeP74OutputX-Plus: Pin connected to X+ for touch screen panelP74OutputY-Plus: Pin connected to X+ for touch screen panelP74OutputY-Plus: Pin connected to Y+ for touch screen panelP74OutputSerial 0 send data: Open-drain output pin by programmableP711I/OPort C1: I/O portP72OutputY-Plus: Pin connected to Y+ for touch screen panelP741I/OPort C1: I/O port			•	
PA21OutputPort: A2 port: Pin used to output portsKO2OutputKey output 2: Pin used of key-scan strobe 2TA3OUTOutput8-bit timer 3 output: Timer 2 input or timer 3 outputPA31OutputPort: A3 port: Pin used to output portsKO3OutputKey output 3: Pin used of key-scan strobe 3SCOUTOutputSystem clock output: Output fFPH clockPB31I/OPort B3: I/O portINT0InputInterrupt request pin0: Interrupt request with programmable level/rising edgeP5InputInterrupt request pin1: Interrupt request with programmable rising/falling edgeP841I/OPort B4: I/O portINT1InputInterrupt request pin1: Interrupt request with programmable rising/falling edgeP851InputPort B5: Input portINT2InputPort B5: Input portINT2InputPort B5: Input portINT3InputInterrupt request pin2: Interrupt request with programmable rising/falling edgePYOutputX-Plus: Pin connected to X+ for touch screen panelPC01I/OPort B6: Input portINT3InputInterrupt request pin3: Interrupt request with programmable rising/falling edgePYOutputY-Plus: Pin connected to Y+ for touch screen panelPC01I/OPort C0: I/O portTXD00utputSerial 0 send data: Open-drain output pin by programmable			•	
KO2OutputKey output 2: Pin used of key-scan strobe 2TA3OUTOutput8-bit timer 3 output: Timer 2 input or timer 3 outputPA31OutputPort: A3 port: Pin used to output portsKO3OutputKey output 3: Pin used of key-scan strobe 3SCOUTOutputSystem clock output: Output fFPH clockPB31I/OPort B3: I/O portINT0InputInterrupt request pin0: Interrupt request with programmable level/rising edgePSInputPort B4: I/O portINT1InputInterrupt request pin1: Interrupt request with programmable rising/falling edgeTAOINInputInterrupt request pin2: Interrupt request with programmable rising/falling edgePB51InputINT2InputPort B5: Input portINT2InputPort B6: Input portINT3InputPort B6: Input portINT3InputInterrupt request pin3: Interrupt request with programmable rising/falling edgePC01I/OPort C0: I/O portTXD00utputSerial 0 send data: Open-drain output pin by programmablePC11I/OPort C1: I/O port		1	•	
TA3OUTOutput8-bit timer 3 output: Timer 2 input or timer 3 outputPA31OutputPort: A3 port: Pin used to output portsKO3OutputKey output 3: Pin used of key-scan strobe 3SCOUTOutputSystem clock output: Output fFPH clockPB31I/OPort B3: I/O portINT0InputInterrupt request pin0: Interrupt request with programmable level/rising edgePSInputPower save: Pin used as input pin for H/W standby modePB41I/OPort B4: I/O portINT1InputInterrupt request pin1: Interrupt request with programmable rising/falling edgeFA0INInputPort B5: Input portINT2InputInterrupt request pin2: Interrupt request with programmable rising/falling edgePXOutputX-Plus: Pin connected to X+ for touch screen panelPB61InputInterrupt request pin3: Interrupt request with programmable rising/falling edgePYOutputY-Plus: Pin connected to Y+ for touch screen panelPC01I/OPort C0: I/O portTXD01I/OPort C0: I/O portPC11I/OPort C1: I/O port			•	
PA31OutputPort: A3 port: Pin used to output portsKO30OutputKey output 3: Pin used of key-scan strobe 3SCOUTOutputSystem clock output: Output fFPH clockPB31I/OPort B3: I/O portINT0InputInterrupt request pin0: Interrupt request with programmable level/rising edgeP5InputPower save: Pin used as input pin for H/W standby modePB41I/OPort B4: I/O portINT1InputInterrupt request pin1: Interrupt request with programmable rising/falling edgeTA0INInputPort B5: Input portINT2InputPort B5: Input portINT2OutputY-Plus: Pin connected to X+ for touch screen panelP861InputPort B6: Input portINT3InputPort B6: Input portINT3InputPort B6: Input portPC01I/OPort C0: I/O portTXD00OutputSerial 0 send data: Open-drain output pin by programmablePC11I/OPort C1: I/O port			•	
KO3OutputKey output 3: Pin used of key-scan strobe 3SCOUTOutputSystem clock output: Output fFPH clockPB31I/OPort B3: I/O portINT0InputInterrupt request pin0: Interrupt request with programmable level/rising edgePSInputPower save: Pin used as input pin for H/W standby modePB41I/OPort B4: I/O portINT1InputInterrupt request pin1: Interrupt request with programmable rising/falling edgeTAOINInput8-bit timer 0 input: Timer 0 inputPB51InputPort B5: Input portINT2InputPort B5: Input portINT2OutputX-Plus: Pin connected to X+ for touch screen panelPB61InputPort B6: Input portINT3InputPort C0: I/O portPC01I/OPort C0: I/O portTXD00utputSerial 0 send data: Open-drain output pin by programmablePC11I/OPort C1: I/O port		1		
SCOUTOutputSystem clock output: Output fFPH clockPB31I/OPort B3: I/O portINT0InputInterrupt request pin0: Interrupt request with programmable level/rising edgePSInputPower save: Pin used as input pin for H/W standby modePB41I/OPort B4: I/O portINT1InputInterrupt request pin1: Interrupt request with programmable rising/falling edgeTAOINInputPort B5: Input portPB51InputINT2InputPort B5: Input portINT3OutputX-Plus: Pin connected to X+ for touch screen panelPB61InputINT3InputPort B6: Input portINT3InputPort C0: I/O portTXD01I/OPC11I/OPC11I/O			•	
PB31I/OPort B3: I/O portINT0InputInterrupt request pin0: Interrupt request with programmable level/rising edgePSInputPower save: Pin used as input pin for H/W standby modePB41I/OPort B4: I/O portINT1InputInterrupt request pin1: Interrupt request with programmable rising/falling edgeTA0INInputB-bit timer 0 input: Timer 0 inputPB51InputINT2InputPort B5: Input portINT2InputInterrupt request pin2: Interrupt request with programmable rising/falling edgePXOutputX-Plus: Pin connected to X+ for touch screen panelPB61InputInterrupt request pin3: Interrupt request with programmable rising/falling edgePYOutputY-Plus: Pin connected to Y+ for touch screen panelPC01I/OPort C0: I/O portTXD0OutputSerial 0 send data: Open-drain output pin by programmablePC11I/OPort C1: I/O port				
INT0 PSInput InputInterrupt request pin0: Interrupt request with programmable level/rising edge Power save: Pin used as input pin for H/W standby modePB41I/OPort B4: I/O portINT1InputInterrupt request pin1: Interrupt request with programmable rising/falling edge B-bit timer 0 input: Timer 0 inputPB51InputPort B5: Input portINT2InputPort B5: Input portINT2InputInterrupt request pin2: Interrupt request with programmable rising/falling edge DutputPB61InputINT3InputPort B6: Input portINT3InputPort B6: Input portPC01I/OPC11PC11PC11PC11PC11PC1 <td< td=""><td></td><td>1</td><td>•</td><td></td></td<>		1	•	
PSInputPower save: Pin used as input pin for H/W standby modePB41I/OPort B4: I/O portINT1InputInputInterrupt request pin1: Interrupt request with programmable rising/falling edgeTAOINInput8-bit timer 0 input: Timer 0 inputPB51InputPort B5: Input portINT2InputInterrupt request pin2: Interrupt request with programmable rising/falling edgePXOutputX-Plus: Pin connected to X+ for touch screen panelPB61InputInterrupt request pin3: Interrupt request with programmable rising/falling edgePYOutputY-Plus: Pin connected to Y+ for touch screen panelPC01I/OPort C0: I/O portTXD00OutputSerial 0 send data: Open-drain output pin by programmablePC11I/OPort C1: I/O port				•
PB41I/OPort B4: I/O portINT1InputInterrupt request pin1: Interrupt request with programmable rising/falling edgeTAOINInput8-bit timer 0 input: Timer 0 inputPB51InputINT2InputPort B5: Input portINT2OutputX-Plus: Pin connected to X+ for touch screen panelPB61InputINT3InputPort B6: Input portINT3InputInterrupt request pin3: Interrupt request with programmable rising/falling edgePYOutputY-Plus: Pin connected to Y+ for touch screen panelPC01I/OPort C0: I/O portTXD0OutputSerial 0 send data: Open-drain output pin by programmablePC11I/OPort C1: I/O port			•	
INT1InputInterrupt request pin1: Interrupt request with programmable rising/falling edge 8-bit timer 0 input: Timer 0 inputPB51InputPort B5: Input portINT2InputInterrupt request pin2: Interrupt request with programmable rising/falling edge 2. Net portPXOutputX-Plus: Pin connected to X+ for touch screen panelPB61InputPort B6: Input portINT3InputPort B6: Input portINT3InputInterrupt request pin3: Interrupt request with programmable rising/falling edgePYOutputY-Plus: Pin connected to Y+ for touch screen panelPC01I/OPort C0: I/O portTXD0OutputSerial 0 send data: Open-drain output pin by programmablePC11I/OPort C1: I/O port	PB4	1		
TAOINInput8-bit timer 0 input: Timer 0 inputPB51InputPort B5: Input portINT2InputInterrupt request pin2: Interrupt request with programmable rising/falling edgePXOutputX-Plus: Pin connected to X+ for touch screen panelPB61InputPort B6: Input portINT3InputInterrupt request pin3: Interrupt request with programmable rising/falling edgePYOutputY-Plus: Pin connected to Y+ for touch screen panelPC01I/OPort C0: I/O portTXD0OutputSerial 0 send data: Open-drain output pin by programmablePC11I/OPort C1: I/O port				
PB51InputPort B5: Input portINT2InputInterrupt request pin2: Interrupt request with programmable rising/falling edgePXOutputX-Plus: Pin connected to X+ for touch screen panelPB61InputPort B6: Input portINT3InputInterrupt request pin3: Interrupt request with programmable rising/falling edgePYOutputY-Plus: Pin connected to Y+ for touch screen panelPC01I/OPort C0: I/O portTXD0OutputSerial 0 send data: Open-drain output pin by programmablePC11I/OPort C1: I/O port				
INT2InputInterrupt request pin2: Interrupt request with programmable rising/falling edgePXOutputX-Plus: Pin connected to X+ for touch screen panelPB61InputPort B6: Input portINT3InputInterrupt request pin3: Interrupt request with programmable rising/falling edgePYOutputY-Plus: Pin connected to Y+ for touch screen panelPC01I/OPort C0: I/O portTXD0OutputSerial 0 send data: Open-drain output pin by programmablePC11I/OPort C1: I/O port		1		
PX Output X-Plus: Pin connected to X+ for touch screen panel PB6 1 Input Port B6: Input port INT3 Input Interrupt request pin3: Interrupt request with programmable rising/falling edge PY Output Y-Plus: Pin connected to Y+ for touch screen panel PC0 1 I/O Port C0: I/O port TXD0 Output Serial 0 send data: Open-drain output pin by programmable PC1 1 I/O Port C1: I/O port				
PB6 1 Input Port B6: Input port INT3 Input Interrupt request pin3: Interrupt request with programmable rising/falling edge PY Output Y-Plus: Pin connected to Y+ for touch screen panel PC0 1 I/O Port C0: I/O port TXD0 Output Serial 0 send data: Open-drain output pin by programmable PC1 1 I/O Port C1: I/O port				
INT3 Input Interrupt request pin3: Interrupt request with programmable rising/falling edge PY Output Y-Plus: Pin connected to Y+ for touch screen panel PC0 1 I/O Port C0: I/O port TXD0 Output Serial 0 send data: Open-drain output pin by programmable PC1 1 I/O Port C1: I/O port		1		
PY Output Y-Plus: Pin connected to Y+ for touch screen panel PC0 1 I/O Port C0: I/O port TXD0 Output Serial 0 send data: Open-drain output pin by programmable PC1 1 I/O Port C1: I/O port			•	
PC0 1 I/O Port C0: I/O port TXD0 Output Serial 0 send data: Open-drain output pin by programmable PC1 1 I/O Port C1: I/O port				
TXD0 Output Serial 0 send data: Open-drain output pin by programmable PC1 1 I/O Port C1: I/O port		1		
PC1 1 I/O Port C1: I/O port				•
		1		
	RXD0		Output	Serial 0 receive data

Note: After reset, input "1" to PB3 (INT0, PS)-pin, because it is worked as PS input pin.

Pin Name	Number of Pins	I/O	Functions
PC2	1	I/O	Port C2: I/O port (with pull-up resistor)
SCLK0		I/O	Serial clock I/O 0
CTS0		Input	Serial data send enable 0 (Clear to send)
PC3	1	I/O	Port C3: I/O port
TXD1		Output	Serial send data 1
			Open-drain output pin by programmable
PC4	1	I/O	Port C4: I/O port
RXD1		Input	Serial receive data 1
PC5	1	I/O	Port C5: I/O port (with pull-up resistor)
SCLK1		I/O	Serial clock I/O 1
CTS1		Input	Serial data send enable 1 (Clear to send)
XT1	1	Input	Low-frequency oscillator connecting pin
XT2	1	Output	Low-frequency oscillator connecting pin
PD0	1	Output	Port D0: Output port
D1BSCP		Output	LCD controller output pin
PD1	1	Output	Port D1: Output port
D2BLP		Output	LCD controller output pin
PD2	1	Output	Port D2: Output port
D3BFR		Output	LCD controller output pin
PD3	1	Output	Port D3: Output port
DLEBCD		Output	LCD controller output pin
PD4	1	Output	Port D4: Output port
DOFFB		Output	LCD controller output pin
PD7	1	Output	Port D7: Output port
MLDALM		Output	Melody/alarm output pin
AM0 to AM1	2	Input	Operation mode:
			Fixed to AM1 = 0, AM0 = 1 16-bit external bus or 8-/16-bit dynamic sizing.
			Fixed to AM1 = 0, AM0 = 0 8-bit external bus fixed.
EMU0	1	Output	Open pin
EMU1	1	Output	Open pin
RESET	1	Input	Reset: initializes TMP91C025. (with pull-up resistor)
VREFH	1	Input	Pin for reference voltage input to AD converter (H)
VREFL	1	Input	Pin for reference voltage input to AD converter (L)
AVCC	1		Power supply pin for AD converter
AVSS	1		GND pin for AD converter (0 V)
X1, X2	2	I/O	High-frequency oscillator connection pins
DVCC	2		Power supply pins
			(All VCC pins should be connected with the power supply pin.)
DVSS	2		GND pins (0 V) (All pins should be connected with GND (0 V).)

	Table 2.3.3 Pin Names and Functions	s. (3/3)
--	-------------------------------------	----------

3. Operation

This following describes block by block the functions and operation of the TMP91C025. Notes and restrictions for eatch book are outlined in 6, precautions and restrictions at the end of this manual.

3.1 CPU

The TMP91C025 incorporates a high-performance 16-bit CPU (the 900/L1-CPU). For CPU operation, see the TLCS-900/L1 CPU.

The following describe the unique function of the CPU used in the TMP91C025; these functions are not covered in the TLCS-900/L1 CPU section.

3.1.1 Reset

When resetting the TMP91C025 microcontroller, ensure that the power supply voltage is within the operating voltage range, and that the internal high-frequency oscillator has stabilized. Then hold the $\overline{\text{RESET}}$ input to low level at least for 10 system clocks (9 µs at 36 MHz).

Thus, when turn on the switch, be set to the power supply voltage is within the operating voltage range, and that the internal high-frequency oscillator has stabilized. Then hold the $\overline{\text{RESET}}$ input to low level at least for 10 system clocks.

Clock gear is initialized 1/16 mode by reset operation. It means that the system clock mode fsys is set to $fc/32(=fc/16 \times 1/2)$.

When the reset is accept, the CPU:

• Sets as follows the program counter (PC) in accordance with the reset vector stored at address FFFF00H to FFFF02H:

 $PC<0:7> \leftarrow$ Value at FFFF00H address

- $PC<15:8> \leftarrow Value at FFFF01H address$
- PC<23:16> $\ \leftarrow$ Value at FFFF02H address
- Sets the stack pointer (XSP) to 100H.
- Sets bits <IFF2:0> of the status register (SR) to 111 (Sets the interrupt level mask register to level 7).
- Sets the <MAX> bit of the status register (SR) to 1 (MAX mode). Note: As this product does not support MIN mode, do not write a 0 to the <MAX>
- Clears bits <RFP2:0> of the status register(SR) to 000 (Sets the register bank to 0).

When reset is released, the CPU starts executing instructions in accordance with the program counter settings. CPU internal registers not mentioned above do not change when the reset is released.

When the reset is accepted, the CPU sets internal I/O, ports, and other pins as follows.

- Initializes the internal I/O registers.
- Sets the port pins, including the pins that also act as internal I/O, to general-purpose input or output port mode.

Note: The CPU internal register (Except to PC, SR, XSP) do not change by resetting.

Figure 3.1.1 is a reset timing chart of the TMP91C025.

3.2 Memory Map

Figure 3.2.1 is a memory map of the TMP91C025.

Figure 3.2.1 Memory Map

Note: Address 000FE0H to 000FEFH is assigned for the external memory area of built-in RAM type LCD driver.

Address 000FF0H to 000FFFH is assingned for the external memory area as reserved.

3.3 Triple Clock Function and Standby Function

TMP91C025 contains a clock gear, clock doubler (DFM), standby controller and noise-reduction circuit. It is used for low-power and low-noise systems.

This chapter is organized as follows:

- 3.3.1 Block Diagram of System Clock
- 3.3.2 SFRs
- 3.3.3 System Clock Controller
- 3.3.4 Prescaler Clock Controller
- 3.3.5 Clock Doubler (DFM)
- 3.3.6 Noise reducing Circuit
- 3.3.7 Standby Controller

The clock operating modes are as follows: (a) Single clock mode (X1, X2 pins only), (b) Dual clock mode (X1, X2, XT1 and XT2 pins) and (c) Triple clock mode (the X1, X2, XT1 and XT2 pins and DFM).

Figure 3.3.1 shows a transition figure.

- Note 1: It's prohibited to control DFM in SLOW mode when shifting from SLOW mode to NORMAL mode with use of DFM. (DFM start up/stop/change write to DFMCR0<ACT1:0> register)
- Note 2: If you shift from NORMAL mode with use of DFM to NORMAL mode, the instruction should be separated into two procedures as below. Change CPU clock → Stop DFM circuit
- Note 3: It's prohibited to shift from NORMAL mode with use of DFM to STOP mode directly. You should set NORMAL mode once, and then shift to STOP mode.(You should stop high frequency oscillator after you stop DFM.)

Figure 3.3.1 System Clock Block Diagram

The clock frequency input from the X1 and X2 pins is called fc and the clock frequency input from the XT1 and XT2 pins is called fs. The clock frequency selected by SYSCR1<SYSCK> is called the system clock fFPH. The system clock fSYS is defined as the divided clock of fFPH, and one cycle of fSYS is defined to as one state.

3.3.1 Block Diagram of System Clock

Figure 3.3.2 Block Diagram of System Clock

3.3.2 SFRs

		7	6	5	4	3	2	1	0
SYSCR0	Bit symbol	XEN	XTEN	RXEN	RXTEN	RSYSCK	WUEF	PRCK1	PRCK0
(00E0H)	Read/Write				R/			-	
	After reset	1	1	1	0	0	0	0	0
	Function	High-	Low-	High-	Low-	Selects	Warm-up	Select presca	ler clock
		frequency	frequency	frequency	frequency	clock after	timer	00: f _{FPH}	
		oscillator (fc)	oscillator (fs)	oscillator (fc)	oscillator (fs)	release of	0: Write	01: Reserved	
		0: Stop	0: Stop	after release	after release	STOP mode	Don't care	10: fc/16	
		1: Oscillation	1: Oscillation	of STOP	of STOP	0: fc	1: Write	11: Reserved	
			(Note 1)	mode	mode	1: fs	start timer		
				0: Stop	0: Stop		0: Read		
				1: Oscillation	1: Oscillation		end		
							warm-up		
							1:Read		
							do not end		
		7	6	5	4	3	warm-up 2	1	0
SYSCR1				$\overline{)}$	+				
(00E1H)	Bit symbol					SYSCK	GEAR2	GEAR1	GEAR0
	Read/Write		\backslash	\backslash	\backslash	0	R/ 1	0	0
	After reset Function								-
	Function					Select system	000: fc	alue of high-fre	equency (ic)
						clock	000. ic 001: fc/2		
						0: fc	010: fc/4		
						1: fs	011: fc/8		
							100: fc/16		
							101: (Reserve	ed)	
							110: (Reserve	ed)	
							111: (Reserve	ed)	
		7	6	5	4	3	2	1	0
SYSCR2	Bit symbol	PSENV		WUPTM1	WUPTM0	HALTM1	HALTM0	SELDRV	DRVE
(00E2H)	Read/Write	R/W		R/W	R/W	R/W	R/W	R/W	R/W
	After reset	0		1	0	1	1	0	0
	Function	0: Power		Warm-up time		HALT mode		<drve></drve>	Pin state
		save		00: Reserved		00: Reserved		mode	control in
		mode		01: 2 ⁸ /inputte	d frequency	01: STOP mo		select	STOP/IDLE1
		enable		10: 2 ¹⁴		10: IDLE1 mo		0: IDLE1	mode
		1: Disable		11: 2 ¹⁶		11: IDLE2 mo	ode	1: STOP	0: I/O off
		(Note 2)						(Note 3)	1: Remains
									the state
									before
									halt

Note 1: By reset, low-frequency oscillator is enabled.

Note 2: When hard ware standby mode is entered, the meaning of SYSCR2<HALTM1:0> = 11 shows IDLE1 mode.

Note 3: "0" means IDLE1 and "1" means STOP. Please be carefull because this setting is sometimes different from others.

Figure 3.3.3 SFRs for System Clock

Symbol	Name	Address	7	6	5	4	3	2	1	0
			ACT1	ACT0	DLUPFG	DLUPTM				
			R/W	R/W	R	R/W		/		
	DEM		0	0	0	0	/	/	/	
DFMCR0	DFM control	E8H		UP select f _{FPH}	Lock up status Flag	Lock up Time				
	register 0		 00 STOP ST 01 RUN RL 10 RUN ST 11 RUN ST 	IN ^f OSCH	0: End 1: Not end	0: 2 ¹² /fOSCH 1: 2 ¹⁰ /fOSCH				
			D7	D6	D5	D4	D3	D2	D1	D0
	DFM	E9H	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
DFMCR1	control		0	0	0	1	0	0	1	1
	register 1		DFM revision Input frequency 4 to 9 MHz (at 3.0 V to 3.6 V): write 0BH Input frequency 4 to 6.75 MHz (at 2.7 V to 3.6 V): write 0BH							

Figure 3.3.4 SFRs for DFM

Limitation point on the use of DFM

- 1. It's prohibited to execute DFM enable/disable control in the SLOW mode (fs) (write to DFMCR0<ACT1:0> = "10"). You should control DFM in the NORMAL mode.
- 2. If you stop DFM operation during using DFM(DFMCR0<ACT1:0> = "10"), you shouldn't execute that change the clock f_{DFM} to f_{OSCH} and stop the DFM at the same time. Therefore the above execution should be separated into two procedures as showing below.

LD	(DFMCR0), C0H	;	Change the clock f _{DFM} to fOSCH
LD	(DFMCR0), 00H	;	DFM stop

3. If you stop high-frequency oscillator during using DFM (DFMCR0<ACT1:0> = "10"), you should stop DFM before you stop high-frequency oscillator.

Please refer to 3.3.5 Clock Doubler (DFM) for the Details.

		7	6	5	4	3	2	1	0				
EMCCR0	Bit symbol	PROTECT	TA3LCDE	AHOLD	TA3MLDE	_	EXTIN	DRVOSCH	DRVOSCL				
(00E3H)	Read/Write	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
	After reset	0	0	0	0	0	0	1	1				
	Function	Protect flag	LCDC source	Address hold	Melody/alarm	Always	1: External	fc oscillator	fs oscillator				
		0: Off	CLK	0: Disable	source clock	write 0.	clock	driver ability	driver ability				
		1: On	0: 32 kHz	1: Enable	0: 32 kHz			1: Normal	1: Normal				
			1: TA3OUT	(Note)	1: TA3OUT			0: Weak	0: Weak				
EMCCR1	Bit symbol												
(00E4H)	Read/Write												
	After reset	Cuvitabiaa th	a protect ON		to to followin								
	Function	0	Switching the protect ON/OFF by write to following 1st-KEY, 2nd-KEY Ist-KEY: EMCCR1 = 5AH, EMCCR2 = A5H in succession write 2nd-KEY: EMCCR1 = A5H, EMCCR2 = 5AH in succession write										
EMCCR2	Bit symbol												
(00E5H)	Read/Write						le						
	After reset												
	Function												
EMCCR3	Bit symbol		ENFROM	ENDROM	ENPROM		FFLAG	DFLAG	PFLAG				
(00E6H)	Read/Write	/	R/W	R/W	R/W	/	R/W	R/W	R/W				
	After reset	/	0	0	0	/	0	0	0				
	Function		CS1A area	CS2B-2C	CS2A area		CS1A write	CS2B-2C write	CS2A write				
			detect control	area detect	detect control		operation flag	operation	operation				
			0: Disable	control	0: Disable			flag	flag				
			1: Enable	0: Disable	1: Enable		When reading	v	/hen writing				
				1: Enable			0: Not written	0	: Clear flag				
							1: Written						

Note1: When getting access to the logic address 000000H to 000FDFH, A0 to A23 holds the previous address of external access.

Note2: In case restarting the oscillator in the stop oscillation state (e.g. Restart the oscillator in STOP mode), set EMCCR0<DRVOSCH>, <DRVOSCL>="1".

Figure 3.3.5 SFRs for Noise Reduction

3.3.3 System Clock Controller

The system clock controller generates the system clock signal (f_{SYS}) for the CPU core and internal I/O. It contains two oscillation circuits and a clock gear circuit for high-frequency (fc) operation. The register SYSCR1<SYSCK> changes the system clock to either fc or fs, SYSCR0<XEN> and SYSCR0<XTEN> control enabling and disabling of each oscillator, and SYSCR1<GEAR0:2> sets the high-frequency clock gear to either 1, 2, 4, 8 or 16 (fc, fc/2, fc/4, fc/8 or fc/16). These functions can reduce the power consumption of the equipment in which the device is installed.

The combination of settings $\langle XEN \rangle = 1$, $\langle XTEN \rangle = 0$, $\langle SYSCK \rangle = 0$ and $\langle GEAR0:2 \rangle = 100$ will cause the system clock (f_{SYS}) to be set to fc/32 (fc/16 × 1/2) after a reset.

For example, f_{SYS} is set to 1.1 MHz when the 36 MHz oscillator is connected to the X1 and X2 pins.

(1) Switching from NORMAL mode to SLOW mode

When the resonator is connected to the X1 and X2 pins, or to the XT1 and XT2 pins, the warm-up timer can be used to change the operation frequency after stable oscillation has been attained.

The warm-up time can be selected using SYSCR2<WUPTM0:1>.

This warm-up timer can be programmed to start and stop as shown in the following examples 1 and 2.

Table 3.3.1 shows the warm-up time.

- Note 1: When using an oscillator (other than a resonator) with stable oscillation, a warm-up timer is not needed.
- Note 2: The warm-up timer is operated by an oscillation clock. Hence, there may be some variation in warm-up time.

Warm-up Time SYSCR2 <wuptm1:0></wuptm1:0>	Change to NORMAL Mode	Change to SLOW Mode	at f _{OSCH} = 36 MHz,
01 (2 ⁸ /frequency)	7.1 (μs)	7.8 (ms)	fs = 32.768 kHz
10 (2 ¹⁴ /frequency)	0.455 (ms)	500 (ms)	
11 (2 ¹⁶ /frequency)	1.820 (ms)	2000 (ms)	

Table 3.3.1 Warm-up Times

End of warm-up timer

(2) Clock gear controller

When the high-frequency clock fc is selected by setting SYSCR1<SYSCK> = 0, fFPH is set according to the contents of the clock gear select register SYSCR1<GEAR2:0> to either fc, fc/2, fc/4, fc/8 or fc/16. Using the clock gear to select a lower value of fFPH reduces power consumption.

```
(Example 3)
```

Changing to a high-frequency gear

SYSCR1	EQU	00E1H		
	LD	(SYSCR1), XXXX0000B	;	Changes f_{SYS} to fc/2.

```
X: Don't care
```

(High-speed clock gear changing)

To change the clock gear, write the register value to the SYSCR1<GEAR2:0> register. It is necessary the warm-up time until changing after writing the register value.

There is the possibility that the instruction next to the clock gear changing instruction is executed by the clock gear before changing. To execute the instruction next to the clock gear switching instruction by the clock gear after changing, input the dummy instruction as follows (Instruction to execute the write cycle).

(Example)

	LD	(DUMMY), 00H	;	Dummy instruction	
	LD	(SYSCR1), XXXX0001B	;	Changes f _{SYS} to fc/4.	
0100111				Changes four to fo/4	
SYSCR1	EQU	00E1H			

(3) Internal clock output pin

An internal clock fFPH can be output to the PA3/SCOUT pin. By setting "1" to the PAFC2<PA3F2> register, the PA3 pin functions as the SCOUT pin.

3.3.4 Prescaler Clock Controller

For the internal I/O (TMRA01 to TMRA23, SIO0 to SIO1) there is a prescaler which can divide the clock.

The ϕ T0 clock input to the prescaler is either the clock f_{FPH} divided by 4 or the clock fc/16 divided by 4. The setting of the SYSCR0<PRCK0:1> register determines which clock signal is input.

3.3.5 Clock Doubler (DFM)

DFM outputs the f_{DFM} clock signal, which is four times as fast as f_{OSCH} . It can use the low-frequency oscillator, even though the internal clock is high frequency.

A reset initializes DFM to stop status, setting to DFMCR0-register is needed before use. Like an oscillator, this circuit requires time to stabilize. This is called the lock up time. The following example shows how DFM is used.

DFMCR0 DFMCR1	EQU EQU	00E8H 00E9H	
DIWORT	LQU	(DFMCR1), 00001011B	DFM parameter setting.
	LD	(DFINCKT), 00001011B	Drivi parameter setting.
	LD	(DFMCR0), 01X0XXXXB	; Set lock up time to 2 ¹² /4 MHz.
			Enables DFM operation and starts lock up.
LUP:	BIT	5, (DFMCR0)	
	JR	NZ, LUP	$\left. \begin{array}{c} \\ \\ \\ \end{array} \right\}$ Detects end of lock up.
	LD	(DFMCR0), 10X0XXXXB	; Changes fc from 4 MHz to 16 MHz.
			(Changes f _{SYS} from 2 MHz to 8 MHz.)
V. Davita			

X: Don't care

Note: Input frequency limitation and correction for DFM

Recommend to use Input frequency (High-speed oscillation) for DFM in the following condition.

- f_{OSCH} = 4 to 9 MHz (Vcc = 3.0 to 3.6 V): Write 0BH to DFMCR1
- $f_{OSCH} = 4$ to 6.75 MHz (Vcc = 2.7 to 3.6 V): Write 0BH to DFMCR1

Limitation point on the use of DFM

1. It's prohibited to execute DFM enable/disable control in the SLOW mode (fs)

(write to DFMCR0<ACT1:0> = "10"). You should control DFM in the NORMAL mode.

- 2. If you stop DFM operation during using DFM (DFMCR0<ACT1:0> = "10"), you shouldn't execute the commands that change the clock fDFM to fOSCH and stop the DFM at the same time. Therefore the above executions should be separated into two procedures as showing below.
 - LD(DFMCR0), C0H;Change the clock f_{DFM} to f_{OSCH}.LD(DFMCR0), 00H;DFM stop.
- 3. If you stop high-frequency oscillator during using DFM (DFMCR0<ACT1:0> = "10"), you should stop DFM before you stop high-frequency oscillator.

Examples of settings are below.

(1) Start up/change control

(OK) Low-frequency oscillator operation mode (fs) (High-frequency oscillator STOP) \rightarrow High-frequency oscillator start up \rightarrow High-frequency oscillator operation mode (fosch) \rightarrow DFM start up \rightarrow DFM use mode (fDFM)

	LD (SYSCR0), 11 1 B	; High-frequency oscillator start up/warm-up start.
WUP:	BIT 2, (SYSCR0) JR NZ, WUP	; } Check for the flag of warm-up end.
	LD (SYSCR1), 0 B	; Change the system clock fs to f _{OSCH} .
	LD (DFMCR0), 01 - 0 B	; DFM start up/lock up start.
LUP:	BIT 5, (DFMCR0) JR NZ, LUP LD (DFMCR0), 10 - 0 B	; Check for the flag of lock up end. ; Change the system clock f _{OSCH} to f _{DFM} .

(OK) Low-frequency oscillator operation mode (fs) (High-frequency oscillator operate) \rightarrow High-frequency oscillator operation mode (f_{OSCH}) \rightarrow DFM start up \rightarrow DFM use mode (f_{DFM})

LD	(SYSCR1), 0 B	; Change the system clock fs to f _{OSCH} .
LD	(DFMCR0), 01 - 0 B	; DFM start up/lock up start.
BIT	5, (DFMCR0)	; Check for the flag of lock up end.
JR	NZ, LUP	
LD	(DFMCR0), 10 - 0 B	; Change the system clock fOSCH to fDFM.
	LD BIT JR	LD (DFMCR0), 01 - 0 B BIT 5, (DFMCR0) JR NZ, LUP

(Error) Low-frequency oscillator operation mode (fs) (High-frequency oscillator STOP) \rightarrow High-frequency oscillator start up \rightarrow DFM start up \rightarrow DFM use mode (f_{DFM})

	LD	(SYSCR0), 11 1 B	; High-frequency oscillator starts up/warm-up _ start.
WUP:	BIT JR	2, (SYSCR0) NZ, WUP	; Check for the flag of warm-up end.
	LD	(DFMCR0), 01 - 0 B	; DFM start up/lock up start.
LUP:	BIT JR LD LD	5, (DFMCR0) NZ, LUP (DFMCR0), 10 - 0 B (SYSCR1), 0 B	 Check for the flag of lock up end. Change the internal clock f_{OSCH} to f_{DFM}. Change the system clock fs to f_{DFM}.

(2) Change/stop control

(OK) DFM use mode (f_{DFM}) \rightarrow High-frequency oscillator operation mode (f_{OSCH}) \rightarrow DFM $stop \rightarrow Low$ -frequency oscillator operation mode (fs) \rightarrow High-frequency oscillator stop

1	1		
LD	(DFMCR0), 11 B	;	Change the system clock $f_{\mbox{\scriptsize DFM}}$ to $f_{\mbox{\scriptsize OSCH}}.$
LD	(DFMCR0), 00 B	;	DFM stop.
LD	(SYSCR1), 1 B	;	Change the system clock fOSCH to fs.
LD	(SYSCR0), 0 B	;	High-frequency oscillator stop.

(Error) DFM use mode (f_{DFM}) \rightarrow Low-frequency oscillator operation mode (fs) \rightarrow DFM stop \rightarrow High-frequency oscillator stop

LD	(SYSCR1), 1 B	;	Change the system clock f _{DFM} to fs.
LD	(DFMCR0), 11 B	;	Change the internal clock (fc) fDFM to fOSCH.
LD	(DFMCR0), 00 B	;	DFM stop.
LD	(SYSCR0), 0 B	;	High-frequency oscillator stop.

(OK) DFM use mode (f_{DFM}) \rightarrow Set the STOP mode

\rightarrow	High-frequency	oscillator	operation	mode	(fosch)	\rightarrow	DFM	stop	\rightarrow	HALT
(Hi	gh-frequency oscil	llator stop)								
	LD	(SYSCR2)	, 01 B	;	Set the S	TOP r	node.			
					(This con	nman	d can ex	ecute b	pefore	use of
					DFM.)					
	LD	(DFMCR0), 11 B	;	Change th	ne sys	stem clock	to f _{DFM} to	fosc	н∙
	LD	(DFMCR0), 00 B	;	DFM stop					
	HALT			;	Shift to S	ГОР r	node.			

(Error) DFM use mode (f_{DFM}) \rightarrow Set the STOP mode \rightarrow HALT (High-frequency oscillator stop)

LD	(SYSCR2), 01 B	;	Set the STOP mode.
			(This command can execute before use of
			DFM.)
HALT		;	Shift to STOP mode.

3.3.6 Noise Reduction Circuits

Noise reduction circuits are built in, allowing implementation of the following features.

- (1) Reduced drivability for high-frequency oscillator
- (2) Reduced drivability for low-frequency oscillator
- (3) Single drive for high-frequency oscillator
- (4) SFR protection of register contents
- (5) ROM protection of register contents

The above functions are performed by making the appropriate settings in the EMCCR0 to EMCCR3 registers.

- (1) Reduced drivability for high-frequency oscillator
 - (Purpose)

Reduces noise and power for oscillator when a resonator is used.

(Block diagram)

(Setting method)

The drivability of the oscillator is reduced by writing 0 to EMCCR0<DRVOSCH> register. By reset, <DRVOSCH> is initialized to 1 and the oscillator starts oscillation by normal-drivability when the power-supply is on.

(2) Reduced drivability for low-frequency oscillator

(Purpose)

Reduces noise and power for oscillator when a resonator is used.

(Block diagram)

(Setting method)

The drivability of the oscillator is reduced by writing 0 to the EMCCR0<DRVOSCL> register. By reset, <DRVOSCL> is initialized to 1.

(3) Single drive for high-frequency oscillator

(Purpose)

Not need twin-drive and protect mistake operation by inputted noise to X2 pin when the external-oscillator is used.

(Block diagram)

(Setting method)

The oscillator is disabled and starts operation as buffer by writing 1 to EMCCR0<EXTIN> register. X2-pin is always outputted 1.

By reset, <EXTIN> is initialized to 0.

Note: Do not write EMCCR0<EXTIN> = "1" when using external resonator.

(4) Runaway provision with SFR protection register

(Purpose)

Provision in runaway of program by noise mixing.

Write operation to specified SFR is prohibited so that provision program in runaway prevents that it is it in the state which is fetch impossibility by stopping of clock, memory control register (CS/WAIT controller, MMU) is changed.

And error handling in runaway becomes easy by INTPO interruption.

Specified SFR list

1. CS/WAIT controller
B0CS, B1CS, B2CS, B3CS, BEXCS,
MSAR0, MSAR1, MSAR2, MSAR3,
MAMR0, MAMR1, MAMR2, MAMR3
2. MMU
LOCAL0/1/2/3
3. Clock gear
SYSCR0, SYSCR1, SYSCR2, EMCCR0, EMCCR3
4. DFM
DFMCR0, DFMCR1

(Operation explanation)

Execute and release of protection (write operation to specified SFR) becomes possible by setting up a double key to EMCCR1 and EMCCR2 register.

(Double key)

1st-KEY: Succession writes in 5AH at EMCCR1 and A5H at EMCCR2 2nd-KEY: Succession writes in A5H at EMCCR1 and 5AH at EMCCR2

A state of protection can be confirmed by reading EMCCR0<PROTECT>.

By reset, protection becomes OFF.

And INTPO interruption occurs when write operation to specified SFR was executed with protection ON state.

91C025-28

(5) Runaway provision with ROM protection register

(Purpose)

Provision in runaway of program by noise mixing.

(Operation explanation)

When write operation was executed for external three kinds of ROM by runaway of program, INTP1 is occurred and detects runaway function.

Three kinds of ROM is fixed as for Flash ROM (Option program ROM), Data ROM, Program ROM are as follows on the logical address memory map.

- 1. Flash ROM:Address 400000H to 7FFFFFH2. Data ROM:Address 800000H to BFFFFFH
- 3. Program ROM: Address C00000H to FFFFFFH

For these address, admission/prohibition of detection of write operation sets it up with EMCCR3<ENFROM, ENDROM, ENPROM>. And INTP1 interruption occurred within which ROM area in the case that occurred can confirm each with EMCCR3<FFLAG, DFLAG, PFLAG>. This flag is cleared when write in 0.

3.3.7 Standby Controller

(1) HALT modes

When the HALT instruction is executed, the operating mode switches to IDLE2, IDLE1 or STOP mode, depending on the contents of the SYSCR2<HALTM1:0> register.

The subsequent actions performed in each mode are as follows:

a. IDLE2: Only the CPU halts.

The internal I/O is available to select operation during IDLE2 mode. By setting the following register.

Table 3.3.2 Shows the registers of setting operation during IDLE2 mode.

Internal I/O	SFR
TMRA01	TA01RUN <i2ta01></i2ta01>
TMRA23	TA23RUN <i2ta23></i2ta23>
SIO0	SC0MOD1 <i2s0></i2s0>
SIO1	SC1MOD1 <i2s1></i2s1>
AD converter	ADMOD1 <i2ad></i2ad>
WDT	WDMOD <i2wdt></i2wdt>

Table 3.3.2 SFR Setting Operation during IDLE2 Mode

- b. IDLE1: Only the oscillator and the RTC (Real-time clock) and MLD continue to operate.
- c. STOP: All internal circuits stop operating.

The operation of each of the different HALT modes is described in Table 3.3.3.

		1 5			
HALT Mode		IDLE2	IDLE1	STOP	
SYSCR2 <haltm1:0></haltm1:0>		11	10	01	
	CPU	Stop			
	I/O ports	Keep the state when the HALT instruction was executed.	See Table 3.3.6, T	able 3.3.7	
	TMRA		Stop		
Block	SIO	Available to select			
DIUCK	AD converter	operation block			
	WDT		0.00		
	LCDC,	LCDC,			
	Interrupt controller	Operate			
	RTC, MLD		Possible to operate		

Table 3.3.3 I/O Operation during HALT Modes

(2) How to release the HALT mode

These halt states can be released by resetting or requesting an interrupt. The halt release sources are determined by the combination between the states of interrupt mask register <IFF2:0> and the HALT modes. The details for releasing the halt status are shown in Table 3.3.4.

• Released by requesting an interrupt

The operating released from the HALT mode depends on the interrupt enabled status. When the interrupt request level set before executing the HALT instruction exceeds the value of interrupt mask register, the interrupt due to the source is processed after releasing the HALT mode, and CPU status executing an instruction that follows the HALT instruction. When the interrupt request level set before executing the HALT instruction is less than the value of the interrupt mask register, releasing the HALT mode is not executed. (In non-maskable interrupts, interrupt processing is processed after releasing the HALT mode regardless of the value of the mask register.) However only for INT0 to INT3, INTKEY, INTRTC and INTALM0 to INTALM4 interrupts, even if the interrupt request level set before executing the HALT instruction is less than the value of the interrupt mask register, releasing the HALT instruction is less than the value of the interrupt request level set before executing the HALT instruction is less than the value of the interrupt request level set before executing the HALT instruction is less than the value of the interrupt mask register, releasing the the HALT mode is executed. In this case, interrupt processing, and CPU starts executing the instruction next to the HALT instruction, but the interrupt request flag is held at 1.

Note: Usually, interrupts can release all halts status. However, the interrupts (INT0 to INT3, INTRTC, INTALM0 to INTALM4, INTKEY) which can release the HALT mode may not be able to do so if they are input during the period CPU is shifting to the HALT mode (for about 5 clocks of f_{FPH}) with IDLE1 or STOP mode (IDLE2 is not applicable to this case). (In this case, an interrupt request is kept on hold internally.)

If another interrupt is generated after it has shifted to HALT mode completely, halt status can be released without difficulty. The priority of this interrupt is compared with that of the interrupt kept on hold internally, and the interrupt with higher priority is handled first followed by the other interrupt.

• Releasing by resetting

Releasing all halt status is executed by resetting.

When the STOP mode is released by RESET, it is necessary enough resetting time (see Table 3.3.5) to set the operation of the oscillator to be stable.

Status of Received Interrupt			Interrupt Enabled (Interrupt level) ≥ (Interrupt mask)			Interrupt Disabled (Interrupt level) < (Interrupt mask)		
HALT Mode			IDLE2	IDLE1	STOP	IDLE2	IDLE1	STOP
ce of halt state clearance	Interrupt	INTWDT	•	×	×	-	_	_
		INT0 to INT3 (Note 1)	•	•	*1 ♦	0	0	* 1 0
		INTALM0 to INTALM4	•	•	×	0	0	×
		INTTA0 to INTTA3	•	×	×	×	×	×
		INTRX0 to INTRX1, TX0 to TX1	•	×	×	×	×	×
		INTAD	•	×	×	×	×	×
		INTKEY	•	•	*1 ♦	0	0	°1
		INTRTC	•	•	×	0	0	×
Source		INTLCD	•	×	×	×	×	×
S		RESET	Initialize LSI					

Table 3.3.4 Source of Halt State Clearance and Halt Clearance Operation

- •: After clearing the HALT mode, CPU starts interrupt processing.
- •: After clearing the HALT mode, CPU resumes executing starting from instruction following the HALT instruction.
- ×: It can not be used to release the HALT mode.
- -: The priority level (Interrupt request level) of non-maskable interrupts is fixed to 7, the highest priority level. There is not this combination type.
- *1:Releasing the HALT mode is executed after passing the warm-up time.
- Note 1: When the HALT mode is cleared by an INT0 interrupt of the level mode in the interrupt enabled status, hold level H until starting interrupt processing. If level L is set before holding level L, interrupt processing is correctly started.

(Example) Releasing IDLE1 mode

An INT0 interrupt clears the halt state when the device is in IDLE1 mode.

(3) Operation

a. IDLE2 mode

In IDLE2 mode only specific internal I/O operations, as designated by the IDLE2 setting register, can take place. Instruction execution by the CPU stops.

Figure 3.3.6 illustrates an example of the timing for clearance of the IDLE2 mode halt state by an interrupt.

Figure 3.3.6 Timing Chart for IDLE2 Mode Halt State Cleared by Interrupt

b. IDLE1 mode

In IDLE1 mode, only the internal oscillator and the RTC, MLD continue to operate. The system clock in the MCU stops. The pin status in the IDLE1 mode is depended on setting the register SYSCR2<SELDRV, DRVE>. Table 3.3.6, Table 3.3.7 summarizes the state of these pins in the IDLE mode1.

In the halt state, the interrupt request is sampled asynchronously with the system clock; however, clearance of the halt state (e.g. restart of operation) is synchronous with it.

Figure 3.3.7 illustrates the timing for clearance of the IDLE1 mode halt state by an interrupt.

Figure 3.3.7 Timing Chart for IDLE1 Mode Halt State Cleared by Interrupt

c. STOP mode

When STOP mode is selected, all internal circuits stop, including the internal oscillator pin status in STOP mode depends on the settings in the SYSCR2<DRVE> register. Table 3.3.6, Table 3.3.7 summarizes the state of these pins in STOP mode.

After STOP mode has been cleared system clock output starts when the warm-up time has elapsed, in order to allow oscillation to stabilize. After STOP mode has been cleared, either NORMAL mode or SLOW mode can be selected using the SYSCR0<RSYSCK> register. Therefore, <RSYSCK>, <RXEN> and <RXTEN> must be set see the sample warm-up times in Table 3.3.5.

Figure 3.3.8 illustrates the timing for clearance of the STOP mode halt state by an interrupt.

Figure 3.3.8 Timing Chart for STOP Mode Halt State Cleared by Interrupt

		at f _O	_{SCH} = 36 MHz, fs =32.768 kHz	
SYSCR0	SYSCR2 <wuptm1:0></wuptm1:0>			
<rsysck></rsysck>	01 (2 ⁸)	10 (2 ¹⁴)	11 (2 ¹⁶)	
0 (fc)	7.1 μs	0.455 ms	1.820 ms	
1 (fs)	7.8 ms	500 ms	2000 ms	

Table 3.3.5	Sample Warm-up	Times after	Clearance	of STOP Mode
-------------	----------------	-------------	-----------	--------------

(Setting example)

The STOP mode is entered when the low-frequency operates, and high-frequency operates after releasing due to INTx.

Note: When different modes are used before and after STOP mode as the above mentioned, there is possible to release the HALT mode without changing the operation mode by acceptance of the halt release interrupt request during execution of HALT instruction (during 6 states). In the system which accepts the interrupts during execution HALT instruction, set the same operation mode before and after the STOP mode.

						Input Bu	iffer State									
			When th	ne CPU is	In H	IALT	1	n HALT mode	e(IDLE1/STOF))						
	Input		ope	rating	mode(IDLE2)	Condition	A (Note)	Condition	n B (Note)						
Port Name	Function Name	During Reset	When Used as function Pin	When Used as Input Port	When Used as function Pin	When Used as Input Port	When Used as function Pin	When Used as Input Port	When Used as function Pin	When Used as Input Port						
D0-7	-		ON upon	-		-		-		_						
P10-17	D8-15	OFF	external read	ON	OFF	OFF	OFF		OFF	OFF						
P56 (*1)	WAIT	ON	ON		ON	ON		OFF	ON	ON						
P80-82 (*2)	-	055	-	ON upon	-	OFF	_		-	055						
P83 (*2)	ADTRG	OFF		port read		OFF				OFF						
P90 (*1)	KI0															
P91 (*1)	KI1															
P92 (*1)	KI2	ON														
P93 (*1)	KI3															
P94 (*1)	KI4					ON		ON		ON						
P95 (*1)	KI5		KI5 KI6 KI7 INT0, PS	ON		ON	ON	ON	ON	ON	ON					
P96 (*1)	KI6															
P97 (*1)																
PB3	INT0, PS															
PB4	INT1, TA0IN			ON			-		_							
PB5	INT2	OFF				OFF				OFF						
PB6	INT3	011				011				011						
PC0	-		_		_		_		_							
PC3 (*1)	-					-										
PC1	RXD0					ON		OFF		ON						
PC2	SCLK0, CTS0		ON		ON	011	OFF		ON	on						
PC4	RXD1	ON	ÖN		on		- Off									
PC5 (*1)	SCLK1, CTS1	0.1														
PZ2-Z3	_		_		-	OFF	-		-	OFF						
RESET , AM0,AM1	-		ON	-	ON	-	ON	-	ON	_						
X1,XT1	I							IDLE1 : ON	, STOP : OFF							

Table 3.3.6 Input	Buffer State	Table
-------------------	--------------	-------

ON: The buffer is always turned on. A current flows *1: Port having a pull-up/pull-down resistor.

the input buffer if the input pin is not driven.

OFF: The buffer is always turned off.

*2:AIN input does not cause a current to flow through the buffer.

-: No applicable

Note: Condition A/B are as follows.

SYSCR2	register setting	HALT mode			
<drve></drve>	<seldrv></seldrv>	IDLE1	STOP		
0	0	Condition A	Condition A		
0	1		Condition A		
1	0	Condition B	Condition B		
1	1		Condition B		

						Output Buffer	State			
			When the	e CPU is				HALT mode(IDLE1/STOP	^{>})
Devit			opera	ating	In HALT n	node(IDLE2)	Condition		Condition	
Port Name	Output Function Name	During	When	When	When			When	When	When
Name	Marrie	Reset	Used as	Used as	Used as	When Used	When Used	Used as	Used as	Used as
			function	Output	function	as Output	as function	Output	function	Output
			Pin	Port	Pin	Port	Pin	Port	Pin	Port
D0-7	_		ON upon	-		-		-		-
P10-17	D8-15	OFF	external write	ON	OFF	ON	OFF	OFF	OFF	ON
A0-15	-	ON	ON	_	ON	_		-	ON	-
P20-27	A16-23	ON	ON		ON				ON	
P56 (*1)	-	OFF	-		-		-		_	
P60	CS0									
P61	CS1									
P62	$\overline{\text{CS2}}$, $\overline{\text{CS2A}}$									
P63	CS3									
P64	EA24, CS2B, SRLB			ON		ON		OFF		ON
P65	EA25, CS2C, SRUB	ON	ON	ON	ON	ON	OFF	OIT	ON	ON
PA0	KO0, ALARM,									
FAU	MLDALM									
PA1	KO1,TA1OUT									
PA2	KO2,TA3OUT									
PA3	KO3,SCOUT									
PB3-B4	_		_		_		-		_	
PB5	PX			_		_	ON	_		_
PB6	PY		ON		ON				ON	
PC0	TXD0	OFF					OFF			
PC1,C4	_	011	-		-		-		_	
PC2	SCLK0									
PC3 (*1)	TXD1									
PC5	SCLK1									
PD0 (*1)	D1BSCP			ON		ON		OFF		ON
PD1	D2BLP									
PD2	D3BFR		ON		ON		OFF		ON	
PD3	DLEBCD	ON					0.1			
PD4	DOFFB									
PD7	MLDALM									
\overline{RD} , \overline{WR}	_			_				_		_
PZ2 (*1)	HWR	OFF		ON		ON		OFF		ON
PZ3 (*1)	R/W, SRWR									
X2	_	ON	ON	_	ON	_	IDLE1	I : ON , STOP	: Output "H" I	evel
XT2	_						10	DLE1 : ON , S	TOP : High-Z	

Table 3.3.7	' Output	Buffer	State	Table
-------------	----------	--------	-------	-------

ON : The buffer is always turned on. When the bus is *1:Port having a pull-up/pull-down resistor.

released , however ,output buffers for some pins are

turned off.

OFF: The buffer is always turned off.

-: No applicable

Note: Condition A/B are as follows.

SYSCR2	register setting	HALT mode			
<drve></drve>	<seldrv></seldrv>	IDLE1	STOP		
0	0	Condition A	Condition A		
0	1		Condition A		
1	0	Condition B	Condition B		
1	1		COndition B		

3.4 Interrupts

Interrupts are controlled by the CPU interrupt mask register SR<IFF2:0> and by the built-in interrupt controller.

The TMP91C025 has a total of 37 interrupts divided into the following three types:

- Interrupts generated by CPU: 9 sources (Software interrupts, illegal instruction interrupt)
- Internal interrupts: 23 sources
- Interrupts on external pins (INT0 to INT3, INTKEY): 5 sources

A (fixed) individual interrupt vector number is assigned to each interrupt.

One of six (variable) priority level can be assigned to each maskable interrupt.

The priority level of non-maskable interrupts are fixed at 7 as the highest level.

When an interrupt is generated, the interrupt controller sends the piority of that interrupt to the CPU. If multiple interrupts are generated simultaneously, the interrupt controller sends the interrupt with the highest priority to the CPU. (The highest priority is level 7 using for non-maskable interrupts.)

The CPU compares the priority level of the interrupt with the value of the CPU interrupt mask register <IFF2:0>. If the priority level of the interrupt is higher than the value of the interrupt mask register, the CPU accepts the interrupt.

The interrupt mask register <IFF2:0> value can be updated using the value of the EI instruction (EI num sets <IFF2:0> data to num).

For example, specifying EI 3 enables the maskable interrupts which priority level set in the interrupt controller is 3 or higher, and also non-maskable interrupts.

Operationally, the DI instruction ($\langle IFF2:0 \rangle = 7$) is identical to the EI 7 instruction. DI instruction is used to disable maskable interrupts because of the priority level of maskable interrupts is 1 to 6. The EI instruction is vaild immediately after execution.

In addition to the above general-purpose interrupt processing mode, TLCS-900/L1 has a micro DMA interrupt processing mode as well. The CPU can transfer the data (1/2/4 bytes) automatically in micro DMA mode, therefore this mode is used for speed-up interrupt processing, such as transferring data to the internal or external peripheral I/O. Moreover, TMP91C025 has software start function for micro DMA processing request by the software not by the hardware interrupt.

Figure 3.4.1 shows the overall interrupt processing flow.

Figure 3.4.1 Overall Interrupt Processing Flow

3.4.1 General-purpose Interrupt Processing

When the CPU accepts an interrupt, it usually performs the following sequence of operations. That is also the same as TLCS-900/L and TLCS-900/H.

(1) The CPU reads the interrupt vector from the interrupt controller.

If the same level interrupts occur simultaneously, the interrupt controller generates an interrupt vector in accordance with the default priority and clears the interrupt request.

(The default priority is already fixed for each interrupt: the smaller vector value has the higher priority level.)

- (2) The CPU pushes the value of program counter (PC) and status register (SR) onto the stack area (indicated by XSP).
- (3) The CPU sets the value which is the priority level of the accepted interrupt plus 1 (+1) to the interrupt mask register <IFF2:0>. However, if the priority level of the accepted interrupt is 7, the register's value is set to 7.
- (4) The CPU increases the interrupt nesting counter INTNEST by 1 (+1).
- (5) The CPU jumps to the address indicated by the data at address FFFF00H + interrupt vector and starts the interrupt processing routine. The above processing time is 18 states (1.00 µs at 36 MHz) as the best case (16-bit data bus width and 0 waits).

When the CPU compled the interrupt processing, use the RETI instruction to return to the main routine. RETI restores the contents of program counter (PC) and status register (SR) from the stack and decreases the Interrupt Nesting counter INTNEST by 1 (-1).

Non-maskable interrupts cannot be disabled by a user program. Maskable interrupts, however, can be enabled or disabled by a user program. A program can set the priority level for each interrupt source. (A priority level setting of 0 or 7 will disable an interrupt request.)

If an interrupt request which has a priority level equal to or greater than the value of the CPU interrupt mask register <IFF2:0> comes out, the CPU accepts its interrupt. Then, the CPU interrupt mask register <IFF2:0> is set to the value of the priority level for the accepted interrupt plus 1 (+1).

Therefore, if an interrupt is generated with a higher level than the current interrupt during its processing, the CPU accepts the later interrupt and goes to the nesting status of interrupt processing.

Moreover, if the CPU receives another interrupt request while performing the said (1) to (5) processing steps of the current interrupt, the latest interrupt request is sampled immediately after execution of the first instruction of the current interrupt processing routine. Specifying DI as the start instruction disables maskable interrupt nesting.

A reset initializes the interrupt mask register ${\rm < IFF2:0>}$ to 111, disabling all maskable interrupts.

Table 3.4.1 shows the TMP91C025 interrupt vectors and micro DMA start vectors. The address FFFF00H to FFFFFFH (256 bytes) is assigned for the interrupt vector area.

Default Priority	Туре	Interrupt Source and Source of Micro DMA Request	Vector Value (V)	Vector Reference Address	Micro DMA Start Vector
1		Reset or "SWI 0" instruction	0000H	FFFF00H	-
2		"SWI 1" instruction	0004H	FFFF04H	—
3		INTUNDEF: illegal instruction or "SWI 2" instruction	0008H	FFFF08H	_
4	Non	"SWI 3" instruction	000CH	FFFF0CH	_
5	Non- Maskable	"SWI 4" instruction	0010H	FFFF10H	_
6	IVIdSkapie	"SWI 5" instruction	0014H	FFFF14H	_
7		"SWI 6" instruction	0018H	FFFF18H	_
8		"SWI 7" instruction	001CH	FFFF1CH	_
9		INTWD: Watchdog timer	0024H	FFFF24H	_
_		Micro DMA (MDMA)	_	-	_
10		INT0 pin	0028H	FFFF28H	0AH
11		INT1 pin	002CH	FFFF2CH	0BH
12		INT2 pin	0030H	FFFF30H	0CH
13		INT3 pin	0034H	FFFF34H	0DH
14		INTALM0: ALM0 (8192 Hz)	0038H	FFFF38H	0EH
15		INTALM1: ALM1 (512 Hz)	003CH	FFFF3CH	0FH
16		INTALM2: ALM2 (64 Hz)	0040H	FFFF40H	10H
17		INTALM3: ALM3 (2 Hz)	0044H	FFFF44H	11H
18		INTALM4: ALM4 (1 Hz)	0048H	FFFF48H	12H
19		INTTA0: 8-bit timer0	004CH	FFFF4CH	13H
20		INTTA1: 8-bit timer1	0050H	FFFF50H	14H
21		INTTA2: 8-bit timer2	0054H	FFFF54H	15H
22		INTTA3: 8-bit timer3	0058H	FFFF58H	16H
23		INTRX0: Serial reception (Channel 0)	005CH	FFFF5CH	17H
24	Maskable	INTTX0: Serial transmission (Channel 0)	0060H	FFFF60H	18H
25		INTRX1: Serial reception (Channel 1)	0064H	FFFF64H	19H
26		INTTX1: Serial transmission (Channel 1)	0068H	FFFF68H	1AH
27		INTAD: AD conversion end	006CH	FFFF6CH	1BH
28		INTKEY: Key wake up	0070H	FFFF70H	1CH
29		INTRTC: RTC (Alarm interrupt)	0074H	FFFF74H	1DH
30		INTLCD: LCDC/LP pin	007CH	FFFF7CH	1FH
31		INTP0: Protect 0 (WR to special SFR)	0080H	FFFF80H	20H
32		INTP1: Protect 1 (WR to ROM)	0084H	FFFF84H	21H
33		INTTC0: Micro DMA end (Channel 0)	0088H	FFFF88H	_
34		INTTC1: Micro DMA end (Channel 1)	008CH	FFFF8CH	_
35		INTTC2: Micro DMA end (Channel 2)	0090H	FFFF90H	-
36		INTTC3: Micro DMA end (Channel 3)	0094H	FFFF94H	-
		(Reserved)	0098H	FFFF98H	_
		to	to	to	to
		(Reserved)	00FCH	FFFFFCH	-

Table 3.4.1	TMP91C025 Interrupt Vectors 1	Table
-------------	-------------------------------	-------

3.4.2 Micro DMA Processing

In addition to general-purpose interrupt processing, the TMP91C025 supprots a micro DMA function. Interrupt requests set by micro DMA perform micro DMA processing at the highest priority level (level 6) among maskable interrupts, regardless of the priority level of the particular interrupt source. The micro DMA has 4 channels and is possible continuous transmission by specifing the say later burst mode.

Because the micro DMA function has been implemented with the cooperative operation of CPU, when CPU goes to a standby mode by HALT instruction, the requirement of micro DMA will be ignored (Pending).

(1) Micro DMA operation

When an interrupt request specified by the micro DMA start vector register is generated, the micro DMA triggers a micro DMA request to the CPU at interrupt priority level 6 and starts processing the request in spite of any interrupt source's level. The micro DMA is ignored on $\langle IFF2:0 \rangle = 7$.

The 4 micro DMA channels allow micro DMA processing to be set for up to 4 types of interrupts at any one time. When micro DMA is accepted, the interrupt request flip-flop assigned to that channel is cleared.

The data are automatically transferred once (1/2/4 bytes) from the transfer source address to the transfer destination address set in the control register, and the transfer counter is decreased by 1 (-1).

If the decreased result is 0, the micro DMA transfer end interrupt (INTTC0 to INTTC3) passes from the CPU to the interrupt controller. In addition, the micro DMA start vector register DMAnV is cleared to 0, the next micro DMA is disabled and micro DMA processing completes. If the decreased result is other than 0, the micro DMA processing completes if it isn't specified the say later burst mode. In this case, the micro DMA transfer end interrupt (INTTC0 to INTTC3) aren't generated.

If an interrupt request is triggered for the interrupt source in use during the interval between the clearing of the micro DMA start vector and the next setting, general-purpose interrupt processing executes at the interrupt level set. Therefore, if only using the interrupt for starting the micro DMA (not using the interrupts as a general-purpose interrupt: level 1 to 6), first set the interrupts level to 0 (Interrupt requests disabled).

If using micro DMA and general-purpose interrupts together, first set the level of the interrupt used to start micro DMA processing lower than all the other interrupt levels. (Note) In this case, the cause of general interrupt is limited to the edge interrupt.

The priority of the micro DMA transfer end interrupt (INTTC0 to INTTC3) is defined by the interrupt level and the default priority as the same as the other maskable interrupt.

Note: If the priority level of micro DMA is set higher than that of other interrupts, CPU operates as follows. In case INTxxx interrupt is generated first and then INTyyy interrupt is generated between checking "Interrupt specified by micro DMA start vector" (in the Figure 3.4.1) and reading interrupt vector with setting below. The vector shifts to that of INTyyy at the time. This is because the priority level of INTyyy is higher than that of INTxxx.

In the interrupt routine, CPU reads the vector of INTyyy because cheking of micro DMA has finished. And INTyyy is generated regardless of transfer counter of micro DMA.

INTxxx: level 1 without micro DMA

INTyyy: level 6 with micro DMA

If a micro DMA request is set for more than one channel at the same time, the priority is not based on the interrupt priority level but on the channel number. The smaller channel number has the higher priority (Channel 0 (High) > channel 3 (Low)).

While the register for setting the transfer source/transfer destination addresses is a 32-bit control register, this register can only effectively output 24-bit addresses. Accordingly, micro DMA can access 16 Mbytes (the upper eight bits of the 32 bits are not valid).

Three micro DMA transfer modes are supported: 1-byte transfer, 2-byte (one word) transfer, and 4-byte transfer. After a transfer in any mode, the transfer source/destination addresses are increased, decreased, or remain unchanged.

This simplifies the transfer of data from I/O to memory, from memory to I/O, and from I/O to I/O. For details of the transfer modes, see 3.4.2 (4) Transfer mode register. As the transfer counter is a 16-bit counter, micro DMA processing can be set for up to 65536 times per interrupt source. (The micro DMA processing count is maximized when the transfer counter initial value is set to 0000H.)

Micro DMA processing can be started by the 24 interrupts shown in the micro DMA start vectors of Table 3.4.1 and by the micro DMA soft start, making a total of 25 interrupts.

Figure 3.4.2 shows the word transfer micro DMA cycle in transfer destination address INC mode (except for counter mode, the same as for other modes).

(The conditions for this cycle are based on an external 16-bit bus, 0 waits, trandfer source/transfer destination addresses both even-numberd values).

Figure 3.4.2 Timing for Micro DMA Cycle

- States 1 to 3: Instruction fetch cycle (Gets next address code).If 3 bytes and more instruction codes are inserted in the instruction queue buffer, this cycle becomes a dummy cycle.
- States 4 to 5: Micro DMA read cycle
- State 6: Dummy cycle (the address bus remains unchanged from state 5)
- States 7 to 8: Micro DMA write cycle
- Note 1: If the source address area is an 8-bit bus, it is increased by two states. If the source address area is a 16-bit bus and the address starts from an odd number, it is increased by two states.
- Note 2: If the destination address area is an 8-bit bus, it is increased by two states. If the destination address area is a 16-bit bus and the address starts from an odd number, it is increased by two states.

(2) Soft start function

In addition to starting the micro DMA function by interrupts, TMP91C025 includes a micro DMA software start function that starts micro DMA on the generation of the write cycle to the DMAR register.

Writing 1 to each bit of DMAR register causes micro DMA once (If write 0 to each bits, micro DMA doesn't operate). At the end of transfer, the corresponding bit of the DMAR register is automatically cleared to 0.

Only one-channel can be set for micro DMA at once. (Do not write 1 to plural bits.)

When writing again 1 to the DMAR register, check whether the bit is 0 before writing 1. If read 1, micro DMA transfer isn't started yet.

When a burst is specified by DMAB register, data is continuously transferred until the value in the micro DMA transfer counter is 0 after start up of the micro DMA. If the value in the micro DMA transfer counter is 0 after start up of the micro DMA transfer counter doesn't change. Don't use Read-modify-write instruction to avoid writing to other bits by mistake.

Symbol	Name	Address	7	6	5	4	3	2	1	0
	5144	0.01.1	/		/	/	DMAR3	DMAR2	DMAR1	DMAR0
DMAR	DMA	89H						R/	W	
DIVIAR	request register	(Prohibit RMW)	/		/		0	0	0	0
	register		/	/	/			DMA r	equest	

(3) Transfer control registers

The transfer source address and the transfer destination address are set in the following registers in CPU. Data setting for these registers is done by an LDC cr,r instruction.

 DMADn-/DMASn-: Post-decrement (decrement register value after transfer) The I/Os in the table mean fixed address and the memory means increment (INC) or decrement (DEC) addresses.
 Note 2: Execution time is under the condition of:

DMADn+/DMASn+: Post-increment (increment register value after transfer)

- 16-bit bus width (both translation and destination address area) /0 waits/ fc = 36 MHz/selected high frequency mode (fc \times 1)
- Note 3: Do not use an undefined code for the transfer mode register except for the defined codes listed in the above table.

3.4.3 Interrupt Controller Operation

The block diagram in Figure 3.4.3 shows the interrupt circuits. The left-hand side of the diagram shows the interrupt controller circuit. The right-hand side shows the CPU interrupt request signal circuit and the halt release circuit.

For each of the 36 interrupt channels there is an interrupt request flag (consisting of a flip-flop), an interrupt priority setting register and a micro DMA start vector register. The interrupt request flag latches interrupt requests from the peripherals. The flag is cleared to 0 in the following cases:

- When reset occurs
- When the CPU reads the channel vector after accepted its interrupt
- When executing an instruction that clears the interrupt (Write DMA start vector to INTCLR register)
- When the CPU receives a micro DMA request (When micro DMA is set)
- When the micro DMA burst transfer is terminated

An interrupt priority can be set independently for each interrupt source by writing the priority to the interrupt priority setting register (e.g. INTEOAD or INTE12). 6 interrupt priorities levels (1 to 6) are provided. Setting an interrupt source's priority level to 0 (or 7) disables interrupt requests from that source. The priority of non-maskable interrupts (Watchdog timer interrupts) is fixed at 7. If interrupt request with the same level are generated at the same time, the default priority (The interrupt with the lowest priority or, in other words, the interrupt with the lowest vector value) is used to determine which interrupt request is accepted first.

The 3rd and 7th bits of the interrupt priority setting register indicate the state of the interrupt request flag and thus whether an interrupt request for a given channel has occurred.

The interrupt controller sends the interrupt request with the highest priority among the simulateous interrupts and its vector address to the CPU. The CPU compares the priority value <IFF2:0> in the status register by the interrupt request signal with the priority value set; if the latter is higher, the interrupt is accepted. Then the CPU sets a value higher than the priority value by 1 (+1) in the CPU SR<IFF2:0>. Interrupt request where the priority value equals or is higher than the set value are accepted simultaneously during the previous interrupt routine.

When interrupt processing is completed (after execution of the RETI instruction), the CPU restores the priority value saved in the stack before the interrupt was generated to the CPU SR<IFF2:0>.

The interrupt controller also has registers (4 channels) used to store the micro DMA start vector. Writing the start vector of the interrupt source for the micro DMA processing (see Table 3.4.1), enables the corresponding interrupt to be processed by micro DMA processing. The values must be set in the micro DMA parameter register (e.g. DMAS and DMAD) prior to the micro DMA processing.

Figure 3.4.3 Block Diagram of Interrupt Controller

		Address	7	6	5	4	3	2	1	0	
				INT	AD			IN	ТО		
	INT0 and INTAD	90H	IADC	IADM2	IADM1	IADM0	10C	10M2	I0M1	I0M0	
INTE0AD	enable	90⊓	R		R/W		R		R/W		
	enable		0	0	0	0	0	0	0	0	
				IN	T2			INT1			
	INT1 and INT2	0411	I2C	I2M2	I2M1	I2M0	I1C	I1M2	I1M1	I1M0	
INTE12	enable	91H	R		R/W		R		R/W		
	enable		0	0	0	0	0	0	0	0	
				INTA	LM4			IN	Т3		
	INT3 and INTALM4	92H	IA4C	IA4M2	IA4M1	IA4M0	I3C	I3M2	I3M1	I3M0	
INTE3ALM4	enable	920	R		R/W		R		R/W		
	Chabic		0	0	0	0	0	0	0	0	
	INTALM0			INTA	LM1			INTA	LM0		
INTEALM01	and	93H	IA1C	IA1M2	IA1M1	IA1M0	IA0C	IA0M2	IA0M1	IA0M0	
INTEALIVIUT	INTALM1 enable	INTALM1	920	R		R/W	-	R		R/W	
			0	0	0	0	0	0	0	0	
	INTALM2			INTA	LM3			INTA	LM2		
INTEALM23	and	94H	IA3C	IA3M2	IA3M1	IA3M0	IA2C	IA2M2	IA2M1	IA2M0	
INTEALW23	INTALM3	94⊓	R		R/W		R		R/W		
	enable		0	0	0	0	0	0	0	0	
	INTTA0			INTTA1	(TMRA1)		INTTA0 (TMRA0)				
INTETA01	and	95H	ITA1C	ITA1M2	ITA1M1	ITA1M0	ITA0C	ITA0M2	ITA0M1	ITA0M0	
INTETAUT	INTTA1	3011	R		R/W		R		R/W		
	enable		0	0	0	0	0	0	0	0	
	INTTA2			INTTA3	(TMRA3)	-		INTTA2	(TMRA2)		
INTETA23	and	96H	ITA3C	ITA3M2	ITA3M1	ITA3M0	ITA2C	ITA2M2	ITA2M1	ITA2M0	
INTETA25	INTTA3	9011	R		R/W		R		R/W		
	enable		0	0	0	0	0	0	0	0	
	INTRTC			INT	KEY			INTI	RTC		
NTERTCKEY	and	97H	IKC	IKM2	IKM1	IKM0	IRC	IRM2	IRM1	IRM0	
NIERIGREY	INTKEY	9/11	R		R/W		R		R/W		
	enable		0	0	0	0	0	0	0	0	
Interrupt	request flag] ←									

(1) Interrupt level setting registers

lxxM2 lxxM1 lxxM0 Function (Write) 0 0 0 Disables interrupt requests 0 0 1 Sets interrupt priority level to 1 0 1 0 Sets interrupt priority level to 2 0 Sets interrupt priority level to 3 1 1 0 0 Sets interrupt priority level to 4 1 1 0 Sets interrupt priority level to 5 1 1 1 0 Sets interrupt priority level to 6 Disables interrupt requests 1 1 1

Symbol	Name	Address	7	6	5	4	3	2	1	0	
				INT	TX0			INTF	RXO		
	Interrupt	0011	ITX0C	ITX0M2	ITX0M1	ITX0M0	IRX0C	IRX0M2	IRX0M1	IRX0M0	
INTES0	enable serial 0	98H	R	R/	W	R	R/W				
	Senai U		0	0	0	0	0	0	0	0	
			INTTX1					INTE	RX1		
INTES1	INTRX1 &		ITXT1C	ITX1M2	ITX1M1	ITX1M0	IRX1C	IRX1M2	IRX1M1	IRX1M0	
INTEST	INTTX1 enable	990	R		R/W		R		R/W		
	Chable		0	0	0	0	0	0	0	0	
				INTI	CD			. –			
INTELCD	INTLCD	9AH	ILCD1C	ILCDM2	ILCDM1	ILCDM0	-	-	-	_	
INTELOD	enable	enable	R		R/W		-				
			0	0	0	0	-	-	-	-	
				INT	TC1			ΙΝΤΊ	rC0		
INTETC01	INTTC0 & INTTC1	9BH	ITC1C	ITC1M2	ITC1M1	ITC1M0	ITC0C	ITC0M2	ITC0M1	ITC0M0	
INTEICOT	enable	900	R		R/W		R		R/W		
	enable		0	0	0	0	0	0	0	0	
				INT	ТС3			ΙΝΤΊ	TC2		
	INTTC2 &	9CH	ITC3C	ITC3M2	ITC3M1	ITC3M0	ITC2C	ITC2M2	ITC2M1	ITC2M0	
INTETC23	enable	900	R		R/W		R		R/W		
	enable		0	0	0	0	0	0	0	0	
		9DH	INTP1				INTP0				
INTEP01	INTP0 & INTP1		IP1C	IP1M2	IP1M1	IP1M0	IP0C	IP0M2	IP0M1	IP0M0	
INTEPUT	enable		R		R/W		R		R/W		
	enable		0	0	0	0	0	0	0	0	
Interr	upt request	flag 🖌									
inton	aptroquoot	nag	•		•						
				lxxM2	↓ IxxM1	lxxM0		Function	(Write)		
									· · ·		
				0	0	0	Disables interrupt requests				
				0	0	1	Sets interrupt priority level to 1				
				0	1	0	Sets interrupt priority level to 2				
				0	0	0	Sets interrupt priority level to 3 Sets interrupt priority level to 4				
				1	0	1	Sets interrupt priority level to 4				
				1	1	0					
1 1 0 Sets interrupt priority level to 6											

1

1

1

Disables interrupt requests

(2) External interrupt control

Symbol	Name	Address	7	6	5	4	3	2	1	0	
Interrupt IIMC			_	-	I3EDGE	I2EDGE	I1EDGE	I0EDGE	IOLE	-	
	ot		W								
	input	8CH	0	0	0	0	0	0	0	0	
millio	mode		Always	Always	INT3EDGE	INT2EDGE	INT1EDGE	INT0EDGE	INT0 mode	Always	
	control	(Prohibit	write 0.	write 0.	0: Rising	0: Rising	0: Rising	0: Rising	0: Edge	write 0.	
		RMW)			1: Falling	1: Falling	1: Falling	1: Falling	1: Level		

INT0 level enable

0	edge detect INT	, ,
1	High level INT	

(3) Interrupt request flag clear register

The interrupt request flag is cleared by writing the appropriate micro DMA start vector, to the register INTCLR.

For example, to clear the interrupt flag INTO, perform the following register operation after execution of the DI instruction.

INTCLR \leftarrow 0AH: Clears interrupt request flag INT0.

Symbol	Name	Address	7	6	5	4	3	2	1	0
	Interrupt	pt 88H		/	CLRV5	CLRV4	CLRV3	CLRV2	CLRV1	CLRV0
						_	V	V	_	
INTCLR clear control	(Prohibit	/		0	0	0	0	0	0	
	control	RMW)			Interrupt Vector					

(4) Micro DMA start vector registers

This register assigns micro DMA processing to which interrupt source. The interrupt source with a micro DMA start vector that matches the vector set in this register is assigned as the micro DMA start source.

When the micro DMA transfer counter value reaches zero, the micro DMA transfer end interrupt corresponding to the channel is sent to the interrupt controller, the micro DMA start vector register is cleared, and the micro DMA start source for the channel is cleared. Therefore, to continue micro DMA processing, set the micro DMA start vector register again during the processing of the micro DMA transfer end interrupt.

If the same vector is set in the micro DMA start vector registers of more than one channel, the channel with the lowest number has a higher priority.

Accordingly, if the same vector is set in the micro DMA start vector registers of two channels, the interrupt generated in the channel with the lower number is executed until micro DMA transfer is complete. If the micro DMA start vector for this channel is not set again, the next micro DMA is started for the channel with the higher number. (Micro DMA chaining.)

Symbol	Name	Address	7	6	5	4	3	2	1	0
					DMA0V5	DMA0V4	DMA0V3	DMA0V2	DMA0V1	DMA0V0
DMAQU	DMA0	0011					R/	W		
DMA0V	start vector	80H	/	/	0	0	0	0	0	0
	VCCIO						DMA0 st	art vector		
	DMAA				DMA1V5	DMA1V4	DMA1V3	DMA1V2	DMA1V1	DMA1V0
DMA1V	DMA1 / start 81H				R/W					
DIVIATV	start vector	оп			0	0	0	0	0	0
	VCOIDI						DMA1 st	art vector		
					DMA2V5	DMA2V4	DMA2V3	DMA2V2	DMA2V1	DMA2V0
DMA2V	DMA2 start	82H					R/	W		-
DIVIAZV	vector				0	0	0	0	0	0
	VCOIDI						DMA2 st	art vector		
	DMAG				DMA3V5	DMA3V4	DMA3V3	DMA3V2	DMA3V1	DMA3V0
DMA3V	DMA3 start	83H					R/	W		
DIVIASV	vector	030			0	0	0	0	0	0
	100101						DMA3 st	art vector		

(5) Micro DMA burst specification

Specifying the micro DMA burst continues the micro DMA transfer until the transfer counter register reaches zero after micro DMA start. Setting a bit which corresponds to the micro DMA channel of the DMAB registers mentioned below to 1 specifies a burst.

Symbol	Name	Address	7	6	5	4	3	2	1	0
	DMA	0.011					DMAR3	DMAR2	DMAR1	DMAR0
DMAR	software	89H (Drahihit	/	/	/	/	R/W	R/W	R/W	R/W
DIVIAR	request	(Prohibit RMW)	/	/	/	/	0	0	0	0
	register	(XIVIVV)						1: DMA softw	vare request	t
	5144		/	/	/	/	DMAB3	DMAB2	DMAB1	DMAB0
DMAD	DMA	8AH	/	/	/	/		R/	W	
DMAB	burst register		/	/	/	/	0	0	0	0
	register							1: DMA bu	rst request	

(6) Attention point

The instruction execution unit and the bus interface unit of this CPU operate independently. Therefore, immediately before an interrupt is generated, if the CPU fetches an instruction that clears the corresponding interrupt request flag, the CPU may execute the instruction that clears the interrupt request flag (Note) between accepting and reading the interrupt vector. In this case, the CPU reads the default vector 0008H and reads the interrupt vector address FFFF08H.

To avoid the avobe plogram, place instructions that clear interrupt request flags after a DI instruction. And in the case of setting an interrupt enable again by EI instruction after the execution of clearing instruction, execute EI instruction after clearing and more than 1-instructions (ex. "NOP" \times 1 times)

In the case of changing the value of the interrupt mask register <IFF2:0> by execution of POP SR instruction, disable an interrupt by DI instruction before execution of POP SR instruction.

In addition, take care as the following 2 circuits are exceptional and demand special attention.

INT0 level mode	In level mode INT0 is not an edge-triggered interrupt. Hence, in level mode the interrupt request flip-flop for INT0 does not function. The peripheral interrupt request passes through the S input of the flip-flop and becomes the Q output. If the interrupt input mode is changed from edge mode to level mode, the interrupt request flag is cleared automatically.
	If the CPU enters the interrupt response sequence as a result of INT0 going from 0 to 1, INT0 must then be held at 1 until the interrupt response sequence has been completed. If INT0 is set to level mode so as to release a halt state, INT0 must be held at 1 from the time INT0 changes from 0 to 1 until the halt state is released. (Hence, it is necessary to ensure that input noise is not interpreted as a 0, causing INT0 to revert to 0 before the halt state has been released.) When the mode changes from level mode to edge mode, interrupt request flags which were set in level mode will not be cleared. Interrupt request flags must be cleared using the following sequence. DI LD (IIMC), 00H; Switches interrupt input mode from level mode to edge mode. LD (INTCLR), 0AH; Clears interrupt request flag. NOP ; Wait El instruction
	El
INTRX	The interrupt request flip-flop can only be cleared by a reset or by reading the serial channel receive buffer. It cannot be cleared by writing INTCLR register.

Note: The following instructions or pin input state changes are equivalent to instructions that clear the interrupt request flag.

- INT0: Instructions which switch to level mode after an interrupt request has been generated in edge mode. The pin input change from high to low after interrupt request has been generated in level mode. $(H \rightarrow L)$
- INTRX: Instruction which read the receive buffer.

3.5 Port Functions

The TMP91C025 features 38-bit settings which relate to the various I/O ports.

As well as general-purpose I/O port functionality, the port pins also have I/O functions which relate to the built-in CPU and internal I/Os. Table 3.5.1 lists the functions of each port pin. Table 3.5.2, Table 3.5.4 lists I/O registers and their specifications.

Port Name	Pin Name	Number of Pins	Direction	R	Direction Setting Unit	Pin Name for Built-in Function
Port 1	P10 to P17	8	I/O	-	Bit	D8 to D15
Port 2	P20 to P27	8	Output	_	(Fixed)	A16 to A23
Port 5	P56	1	I/O	PU	Bit	WAIT
Port 6	P60	1	Output	_	(Fixed)	CS0
	P61	1	Output	_	(Fixed)	CS1
	P62	1	Output	_	(Fixed)	$\overline{\text{CS2}}$, $\overline{\text{CS2A}}$
	P63	1	Output	_	(Fixed)	CS3
	P64	1	Output	_	(Fixed)	EA24, CS2B, SRLB
	P65	1	Output	_	(Fixed)	EA25, CS2C, SRUB
Port 8	P80	1	Input	_	(Fixed)	ANO
	P81	1	Input	_	(Fixed)	AN1
	P82	1	Input	_	(Fixed)	AN2, MX
	P83	1	Input	_	(Fixed)	AN3, ADTRG , MY
Port 9	P90 to P97	8	Input	U	(Fixed)	KI0 to KI7
Port A	PA0	1	Output	_	(Fixed)	KO0, ALARM, MLDALM
	PA1	1	Output	_	(Fixed)	KO1, TA1OUT
	PA2	1	Output	-	(Fixed)	KO2, TA3OUT
	PA3	1	Output	_	(Fixed)	KO3, SCOUT
Port B	PB3	1	I/O	_	Bit	INTO, PS
	PB4	1	I/O	-	Bit	INT1, TAOIN
	PB5	1	Input	-	(Fixed)	INT2, PX
	PB6	1	Input	_	(Fixed)	INT3, PY
Port C	PC0	1	I/O	-	Bit	TXD0
	PC1	1	I/O	-	Bit	RXD0
	PC2	1	I/O	PU	Bit	SCLK0, CTS0
	PC3	1	I/O	-	Bit	TXD1
	PC4	1	I/O	-	Bit	RXD1
	PC5	1	I/O	PU	Bit	SCLK1, CTS1
Port D	PD0	1	Output	-	(Fixed)	D1BSCP
	PD1	1	Output	-	(Fixed)	D2BLP
	PD2	1	Output	-	(Fixed)	D3BFR
	PD3	1	Output	-	(Fixed)	DLEBCD
	PD4	1	Output	-	(Fixed)	DOFFB
	PD7	1	Output	_	(Fixed)	MLDALM
Port Z	PZ2	1	I/O	PU	Bit	HWR
	PZ3	1	I/O	PU	Bit	R/\overline{W} , \overline{SRWR}

Table 3.5.1	Port Functions
10010 01011	

(R: PU = with programmable pull-up resistor/U = with pull-up resistor)

X: Don't care

Port	Pin Name	Specification		I/O Reg	ister	
Pon	Pin Name	Specification	Pn	PnCR	PnFC	PnFC2
Port 1	P10 to P17	Input port	Х	0		
(Note 1)		Output port	Х	1	None	
		D8 to D15 bus	Х	Х		
Port 2	P20 to P27	Output port	Х	None	0	None
		A16 to A23 output	Х		1	
Port 5	P56	WAIT input (Without PU)	0	0	None	
		WAIT input (With PU)	1	0		
Port 6	P60 to P65	Output port	Х		0	0
	P60	CS0 output	Х		1	None
	P61	CS1 output	Х		1	
	P62	CS2 output	Х		1	0
		CS2A output	Х		Х	1
	P63	CS3 output	Х	1.	1	None
	P64	SRLB output	Х	None	0	1
		CS2B output	Х		1	1
		EA24 output	X		1	0
	P65	SRUB output	X		0	1
		CS2C output	X		1	1
		EA25 output	X		1	0
Port 8	P80 to P83	Input port	Х			
		AN0 to 3 input (Note 2)	Х	Nor	ne	
	P83	ADTRG input (Note 3)	Х			None
Port 9	P90 to P97	Input port	Х		0	
		KI0 to 7 input	Х	None	1	
Port A	PA0 to PA3	Output port	Х		0	0
		KO0 to 3 output (CMOS)	Х		0	0
		KO0 to 3 output (Open drain)	Х		1	0
	PA0	ALARM output	1	1	0	1
		MLDALM output	0	None	0	1
	PA1	TA1OUT output	Х	1	0	1
	PA2	TA3OUT output	Х	1	0	1
	PA3	SCOUT output	Х]	0	1
Port B	PB3 to PB4	Input port	Х	0	0	
		Output port	Х	1	0	
	PB3	INT0 input	Х	0	1	
		PS input	Х	0	Х	
	PB4	INT1 input	Х	0	1	1
		TA0IN input	Х	0	х	None
	PB5	INT2 input	Х	0	1	1
		PX output	Х	0	None	1
	PB6	INT3 input	X	0	1	1
		PY output	X	0	None	1

Table 3.5.2	I/O Registers	and Specifications	(1/2)
-------------	---------------	--------------------	------	---

Port	Pin Name	Specification		I/O Reg	jister	
FOIL	FIII Naille	Specification	Pn	PnCR	PnFC	PnFC2
Port C	PC0 to PC5	Input port	Х	0	0	
		Output port	Х	1	0	
	PC0	TXD0 output (Note 4)	1	1	1	
	PC1	RXD0 input (Note 4)	1	0	None	
	PC2	SCLK0 input (Note 4)	1	0	0	
		SCLK0 output (Note 4)	1	1	1	
		CTS0 input (Note 4)	1	0	0	
	PC3	TXD1 output (Note 4)	1	1	1	
	PC4	RXD1 input (Note 4)	1	0	None	
	PC5	SCLK1 input (Note 4)	1	0	0	
		SCLK1 output (Note 4)	1	1	1	
		CTS1 input (Note 4)	1	0	0	Nana
Port D	PD0 to PD7	Output port	х		0	None
	PD0	D1BSCP output	х		1	
	PD1	D2BLP output	х		1	
	PD2	D3BFR output	х	None	1	
	PD3	DLEBCD output	х		1	
	PD4	DOFFB output	х		1	
	PD7	MLDALM output	х		1	
Port Z	PZ2 to PZ3	Input port	х	0	0	
		Output port	х	1	0	
	PZ2	HWR output	х	1	1	
	PZ3	R/\overline{W} output	х	0	1	
		SRWR output	х	1	1	

X: Don't care

Note 1: Port1 is only use for port or DATA bus (D8 to D15) by setting AM1 and AM0 pins.

Note 2: In case using P80 to P83 for analog input ports of AD converter, set to ADMOD1<ADCH2:0>.

Note 3: In case using P83 for ADTRG input port, set to ADMOD1<ADTRGE>.

Note 4: As for input ports of SIO0 and SIO1: (TXD0, RXD0, SCLK0, CTS0, TXD1, RXD1, SCLK1, CTS1), logical selection for output data or input data is determined by the output latch register Pn of each port.

3.5.1 Port 1 (P10 to P17)

Port 1 is an 8-bit general-purpose I/O port. Each bit can be set individually for input or output using the control register P1CR. Resetting , the control register P1CR to 0 and sets port 1 to input mode.

In addition to functioning as a general-purpose I/O port, port 1 can also function as an address data bus (D8 to 15).

AM1	AM0	Function Setting after Reset
0	0 Input port	
0	1	Data bus (D8 to D15)
1	0	Don't use this setting
1	1	Don't use this setting

Table 3.5.4 Function Setting of AM0/AM1

Figure 3.5.1 Port 1

3.5.2 Port 2 (P20 to P27)

Port 2 is an 8-bit output port. In addition to functioning as a output port, port 2 can also function as an address bus (A16 to A23).

Each bit can be set individually for address bus using the function register P2FC. Resetting sets all bits of the function register P2FC to 1 and sets port 2 to address bus.

Figure 3.5.2 Port 2

		7	6	5	4	3	2	1	0			
1	Bit symbol	P17	P16	P15	P14	P13	P12	P11	P10			
001H)	Read/Write				R	/W						
	After reset		Data	from externa	al port (Outpu	it latch regist	er is cleared	to 0.)				
		Port 1 Control Register										
		7	6	5	4	3	2	1	0			
1CR 004H)	Bit symbol	P17C	P16C	P15C	P14C	P13C	P12C	P11C	P10C			
0011)	Read/Write				٧	V		i	r			
	After reset	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1			
	(Note2)											
	Function				0: Input	1: Output						
0: Input 1: Output Port 2 Register												
		7	6	5	4	3	2	1	0			
	Bit symbol	P27	P26	P25	P24	P23	P22	P21	P20			
006H)	Read/Write				R/	W						
	After reset	1	1	1	1	1	1	1	1			
i				Port 2 Fu	unction Re	gister						
		7	6	Port 2 Fu 5	unction Re	egister 3	2	1	0			
-	Bit symbol	7 P27F	6 P26F			-	2 P22F	1 P21F				
FC)09H)	Bit symbol Read/Write			5	4 P24F	3			0 P20F			
-	Read/Write After reset			5 P25F 1	4 P24F V 1	3 P23F V 1	P22F 1					
-	Read/Write	P27F	P26F	5 P25F 1	4 P24F V 1	3 P23F V	P22F 1	P21F	P20F			
-	Read/Write After reset	P27F 1	P26F 1	5 P25F 1 0: Pc	4 P24F V 1 rt 1: Address	3 P23F V 1	P22F 1	P21F	P20F			

Port 1 Register

Figure 3.5.3 Registers for Ports 1 and 2

3.5.3 Port Z (PZ2 to PZ3)

Port Z is an 2-bit general-purpose I/O port. I/O is set using control register PZCR and PZFC.

Resetting sets all bits of the output latch PZ to 1.

In addition to functioning as a general-purpose I/O port, port Z also functions as I/O for the CPU's control/status signal.

Resetting initializes PZ2 and PZ3 pins to input mode with pull-up register.

Figure 3.5.4 Port Z2

Figure 3.5.5 Port Z3

				1 01					
		7	6	5	4	3	2	1	0
ΡZ	Bit symbol					PZ3	PZ2		
(007DH)	Read/Write					R/	W		
	After reset					Data from e	xternal port		\searrow
							(Note 1)		\sim
	Function					0(Output lat	ch register)		
						: Pull-up res	sistor OFF		
						1(Output lat	ch register)		
						: Pull-up res	sistor ON		

Port Z register

Port	Ζ	control	register
	_	001101	regiotor

PZCR (007EH)		7	6	5	4	3	2	1	0
PZCR	Bit symbol	/	/		/	PZ3C	PZ2C		/
	Read/Write	/		/		٧	V	/	/
	After reset	/		/		0	0	/	/
	Function					0: Input 1	1: Output		

Port Z function register

		7	6	5	4	3	2	1	0
PZFC	Bit symbol					PZ3F	PZ2F		
(007FH)	Read/Write	/		/	/	V	V	/	
	After reset	/		/	/	0	0	/	
	Function					0: Port	0: Port		
						1: R/\overline{W} ,	1: HWR		
						SRWR			

Note 1: Output latch register is set to 1.

Note 2: Read-modify-write is prohibited for registers PZCR and PZFC.

Note 3: When port Z is used in Input mode, the PZ register controls the built-in pull-up resistor. Read-modify-write is prohibited in input mode or I/O mode. Setting the built-in pull-up resistor may be depended on the states of the input pin.

R/W, SRWR setting	R/W,	SRWR	setting
-------------------	------	------	---------

<pz3c> <pz3f></pz3f></pz3c>	0	1
0	Input	Output
1	R/\overline{W}	SRWR

Figure 3.5.6 Registers for Port Z

3.5.4 Port 5 (P56)

Port 5 is an 1-bit general-purpose I/O port. I/O is set using control register P5CR and P5FC. Resetting sets all bits of the output latch P5 to 1.

In addition to functioning as a general-purpose I/O port, port 5 also functions as I/O for the CPU's control/status signal.

Resetting initializes P56 pins to input mode with pull-up resistor.

Figure 3.5.7 Port 5 (P56)

				1 010	o register				
		7	6	5	4	3	2	1	0
P5 (000DH)	Bit symbol		P56			/			
(000011)	Read/Write		R/W						
	After reset		Data from external port (Output latch register is set to 1.)						
	Function		0(Output latch register) : Pull-up resistor OFF 1(Output latch register) : Pull-up resistor ON						

Port 5 register

Port 5 control register

P5CR (0010H

		7	6	5	4	3	2	1	0
	Bit symbol	/	P56C	/	/		/	/	
H)	Read/Write	/	W	/	/	/	/	/	
	After reset	/	0	/	/	/	/	/	
	Function		0: Input						
			1: Output						

Note1: Read-modify-write is prohibited for registers P5CR.

Note2: When the P56/WAIT pin is to be use as the WAIT pin, P5CR<P56C> must be set to 0 and <BnW2:0> in the chip select/wait control register must be set 010.

Figure 3.5.8 Registers for Port 5

3.5.5 Port 6 (P60 to P65)

Port 60 to 65 are 6-bit output ports. Resetting sets output latch of P62 to "0" and output latches of P60 to P61, P63 to P65 to 1.

Port6 also function as chip-select output ($\overline{\text{CS0}}$ to $\overline{\text{CS3}}$), extend address output (EA24, EA25) and extend chip-select output ($\overline{\text{CS2A}}$, $\overline{\text{CS2B}}$ and $\overline{\text{CS2C}}$).

Writing 1 in the corresponding bit of P6FC, P6FC2 enables the respective functions.

Resetting resets the P6FC, P6FC2 to 0, and sets all bits to output ports.

Figure 3.5.9 Port 6

		7	6	5	4	3	2	1	0
P6	Bit symbol	/	/	P65	P64	P63	P62	P61	P60
P6 (0012H)	Read/Write	/				R/	W		
	After reset			1	1	1	0	1	1

Port 6 Register

Port 6 Function Register

	/	7	6	5	4	3	2	1	0
P6FC	Bit symbol			P65F	P64F	P63F	P62F	P61F	P60F
(0015H)	Read/Write	/	/			V	V		
	After reset			0	0	0	0	0	0
	Function			0: Port					
				1: EA25	1: EA24	1: CS3	1: CS2	1: CS1	1: CS0

Port 6 Function Register 2

		7	6	5	4	3	2	1	0
P6FC2	Bit symbol			P65F2	P64F2	-	P62F2	-	-
(001BH)	Read/Write			V	V	W	W	W	W
	After reset			0	0	0	0	0	0
	Function			0: <p65f></p65f>	0: <p64f></p64f>	Always	0: <p62f></p62f>	Always	write 0.
				1: SRUB,	1: SRLB,	write 0.	1: CS2A		
				$\overline{\text{CS2C}}$,	CS2B,				
				EA25	EA24				

SRUB, CS2C, EA25 setting

<p65f> <p65f2></p65f2></p65f>	0	1
0	P65	EA25
1	SRUB	CS2C

<p64f></p64f>	0	1
0	P64	EA24
1	SRLB	CS2B

SRLB , CS2B , EA24 setting

Note: Read-modify-write is prohibited for P6FC and P6FC2.

Figure 3.5.10 Registers for Port 6

3.5.6 Port 8 (P80 to P83)

Port 8 is a 4-bit input port and can also be used as the analog input pins for the internal AD converter.

P83 can also be used as ADTRG pin for the AD converter. P82, P83 can also be used as MX, MY pin for touch screen interface.

Port 8 Register

					0					
P8 (0018H)	/	7	6	5	4	3	2	1	0	
	Bit symbol	/				P83	P82	P81	P80	
	Read/Write	/				R				
	After reset	/				Data from external port.				

Note: The input channel selection of AD Converter, the permission of ADTRG input are set by AD Converter mode register ADMOD1.

The input channel selection of AD Converter, the permission of MX, MY input are set by touch screen control register TSICR.

Figure 3.5.12 Registers for Port 8

3.5.7 Port 9 (P90 to P97)

Port 90 to 97 are 8-bit input ports with pull-up resistors. In addition to functioning as general-purpose I/O port, port 90 to 97 can also Key-on wakeup function as Key board interface. The various functions can each be enabled by writing 1 to the corresponding bit of the port 9 function register (P9FC).

Resetting resets all bits of the register P9FC to 0 and sets all pins to be input port.

When P9FC = 1, if either of input of KI0 to KI7 pins falls down, INTKEY interrupt is generated. INTKEY interrupt can be used to release all HALT mode.

	Port 9 register												
		7	6	5	4	3	2	1	0				
P9	Bit symbol	P97	P96	P95	P94	P93	P92	P91	P90				
(0019H)	Read/Write	R											
	After reset				Data from e	xternal port.							

Port 9 function register												
		7	6	5	4	3	2	1	0			
P9FC (001DH)	Bit symbol	P97F	P96F	P95F	P94F	P93F	P92F	P91F	P90F			
(001011)	Read/Write		W									
	After reset	0	0	0	0	0	0	0	0			
	Function			0: Key	-in disable	1: Key-in	enable					
		Key-in of Port 9 Disable 0 Enable 1										

Note: Read-modify-write is prohibited for the registers P9FC.

Figure 3.5.14 Registers for Port 9

3.5.8 Port A (PA0 to PA3)

Port A0 to PA3 are 4-bit output ports, and also used Key board interface pin KO0 to KO3 which can set open drain output buffer.

Writing 1 to the corresponding bit of the port A function register (PAFC) enable the open drain output.

In addition to functioning as output port, port A also function as output pin for internal clock (SCOUT), output pin for RTC alarm ($\overline{\text{ALARM}}$) and output pin for melody/alarm generator (MLDALM, $\overline{\text{MLDALM}}$). Above setting is used the function register PAFC2

Resetting reset bits of the registers PA to 1 and PAFC, PAFC2 to 0, and all pin outputs 1.

Figure 3.5.15 Port A0

Figure 3.5.17 Port A3

PA (001EH)		7	6	5	4	3	2	1	0
	Bit symbol					PA3	PA2	PA1	PA0
	Read/Write	/					R/	W	
	After reset					1	1	1	1

Port A register

Port A function register

		7	6	5	4	3	2	1	0	
PAFC (0021H)	Bit symbol		/		/	PA3F	PA2F	PA1F	PA0F	
	Read/Write		/	/	/		V	V		
	After reset		/		/	0	0	0	0	
	Function					0: CMOS output 1: Open drain				

		7	6	5	4	3	2	1	0	
PAFC2	Bit symbol					PA3F2	PA2F2	PA1F2	PA0F2	
(0020H)	Read/Write		/		/	W				
	After reset				/	0	0	0	0	
	Function					0: Port	0: Port	0: Port	0: Port	
						1: SCOUT	1: TA3OUT	1: TA1OUT	1: ALARM	
									at <pa0>=1</pa0>	
									1: MLDALM	
									at <pa0>=0</pa0>	

Note: Read-modify-write is prohibited for PAFC and PAFC2.

Figure 3.5.18 Registers for Port A

3.5.9 Port B (PB3 to PB6)

Port B3 to PB6 is a 4-bit general-purpose I/O port. Each bit can be set individually for input or output. Resetting sets port B to be an input port.

In addition to functioning as a general-purpose I/O port, port B3 to B6 has each external interruption input facility of INT0 to INT3. Edge selection of external interruption is establishes by IIMC register in the interrupt controller. And also, port B3 has \overline{PS} input terminal, and port B4 has clock input terminal TA0IN of 8 bits timer 0, and port B5, B6 each has touch screen block listing PX, PY terminal.

Timer output function and external interrupt function can be enabled by writing 1 to the corresponding bits in the port B function register (PBFC). Resetting resets all bits of the registers PBCR and PBFC to 0, and sets all bits to be input ports.

(1) PB3 (INT0)

Figure 3.5.19 Port B3

Note: After reset, input 1 to PB3 (INT0, \overline{PS}) -pin, because it is worked as \overline{PS} input pin.

(2) PB4 (INT1)

Figure 3.5.20 Port B4

.

(3) PB5 (INT2), PB6(INT3)

Figure 3.5.21 Port B5, B6

РВ	/	7	6	5	4	3	2	1	0
PB (0022H)	Bit symbol	/	PB6	PB5	PB4	PB3		/	
(00220)	Read/Write			R/	W		/	/	
	After reset		Data	a from exterr	nal port (Note	/			

Port B Register

Port B Control Register

	/	7	6	5	4	3	2	1	0
PBCR	Bit symbol	/	/		PB4C	PB3C		/	
(0024H)	Read/Write	/	/		V	V	/	/	
	After reset	/	/		0	0	/	/	
	Function				0: Input				
					1: Output				

Port B Function Register

		7	6	5	4	3	2	1	0
PBFC (0025H)	Bit symbol		PB6F	PB5F	PB4F	PB3F	/	/	
(00250)	Read/Write			N	V		/	/	
	After reset		0	0	0	1	/	/	
	Function		0: Port	0: Port	0: Port	0: Port			
			1: INT3	1: INT2	1: INT1	1: INT0			

Note 1: Output latch register is set to 1.

Note 2: Read-modify-write is prohibited for the registers PBCR and PBFC.

Note 3: PB4/TA0IN pins do not have a register changing port/function .

For example, when it is used as an input port, the input signal is inputted to 8-bit timer 0 as the timer input 0.

Figure 3.5.22 Registers for Port B

3.5.10 Port C (PC0 to PC5)

Port C0 to C5 are 6-bit general-purpose I/O ports. Each bit can be set individually for input or output. Resetting sets PC0 to PC5 to be an input ports. It also sets all bits of the output latch register to 1.

In addition to functioning as general-purpose I/O port pins, PC0 to PC5 can also function as the I/O for serial channels 0 and 1. A pin can be enabled for I/O by writing 1 to the corresponding bit of the port C function register (PCFC).

Resetting resets all bits of the registers $\ensuremath{\text{PCFC}}$ to 0 and sets all pins to be input ports .

(1) Port C0, C3 (TXD0/TXD1)

As well as functioning as I/O port pins, port C0 and C3 can also function as serial channel TXD output pins. In case of use TXD0/TXD1, it is possible to logical invert by setting the register PC<PC0, PC3>.

And port C0 to C3 have a programmable open drain function which can be controlled by the register PCODE<ODEPC0, ODEPC3>.

Figure 3.5.23 Port C0 and C3

(2) Port C1, C4 (RXD0, RXD1)

Port C1 and C4 are I/O port pins and can also is used as RXD input for the serial channels. In case of use RXD0/RXD1, it is possible to logical invert by setting the register PC<PC1, PC4>.

Figure 3.5.24 Port C1 and C4

(3) Port C2 ($\overline{\text{CTS0}}$, SCLK0), C5 ($\overline{\text{CTS1}}$, SCLK1)

Port C2 and C5 are I/O port pins and can also is used as $\overline{\text{CTS}}$ input or SCLK input/output for the serial channels. In case of use $\overline{\text{CTS}}$, SCLK, it is possible to logical invert by setting the register PC<PC2, PC5>.

Figure 3.5.25 Port C2 and C5

		7	6	5	4	3	2	1	0
PC	Bit symbol	/	/	PC5	PC4	PC3	PC2	PC1	PC0
(0023H)	Read/Write	/	/			R/	W		
	After reset			Dat	ta from exter	nal port (Out	put latch regi	ister is set to	1).

Port C Register

Port C Control Register

		7	6	5	4	3	2	1	0
PCCR	Bit symbol			PC5C	PC4C	PC3C	PC2C	PC1C	PC0C
(0026H)	Read/Write	/				V	V		
	After reset			0	0	0	0	0	0
	Function					0: Input	1: Output		

Port C Functon Register

	/	7	6	5	4	3	2	1	0
PCFC	Bit symbol		/	PC5F	/	PC3F	PC2F		PC0F
(0027H)	Read/Write			W	/	W	W	/	W
	After reset			0		0	0		0
	Function			0: Port		0: Port	0: Port		0: Port
				1: SCLK1		1: TXD1	1: SCLK0		1: TXD0
				output			output		

Port C ODE Register

PCODE (0028H)

		7	6	5	4	3	2	1	0
E	Bit symbol	/	/			ODEPC3			ODEPC0
I)	Read/Write	/	/	/	/	W	/	/	W
	After reset	/	/	/		0		/	0
	Function					TXD1			TXD0
						0: CMOS			0: CMOS
						1: Open			1: Open
						drain			drain

Note 1: Read-modify-write is prohibited for the registers PCCR, PCFC and PCODE.

Note 2: PC1/RXD0, PC4/RXD1 pins do not have a register changing port/function. For example, when it is used as an input port, the input signal is inputted to SIO as the cereal receive data.

Figure 3.5.26 Registers for Port C

3.5.11 Port D (PD0 to PD4, PD7)

Port D is a 6-bit output port. Resetting sets the output latch PD to "1", and PD0 to PD4, PD7 pin output "1".

In addition to functioning as output port, port D also function as output pin for LCD controller (D1BSCP, D2BLP, D3BFR, DLEBCD and DOFFB) and output pin for melody/alarm generator (MLDALM). Above setting is used the function register PDFC.

Figure 3.5.27 Port D

Port D register

				FUIL	Diegistei				
		7	6	5	4	3	2	1	0
PD (0029H)	Bit symbol	PD7		/	PD4	PD3	PD2	PD1	PD0
(002911)	Read/Write	R/W			R/W	R/W	R/W	R/W	R/W
	After reset	1			1	1	1	1	1

Port D function register

		7	6	5	4	3	2	1	0
PDFC	Bit symbol	PD7F	/	/	PD4F	PD3F	PD2F	PD1F	PD0F
(002AH)	Read/Write	W			W	W	W	W	W
	After reset	0		/	0	0	0	0	0
	Function	0: Port			0: Port	0: Port	0: Port	0: Port	0: Port
		1: MLDALM			1: DOFFB	1: DLEBCD	1: D3BFR	1: D2BLP	1: D1BSCP

Note: Read-modify-write is prohibited for the registers PDFC.

Figure 3.5.28 Registers for Port D

3.6 Chip Select/Wait Controller

On the TM91C025, four user-specifiable address areas (CS0 to CS3) can be set. The data bus width and the number of waits can be set independently for each address area (CS0 to CS3 and others).

The pins $\overline{\text{CS0}}$ to $\overline{\text{CS3}}$ (which can also function as port pins P60 to P63) are the respective output pins for the areas CS0 to CS3. When the CPU specifies an address in one of these areas, the corresponding $\overline{\text{CS0}}$ to $\overline{\text{CS3}}$ pin outputs the chip select signal for the specified address area (in ROM or SRAM). However, in order for the chip select signal to be output, the port 6 function register P6FC must be set.

 $\overline{\text{CS2A}}$ to $\overline{\text{CS2C}}$ (CS pin except $\overline{\text{CS0}}$ to $\overline{\text{CS3}}$) are made by MMU.

These pins is \overline{CS} pin that area and BANK value is fixed without concern in setting of CS/WAIT controller.

The areas CS0 to CS3 are defined by the values in the memory start address registers MSAR0 to MSAR3 and the memory address mask registers MAMR0 to MAMR3.

The chip select/wait control registers B0CS to B3CS and BEXCS should be used to specify the master enable/disable status the data bus width and the number of waits for each address area.

The input pin controlling these states is the bus wait request pin (\overline{WAIT}) .

3.6.1 Specifying an Address Area

The CS0 to CS3 address areas are specified using the start address registers (MSAR0 to MSAR3) and memory address mask registers (MAMR0 to MAMR3).

At each bus cycle, a compare operation is performed to determine if the address on the specified a location in the CS0 to CS3 area. If the result of the comparison is a match, this indicates an access to the corresponding CS area. In this case, the $\overline{CS0}$ to $\overline{CS3}$ pin outputs the chip select signal and the bus cycle operates in accordance with the settings in chip select/wait control register B0CS to B3CS. (See 3.6.2, Chip Select/Wait Control Registers.)

(1) Memory start address registers

Figure 3.6.1 shows the memory start address registers. The memory start address registers MSAR0 to MSAR3 set the start addresses for the CS0 to CS3 areas. Set the upper 8 bits (A23 to A16) of the start address in <S23:16>. The lower 16 bits of the start address (A15 to A0) are permanently set to 0. Accordingly, the start address can only be set in 64-Kbyte increments, starting from 000000H. Figure 3.6.2 shows the relationship between the start address and the start address register value.

		7	6	5	4	3	2	1	0
MSAR0 /MSAR1	Bit symbol	S23	S22	S21	S20	S19	S18	S17	S16
(00C8H)/ (00CAH)	Read/Write				R/	W			
MSAR2 /MSAR3	After reset	1	1	1	1	1	1	1	1
(00CCH)/ (00CEH)	Function			Determ	ines A23 to A	A16 of start a	ddress.		
					•				

Memory Start Address Registers (for areas CS0 to CS3)

→ Sets start addresses for areas CS0 to CS3.

Figure 3.6.2 Relationship between Start Address and Start Address Register Value

(2) Memory address mask registers

Figure 3.6.3 shows the memory address mask registers. Memory address mask registers MAMR0 to MAMR3 are used to set the size of the CS0 to CS3 areas by specifying a mask for each bit of the start address set in memory start address registers MAMR0 to MAMR3. The compare operation used to determine if an address is in the CS0 to CS3 areas is only performed for bus address bits corresponding to bits set to 0 in these registers. Also, the address bits that can be masked by MAMR0 to MAMR3 differ between CS0 to CS3 areas. Accordingly, the size that can be each area is different.

					- 3	(
	/	7	6	5	4	3	2	1	0				
MAMR0	Bit symbol	V20	V19	V18	V17	V16	V15	V14 to 9	V8				
(00C9H)	Read/Write		R/W										
	After reset	1	1 1 1 1 1 1 1 1										
	Function		Sets size of CS0 area. 0: Used for address compare										

Memory Address Mask Register (for CS0 area)

Range of possible settings for CS0 area size: 256 bytes to 2 Mbytes

		7	6	5	4	3	2	1	0		
MAMR1	Bit symbol	V21	V20	V19	V18	V17	V16	V15 to 9	V8		
(00CBH) Read/Write R/W											
	After reset 1 1 1 1 1 1 1 1										
	Function	ion Sets size of CS1 area. 0: Used for address compare									

Memory Address Mask Register (CS1)

Range of possible settings for CS1 area size: 256 bytes to 4 Mbytes.

	/	7	6	5	4	3	2	1	0
MAMR2 / MAMR3 (00CDH) / (00CFH)	Bit symbol	V22	V21	V20	V19	V18	V17	V16	V15
	Read/Write				R/	W			
	After reset	1	1	1	1	1	1	1	1
	Function		Sets	size of CS2 (or CS3 area	0. Used for	address cor	nnare	

Memory Address Mask Register (CS2, CS3)

Range of possible settings for CS2 and CS3 area sizes: 32 Kbytes to 8 Mbytes.

Figure 3.6.3 Memory Address Mask Registers

(3) Setting memory start addresses and address areas

Figure 3.6.4 show an example of specifying a 64-Kbyte address area starting from 010000H using the CS0 areas.

Set 01H in memory start address register MSAR0<S23:16> (Corresponding to the upper 8-bits of the start address). Next, calculate the difference between the start address and the anticipated end address (01FFFFH). Bits 20 to 8 of the result correspond to the mask value to be set for the CS0 area. Setting this value in memory address mask register MAMR0<V20:8>sets the area size this example sets 07H in MAMR0 to specify a 64-Kbyte area.

Figure 3.6.4 Example Showing How to Set the CS0 Area

After a reset, MSAR0 to MSAR3 and MAMR0 to MAMR3 are set to FFH. B0CS<B0E>, B1CS<B1E> and B3CS<B3E> are reset to 0. This disabling the CS0, CS1 and CS3 areas. However, as B2CS<B2M> to 0 and B2CS<B2E> to 1, CS2 is enabled from 000FE0H to 000FFFH and 001000H to FFFFFFH in TMP91C025. Also, the bus width and number of waits specified in BEXCS are used for accessing addresses outside the specified CS0 to CS3 area. (See 3.6.2, Chip Select/Wait Control Registers.)

(4) Address area size specification

Table 3.6.1 shows the relationship between CS area and area size. Triangle (Δ) indicates areas that cannot be set by memory start address register and address mask register combinations. When setting an area size using a combination indicated by Δ , set the start address mask register in the desired steps starting from 000000H.

If the CS2 area is set to 16 Mbytes or if two or more areas overlap, the smaller CS area number has the higher priority.

Example: To set the area size for CS0 to 128 Kbytes:

(a) Valid start addresses

Table 3.6.1 Valid Area Sizes	for Each CS Area
------------------------------	------------------

Size (Bytes) CS Area	256	512	32 K	64 K	128 K	256 K	512 K	1 M	2 M	4 M	8 M
CS0	0	0	0	0	Δ	Δ	Δ	Δ	Δ		
CS1	0	0		0	Δ	Δ	Δ	Δ	Δ	Δ	
CS2			0	0	Δ	Δ	Δ	Δ	Δ	Δ	Δ
CS3			0	0	Δ	Δ	Δ	Δ	Δ	Δ	Δ

Note: ∆: This symbol indicates areas that cannot be set by memory start address register and address mask register combinations.

3.6.2 Chip Select/Wait Control Registers

Figure 3.6.5 lists the chip select/wait control registers.

The master enable/disable, chip select output waveform, data bus width and number of wait states for each address area (CS0 to CS3 and others) are set in their respective chip select/wait control registers, BOCS to B3CS and BEXCS.

		7	6	5	4	3	2	1	0	
B0CS	Bit symbol	B0E	/	B0OM1	B0OM0	B0BUS	B0W2	B0W1	B0W0	
(00C0H)	Read/Write	W	\backslash			V				
	After reset	0		0	0	0	0	0	0	
	Function	0: Disable 1: Enable		Chip select o waveform sel 00: For ROM	ection.	Data bus width 0: 16 bits	Number of wa 000: 2 waits 001: 1 wait		+ N) waits	
				01: 10: 11: Don't d		1: 8 bits		010: (1 + N) waits 110: 4 waits		
B1CS	Bit symbol	B1E		B1OM1	B1OM0	B1BUS	B1W2	B1W1	B1W0	
(00C1H)	Read/Write	W				٧	V			
	After reset	0	/	0	0	0	0	0	0	
	Function	0: Disable 1: Enable		Chip select o waveform sel 00: For ROM 01: 10: 11: Don't o	ection. /SRAM	Data bus width 0: 16 bits 1: 8 bits	Number of waits 000: 2 waits 100: (0 + N) waits 001: 1 wait 101: 3 waits 010: (1 + N) waits 110: 4 waits 011: 0 waits 111: 8 waits			
B2CS	Bit symbol	B2E	B2M	B2OM1	B2OM0	B2BUS	B2W2 B2W1 B2W0			
(00C2H)	Read/Write				V	V				
	After reset	1	0	0	0	0	0	0	0	
	Functions	0: Disable 1: Enable	CS2 area selection. 0: 16-Mbyte area 1: CS area	Chip select o waveform sel 00: For ROM 01: 10: 11: Don't o	ection. /SRAM	Data bus width 0: 16 bits 1: 8 bits	000: 2 waits 001: 1 wait	001: 1 wait 101: 3 waits 010: (1 + N) waits 110: 4 waits		
B3CS	Bit symbol	B3E	/	B3OM1	B3OM0	B3BUS	B3W2	B3W1	B3W0	
(00C3H)	Read/Write	W				V	V	•		
	After reset	0	/	0	0	0	0	0	0	
	Functions	0: Disable 1: Enable		Chip select o waveform sel 00: For ROM 01: 10: 11: Don't o	ection. /SRAM	Data bus width 0: 16 bits 1: 8 bits	Number of wa 000: 2 waits 001: 1 wait 010: (1 + N) v 011: 0 waits	100: (0 101: 3 v	vaits	
BEXCS	Bit symbol				/	BEXBUS	BEXW2	BEXW1	BEXW0	
(00C7H)	Read/Write	/	/	/	/		V	V		
	After reset					0	0	0	0	
	Functions					Data bus width 0: 16 bits 1: 8 bits	Number of wa 000: 2 waits 001: 1 wait 010: (1 + N) w 011: 0 waits	100: (0 101: 3 v	vaits	
Г	Master enable b	it 🗸		hip select outp	ut waveform		Number o	↓ of address area	a waits	
F	0 Disable (See 3.6.2, (3) Wait control						ntrol.)			
L	1 Enable		—' [01			-> Data hu	width selection		
Г	CS2 area sele			10 Don't ca 11	re			t data bus		
F	0 16-Mbyte a		L	11				data bus		
	1 Specified a	address area								

Note: Read-modify-write is prohibited for the registers B0CS, B1CS, B2CS, B3CS and BEXCS.

Figure 3.6.5 Chip Select/Wait Control Registers

(1) Master enable bits

Bit 7 (<B0E>, <B1E>, <B2E> or <B3E>) of a chip select/wait control register is the master bit which is used to enable or disable settings for the corresponding address area. Writing 1 to this bit enables the settings. Reset disables (Sets to 0)<B0E>, <B1E>, <B3E>, and enabled (sets to 1) <B2E>. This enables area CS2 only.

(2) Data bus width selection

Bit 3 (<B0BUS>, <B1BUS>, <B2BUS>, <B3BUS> or <BEXBUS>) of a chip select/wait control register specifies the width of the data bus. This bit should be set to 0 when memory is to be accessed using a 16-bit data bus and to 1 when an 8-bit data bus is to be used.

This process of changing the data bus width according to the address being accessed is known as dynamic bus sizing. For details of this bus operation see Table 3.6.2.

						3.6.2 L	yna		5 0	ZIII	9								
	SRWR																		
0	<u>SRUB</u>	:	т	Т	Γ	т	Γ	т	_	т	т	-	т				_	_	т
Control for WRITE Cycle	<u>SRLB</u>		L	L	н	L	L	L	т	L		_	_				т	Γ	Γ
l for WRI	HWR	:	г	Т	Γ	н	L	т	L	т	т		т				_	L	Т
Contro	WR		L	Γ	Т	L	Г	L	н	Γ			_				т		Γ
	RD		I I I I I I I I I I I I I I I I I I I																
	R <u>W</u>																		
	SRWR		т																
-	<u>SRUB</u>		г	Н	L	т	Γ	т	_	т	т		т			T	_	_	т
O Cycle	SRLB		_	Ţ	т	L	_	L	т	L			_				т	_	_
Control for READ Cycle	HWR								т										
ontrol f	WR								т										
O																			
-	R/W Ē								Т										
		0	0	0	×	0 8	0	0 8	×	8	0 08 16 24	16	0	8	16	24	×	8	24
CPU Data	D7 to D0	p4-7d	0q-7d	0q-7d	XXXX	b7-b0 b15-b8	p7-b0	b7-b0 b15-b8	XXXX	b15-b8	b7-b0 b15-b8 b23-b16 b31-b24	b7-b0 b23-b16	p7-b0	b15-b8	b23-b16	D31-D24	XXXX	b15-b8	b31-b24
СРU	D15 to D8	ХХХХ	хххх	XXXX	b7-b0	XXXX XXXX	b15-b8	XXXX XXXX	0d-7d	XXXX	× × × × × × ×	b15-b8 b31-b24	XXXX	XXXX	XXXX	XXXX	b7-b0	b23-b16	XXXX
СРU	Address	2n + 0	2n + 0	2n + 1	2n + 1	2n + 0 2n + 1	2n + 0	2n + 1 2n + 2	2n + 1	2n + 2	2n + 0 2n + 1 2n + 2 2n + 3	2n + 0 2n + 2	2n + 1	2n + 2	2n + 3	zn + 4	2n + 1	2n + 2	2n + 4
Memory		8 bits	16 bits	8 bits	16 bits	8 bits	16 bits	8 bits		10 015	8 bits	16 bits			sillo o	_	16 bits		
Operand N	s		(Even number)		(Udd number)	2n + 0 (Even	(2n + 1 (Odd				number)			2n + 1 (Odd				
Operand	Width			8 bits				16 bits					32 bits						

Table 3.6.2 Dynamic Bus Sizing

xxxx: Indicates that the input data from these bits are ignored during a read. During a write, indicates that the bus for these bits goes too high-impedance; also, that the write strobe signal for the bus remains inactive.

(3) Wait control

Bits 0 to 2 (<B0W0:2>, <B1W0:2>, <B2W0:2>, <B3W0:2>, <BEXW0:2>) of a chip select/wait control register specify the number of waits that are to be inserted when the corresponding memory area is accessed.

The following types of wait operation can be specified using these bits. Bit settings other than those listed in the table should not be made.

<bxw2:0></bxw2:0>	No. of Waits	Wait Operation
000	2 waits	Inserts a wait of 2 states, irrespective of the \overline{WAIT} pin state.
001	1 wait	Inserts a wait of 1 state, irrespective of the WAIT pin state.
010	(1 + N) waits	Samples the state of the \overline{WAIT} pin after inserting a wait of one state. If the \overline{WAIT} pin is low, the waits continue and the bus cycle is extended until the pin goes high.
011	0 waits	Ends the bus cycle without a wait, regardless of the WAIT pin state.
100	(0 + N) waits	Samples the state of the \overline{WAIT} pin without inserting a wait. If the \overline{WAIT} pin is low, the waits continue and the bus cycle is extended until the pin goes high.
101	3 waits	Inserts a wait of 3 states, irrespective of the WAIT pin state.
110	4 waits	Inserts a wait of 4 states, irrespective of the WAIT pin state.
111	8 waits	Inserts a wait of 8 states, irrespective of the $\overline{\text{WAIT}}$ pin state.

Table 3.6.3 Wait Operation Settings

A Reset sets these bits to 000 (2 waits).

(4) Bus width and wait control for an area other than CS0 to CS3

The chip select/wait control register BEXCS controls the bus width and number of waits when memory locations which are not in one of the four user-specified address areas (CS0 to CS3) are accessed. The BEXCS register settings are always enabled for areas other than CS0 to CS3.

(5) Selecting 16-Mbyte area/specified address area

Setting B2CS<B2M> (bit 6 of the chip select/wait control register for CS2) to 0 designates the 16-Mbyte area 000FE0H to 000FFFH, 003000H to FFFFFFH as the CS2 area. Setting B2CS<B2M> to 1 designates the address area specified by the start address register MSAR2 and the address mask register MAMR2 as CS2 (e.g., if B2CS<B2M> = 1, CS2 is specified in the same manner as CS0, CS1 and CS3 are).

A reset clears this bit to 0, specifying CS2 as a 16-Mbyte address area.

(6) Procedure for setting chip select/wait control

When using the chip select/wait control function, set the registers in the following order:

- Set the memory start address registers MSAR0 to MSAR3. Set the start addresses for CS0 to CS3.
- Set the memory address mask registers MAMR0 to MAMR3. Set the sizes of CS0 to CS3.
- Set the chip select/wait control registers B0CS to B3CS. Set the chip select output waveform, data bus width, number of waits and master enable/disable status for $\overline{\text{CS0}}$ to $\overline{\text{CS3}}$.

The CS0 to S3 pins can also function as pins P60 to P63. To output a chip select signal using one of these pins, set the corresponding bit in the port 6 function register P6FC to 1.

If a CS0 to S3 address is specified which is actually an internal I/O and RAM area address, the CPU accesses the internal address area and no chip select signal is output on any of the $\overline{\text{CS0}}$ to $\overline{\text{CS3}}$ pins.

(Setting example)

In this example CS0 is set to be the 64-Kbyte area 010000H to 01FFFFH. The bus width is set to 16 bits and the number of waits is set to 0.

MSAR0 = 01H---- Start address: 010000H MAMR0 = 07H---- Address area: 64 Kbytes B0CS = 83H----- ROM/SRAM, 16-bit data bus, zero waits, CS0 area settings enabled.

3.6.3 Connecting External Memory

Figure 3.6.7 shows an example of how to connect external memory to the TMP91C025. In this example the ROM is connected using a 16-bit bus. The RAM and I/O are connected using an 8-bit bus.

Figure 3.6.7 Example of External Memory Connection (ROM uses 16-bit bus: RAM and I/O use 8-bit bus.)

A reset clears all bits of the port 6 control register P6CR and the port 6 function register P6FC to 0 and disables output of the CS signal. To output the CS signal, the appropriate bit must be set to 1.

Figure 3.6.8 How to Connect to 16-Bit SRAM for TMP91C025

3.7 8-Bit Timers (TMRA)

The TMP91C025 features 4 channel (TMRA0 to TMRA3) built-in 8-bit timers. These timers are paired into 2 modules: TMRA01 and TMRA23. Each module consists of 2 channels and can operate in any of the following 4 operating modes.

- 8-bit interval timer mode
- 16-bit interval timer mode
- 8-bit programmable square wave pulse generation output mode (PPG: Variable duty cycle with variable period)
- 8-bit pulse width modulation output mode (PWM: Variable duty cycle with constant period)

Figure 3.7.1 to Figure 3.7.2 Show block diagrams for TMRA01 and TMRA23.

Each channel consists of an 8-bit up counter, an 8-bit comparator and an 8-bit timer register. In addition, a timer flip-flop and a prescaler are provided for each pair of channels.

The operation mode and timer flip-flops are controlled by 5 bytes registers SFRs (Special-function registers).

Each of the 2 modules (TMRA01 and TMRA23) can be operated independently. All modules operate in the same manner; hence only the operation of TMRA01 is explained here.

The contents of this chapter are as follows.

- 3.7.1 Block Diagrams
- 3.7.2 Operation of Each Circuit
- 3.7.3 SFRs
- 3.7.4 Operation in Each Mode
 - (1) 8-bit timer mode
 - (2) 16-bit timer mode
 - (3) 8-bit PPG (Programmable pulse generation) output mode
 - (4) 8-bit PWM (Pulse width modulation) output mode
 - (5) Setting for each mode

	Module	TMRA01	TMRA23
External	Input pin for external clock	TA0IN (shared with PB4)	None
pin	Output pin for timer flip-flop	TA1OUT (shared with PA1)	TA3OUT (shared with PA2)
	Timer run register	TA01RUN (0100H)	TA23RUN (0108H)
SFR	Timer register	TA0REG (0102H) TA1REG (0103H)	TA2REG (010AH) TA3REG (010BH)
(address)	Timer mode register	TA01MOD (0104H)	TA23MOD (010CH)
	Timer flip-flop control register	TA1FFCR (0105H)	TA3FFCR (010DH)

Table 3.7.1	Registers and Pins for Each Module
-------------	------------------------------------

3.7.1 Block Diagrams

Figure 3.7.1 TMRA01 Block Diagram

Figure 3.7.2 TMRA23 Block Diagram

3.7.2 Operation of Each Circuit

(1) Prescalers

A 9-bit prescaler generates the input clock to TMRA01.

The ϕ TO as the input clock to prescaler is a clock divided by 4 which selected using the prescaler clock selection register SYSCR0<PRCK1:0>.

The prescaler's operation can be controlled using TA01RUN<TA01PRUN> in the timer control register. Setting <TA01PRUN> to 1 starts the count; setting <TA01PRUN> to 0 clears the prescaler to zero and stops operation. Table 3.7.2 shows the various prescaler output clock resolutions.

				at	fc = 36 MHz, fs	= 32.768 kHz
System Clock	Prescaler Clock	Gear Value	Clock Resolu	tion		
Selection SYSCR1 <sysck></sysck>	Selection SYSCR0 <prck1:0></prck1:0>	SYSCR1 <gear2:0></gear2:0>	φT1	φT4	φT16	φT256
1 (fs)		XXX	2 ³ /fs (244 μs)	2 ⁵ /fs (977 μs)	2 ⁷ /fs (3.9 ms)	2 ¹¹ /fs (62.5 ms)
		000 (fc)	2 ³ /fc (0.2 μs)	2 ⁵ /fc (0.9 μs)	2 ⁷ /fc (3.6 μs)	2 ¹¹ /fc (56.9 μs)
	00	001 (fc/2)	2 ⁴ /fc (0.4 μs)	2 ⁶ /fc (1.8 μs)	2 ⁸ /fc (7.1 μs)	2 ¹² /fc (113.8 μs)
$O(f_{0})$	(f _{FPH})	010 (fc/4)	2 ⁵ /fc (0.9 μs)	2 ⁷ /fc (3.6 μs)	2 ⁹ /fc (14.2 μs)	2 ¹³ /fc (227.6 μs)
0 (fc)		011 (fc/8)	2 ⁶ /fc (1.8 μs)	2 ⁸ /fc (7.1 μs)	2 ¹⁰ /fc (28.4 μs)	2 ¹⁴ /fc (455.1 μs)
		100 (fc/16)	2 ⁷ /fc (3.6 μs)	2 ⁹ /fc (14.2 μs)	2 ¹¹ /fc (56.9 μs)	2 ¹⁵ /fc (910.2 μs)
	10 (fc/16 CLOCK)	XXX	2 ⁷ /fc (3.6 μs)	2 ⁹ /fc (14.2 μs)	2 ¹¹ /fc (56.9 μs)	2 ¹⁵ /fc (910.2 μs)

Table 3.7.2 Prescaler Output Clock Resolution

xxx: Don't care

(2) Up counters (UC0 and UC1)

These are 8-bit binary counters which count up the input clock pulses for the clock specified by TA01MOD.

The input clock for UC0 is selectable and can be either the external clock input via the TA0IN pin or one of the three internal clocks ϕ T1, ϕ T4 or ϕ T16. The clock setting is specified by the value set in TA01MOD<TA01CLK1:0>.

The input clock for UC1 depends on the operation mode. In 16-bit timer mode, the overflow output from UC0 is used as the input clock. In any mode other than 16-bit timer mode, the input clock is selectable and can either be one of the internal clocks ϕ T1, ϕ T16 or ϕ T256, or the comparator output (The match detection signal) from TMRA0.

For each interval timer the timer operation control register bits TA01RUN<TA0RUN> and TA01RUN<TA1RUN> can be used to stop and clear the up counters and to control their count. A reset clears both up counters, stopping the timers.

(3) Timer registers (TA0REG and TA1REG)

These are 8-bit registers which can be used to set a time interval. When the value set in the timer register TA0REG or TA1REG matches the value in the corresponding up counter, the comparator match detect signal goes active. If the value set in the timer register is 00H, the signal goes active when the up counter overflows.

The TAOREG are double buffer structure, each of which makes a pair with register buffer.

The setting of the bit TA01RUN<TA0RDE> determines whether TA0REG's double buffer structure is enabled or disabled. It is disabled if $\langle TA0RDE \rangle = 0$ and enabled if $\langle TA0RDE \rangle = 1$.

When the double buffer is enabled, data is transferred from the register buffer to the timer register when a 2^n overflow occurs in PWM mode, or at the start of the PPG cycle in PPG mode. Hence the double buffer cannot be used in timer mode.

A reset initializes <TA0RDE> to 0, disabling the double buffer. To use the double buffer, write data to the timer register, set <TA0RDE> to 1, and write the following data to the register buffer. Figure 3.7.3 show the configuration of TA0REG.

Figure 3.7.3 Configuration of TA0REG

Note: The same memory address is allocated to the timer register and the register buffer. When <TAORDE> = 0, the same value is written to the register buffer and the timer register; when <TAORDE> = 1, only the register buffer is written to.

The address of each timer register is as follows.

TA0REG: 000102H	TA1REG: 000103H
TA2REG: 00010AH	TA3REG: 00010BH

All these registers are write only and cannot be read.

(4) Comparator (CP0)

The comparator compares the value in an up counter with the value set in a timer register. If they match, the up counter is cleared to zero and an interrupt signal (INTTA0 or INTTA1) is generated. If timer flip-flop inversion is enabled, the timer flip-flop is inverted at the same time.

(5) Timer flip-flop (TA1FF)

The timer flip-flop (TA1FF) is a flip-flop inverted by the match detects signal (8-bit comparator output) of each interval timer.

Whether inversion is enabled or disabled is determined by the setting of the bit TA1FFCR<TA1FFIE> in the timer flip-flop control register.

A Reset clears the value of TA1FF1 to 0.

Writing 01 or 10 to TA1FFCR<TA1FFC1:0> sets TA1FF to 0 or 1. Writing 00 to these bits inverts the value of TA1FF (This is known as software inversion).

The TA1FF signal is output via the TA1OUT pin (Concurrent with PA1). When this pin is used as the timer output, the timer flip-flop should be set beforehand using the port A function register PAFC2.

Note: When the double buffer is enabled for an 8-bit timer in PWM or PPG mode, caution is required as explained below.

If new data is written to the register buffer immediately before an overflow occurs by a match between the timer register value and the up-counter value, the timer flip-flop may output an unexpected value.

For this reason, make sure that in PWM mode new data is written to the register buffer by six cycles ($f_{SYS} \times 6$) before the next overflow occurs by using an overflow interrupt.

In the case of using PPG mode, make sure that new data is written to the register buffer by six cycles before the next cycle compare match occurs by using a cycle compare match interrupt.

Example when using PWM mode

3.7.3 SFRs

I2TA01:Operation in IDLE2 modeTA01PRUN:Run prescalerTA1RUN:Run TMRA1TA0RUN:Run TMRA0

Note: The values of bits 4, 5, 6 of TA01RUN are undefined when read.

TMRA23 Run Register

7 6 5 4 3 2 1 0 TA23RUN TA3RUN Bit symbol TA2RDE I2TA23 TA23PRUN TA2RUN (0108H) Read/Write R/W R/W After reset 0 0 0 0 0 IDLE2 8-bit timer run/stop control Function Double buffer 0: Stop 0: Stop and clear 0: Disable 1: Operate 1: Run (Count up) 1: Enable TA2REG double buffer control Timer run/stop control 0 Disable 0 Stop and clear 1 Enable 1 Run (Count up) Operation in IDLE2 mode I2TA23: TA23PRUN: Run prescaler TA3RUN: Run TMRA3 TA2RUN: Run TMRA2

Note: The values of bits 4, 5, 6 of TA23RUN are undefined when read.

Figure 3.7.4 TMRA Registers

Read/Write R/W	
After reset 0 0 0 0 0 0 0 0	0
	0
Function Operation mode PWM cycle Source clock for TMRA1 Source clock for TM	TMRA0
00: 8-bit timer mode 00: Reserved 00: TA0TRG 00: TA0IN pin	
01: 16-bit timer mode 01: 2^{6} 01: ϕ T1 01: ϕ T1	
10: 8-bit PPG mode 10: 2 ⁷ 10: φT16 10: φT4	
11: 8-bit PWM mode 11: 2 ⁸ 11: φT256 11: φT16	
TMRA0 source clock selection	
00 TA0IN (External input)	
01 \u00f7Allin (External input)	
10 \phiT4 (Prescaler)	
11 \phiT16 (Prescaler)	
TMRA1 source clock selection	
	1MOD
	01M1:0> = 01
00 Comparator Overf output from TMRA0 TMRA	erflow output from
	KAU
10 \phiT16	
	-bit timer mode)
→ PWM cycle selection	
00 Reserved	
01 $2^6 \times \text{source clock}$	
10 $2^7 \times \text{source clock}$	
11 $2^8 \times \text{source clock}$	
TMRA01 operation mode selection	
00 Two 8-bit timers	
01 16-bit timer	
10 8-bit PPG	
11 8-bit PWM (TMRA0) + 8-bit timer	er (TMRA1)

TMRA01 Mode Register

Figure 3.7.5 TMRA Registers

		7	6	5	4	3	2	1	0	
TA23MOD	Bit Symbol	TA23M1	TA23M0	PWM21	PWM20	TA3CLK1	TA3CLK0	TA2CLK	1 TA2CLK0	
(010CH)	Read/Write				R	(W				
	After reset	0	0	0	0	0	0	0	0	
	Function	Operation n	node	PWM cycle		TMRA3 clo	ck for TMRA3	TMRA2 clo	ock for TMRA2	
		00: 8-bit timer mode		00: Reserve	ed	00: TA2TI	RG	00: Reser	rved	
		01: 16-bit tii		01: 2 ⁶		01:		01: φT1		
		10: 8-bit PP		10: 2 ⁷		10:		10:		
L		11: 8-bit PV	VM mode	11: 2 ⁸		11:		11:		
				<u> </u>			•			
						TMRA2 so	urce clock sele	ection		
						00 E	o not set			
							T1 (Prescaler)			
							T4 (Prescaler)			
						11 ¢	T16 (Prescale	r)		
					$ \square $	TMRA3 so	urce clock sele	ection		
						Т	A23MOD	-	TA23MOD	
						<	TA23M1:0> ≠	01 ·	<ta23m1:0> = 01</ta23m1:0>	
							comparator ou	tput	Overflow output fro	
							om TMRA2		TMRA2	
							T1			
							T16			
							T256		(16-bit timer mode)	
				L		PWM cycle				
							leserved			
							$\frac{6}{2}$ × source clo			
							⁷ × source clo			
							⁸ × source clo			
						TMRA23 o	peration mode	selection		
						00 T	wo 8-bit timer	s		
						01 1	6-bit timer			
						10 8	-bit PPG			
						11 8	-bit PWM (TM	RA2) + 8-b	oit timer (TMRA3)	

TMRA23 Mode Register

		7	6	5	4	3	2	1	0	
TA1FFCR	Bit symbol	/		/		TA1FFC1	TA1FFC0	TA1FFIE	TA1FFIS	
(0105H)	Read/Write					R	W	R/W		
	After reset					1	1	0	0	
	Function					00: Invert T	A1FF	TA1FF	TA1FF	
Read-modify -write instructions are prohibited.						01: Set TA1 10: Clear T 11: Don't ca	A1FF	control for inversion 0: Disable 1: Enable	inversion select 0: TMRA0 1: TMRA1	
									-flop 1 (TA1FF	
							0 Inver 1 Inver version of TA 0 Disab 1 Enabl	sion by TMR sion by TMR 1FF led ed FF	A1	
							0 Inver 1 Inver version of TA 0 Disab 1 Enabl ontrol of TA1 00 Invert	sion by TMR sion by TMR 1FF led ed FF s the value o	A0 A1	
							0 Inver 1 Inver version of TA 0 Disab 1 Enabl ontrol of TA1 00 Invert 01 Sets	sion by TMR sion by TMR 1FF led ed FF	A0 A1	

TMRA1 Flip-Flop Control Register

Figure 3.7.7 TMRA Registers

		7	6	5	4	3	2	1	0
TA3FFCR	Bit symbol					TA3FFC1	TA3FFC0	TA3FFIE	TA3FFIS
(010DH)	Read/Write			/		R/	W	R	/W
	After reset					1	1	0	0
	Function					00: Invert T	A3FF	TA3FF	TA3FF
Read-modify						01: Set TA3	BFF	control for	inversion
-write						10: Clear T	A3FF	inversion	select
instructions						11: Don't ca	are	0: Disable	0: TMRA2
are								1: Enable	1: TMRA3
prohibited.									
							on't care ex 0 Inve 1 Inve Inversion of 0 D	sabled nabled	mer mode) A2
							00 In	verts the valu	e of TA3FF
							01 S	ets TA3FF to	1
							10 C	ears TA3FF t	o 0
							11 D	on't care	

	TMRA register															
		7	6	5	4	3	2	1	0							
TA0REG	bit Symbol –															
(0102H)	Read/Write	W														
	After reset	Undefined														
TA1REG	bit Symbol	pit Symbol –														
(0103H)	Read/Write	W														
	After reset	Undefined														
TA2REG	bit Symbol				-	-										
(010AH)	Read/Write				V	V										
	After reset	Undefined														
TA3REG	bit Symbol				-	_										
(010BH)	Read/Write				V	V										
	After reset				Unde	fined										

Note: The above registers are prohibited read-modify-write instruction.

Figure 3.7.9 TMRA Registers

3.7.4 Operation in Each Mode

(1) 8-bit timer mode

Both TMRA0 and TMRA1 can be used independently as 8-bit interval timers. Setting its function or counter data for TMRA0 and TMRA1 after stop these registers.

a. Generating interrupts at a fixed interval (Using TMRA1)

To generate interrupts at constant intervals using TMRA1 (INTTA1), first stop TMRA1 then set the operation mode, input clock and a cycle to TA01MOD and TA1REG register, respectively. Then, enable the interrupt INTTA1 and start TMRA1 counting.

Example: To generate an INTTA1 interrupt every 8.0 µs at fc = 36 MHz, set each register as follows:

* Clock state	System clock: High-frequency (fc)
	Prescaler clock: fFPH

	MSB						L	.SB	
_	7	6	5	4	3	2	1	0	
TA01RUN	\leftarrow -	Х	Х	Х	-	-	0	-	Stop TMRA1 and clear it to 0.
TA01MOD	← 0	0	Х	Х	0	1	Х	Х	Select 8-bit timer mode and select $\phi T1$
									$((2^{3}/fc)s at fc = 36 MHz) as the input clock.$
TA1REG	← 0	0	1	0	1	0	0	0	Set TA1REG to 8.0 $\mu s \div \phi T1(2^3/fc) \approx 40 = 28H$
INTETA01	← X	1	0	1	-	-	-	-	Enable INTTA1 and set it to level 5.
_TA01RUN	\leftarrow -	Х	Х	Х	-	1	1	-	Start TMRA1 counting.

X: Don't care, -: No change

Select the input clock using Table 3.7 2.

Note: The input clocks for TMRA0 and TMRA1 are different from as follows. TMRA0: TA0IN input, ϕ T1, ϕ T4 or ϕ T16 TMRA1: Match output of TMRA0, ϕ T1, ϕ T16, ϕ T256 b. Generating a 50% duty ratio square wave pulse

The state of the timer flip-flop (TA1FF) is inverted at constant intervals and its status output via the timer output pin (TA1OUT).

Example: To output a 1.2-µs square wave pulse from the TA1OUT pin at fc = 36 MHz, use the following procedure to make the appropriate register settings. This example uses TMRA1; however, either TMRA0 or TMRA1 may be used.

		*	C	yster lock		: 1 (fc)		quency (fc	;)
		7	6	5	4	3	2	1	0	
TA01RUN	←	_	Х	Х	Х	-	-	0	_	Stop TMRA1 and clear it to 0.
TA01MOD	←	0	0	Х	Х	0	1	-	-	Select 8-bit timer mode and select ϕ T1 ((2 ³ /fc)s at fc = 36
										MHz) as the input clock.
TA1REG	←	0	0	0	0	0	0	1	1	Set the timer register to 1.2 μ s ÷ ϕ T1(2 ³ /fc) ÷ 2 = 3
TA1FFCR	←	Х	Х	Х	Х	1	0	1	1	Clear TA1FF to 0 and set it to invert on the match detects
										signal from TMRA1.
PAFC2	←	Х	Х	Х	Х	_	_	1	_	Set PA1 to function as the TA1OUT pin.
TA01RUN	←	-	Х	Х	Х	-	1	1	-	Start TMRA1 counting.
X: Don't ca	are, -	-: N	o cl	nan	ge					

Figure 3.7.10 Square Wave Output Timing Chart (50% duty)

c. Making TMRA1 count up on the match signal from the TMRA0 comparator

Select 8-bit timer mode and set the comparator output from TMRA0 to be the input clock to TMRA1.

Figure 3.7.11 TMRA1 Count Up on Signal from TMRA0

(2) 16-bit timer mode

A 16-bit interval timer is configured by pairing the two 8-bit timers TMRA0 and TMRA1.

To make a 16-bit interval timer in which TMRA0 and TMRA1 are cascaded together, set TA01MOD<TA01M1:0> to 01.

In 16-bit timer mode, the overflow output from TMRA0 is used as the input clock for TMRA1, regardless of the value set in TA01MOD<TA01CLK1:0>. Table 3.7.2 shows the relationship between the timer (Interrupt) cycle and the input clock selection.

LSB 8-bit set to TA0REG and MSB 8-bit is for TA1REG. Please keep setting TA0REG first because setting data for TA0REG inhibit its compare function and setting data for TA1REG permit it.

(Setting example)

To generate an INTTA1 interrupt every 0.22 s at fc = 36 MHz, set the timer registers TA0REG and TA1REG as follows:

Clock state

System clock: High-frequency (fc) Clock gear: 1 (fc) Prescaler clock: f_{FPH}

If ϕ T16 ((27/fc)s at 36 MHz) is used as the input clock for counting, set the following value in the registers: 0.22 s/(27/fc) μ s \approx 62500 = F424H

(i.e. set TA1REG to F4H and TA0REG to 24H).

As a result, INTTA1 interrupt can be generated every 0.23 [s].

The comparator match signal is output from TMRA0 each time the up counter UC0 matches TA0REG, though the up counter UC0 is not be cleared and also INTTA0 is not generated.

In the case of the TMRA1 comparator, the match detect signal is output on each comparator pulse on which the values in the up counter UC1 and TA1REG match. When the match detect signal is output simultaneously from both the comparators TMRA0 and TMRA1, the up counters UC0 and UC1 are cleared to 0 and the interrupt INTTA1 is generated. Also, if inversion is enabled, the value of the timer flip-flop TA1FF is inverted.

(Example)

When TA1REG = 04H and TA0REG = 80H

(3) 8-bit PPG (Programmable pulse generation) output mode

Square wave pulses can be generated at any frequency and duty ratio by TMRA0. The output pulses may be active low or active high. In this mode TMRA1 cannot be used.

TMRA0 outputs pulses on the TA1OUT pin.

Figure 3.7.13 8-Bit PPG Output Waveforms

In this mode, a programmable square wave is generated by inverting the timer output each time the 8-bit up counter (UC0) matches the value in one of the timer registers TA0REG or TA1REG.

The value set in TA0REG must be smaller than the value set in TA1REG.

Although the up counter for TMRA1 (UC1) is not used in this mode, TA01RUN <TA1RUN> should be set to 1, so that UC1 is set for counting.

Figure 3.7.14 shows a block diagram representing this mode.

Figure 3.7.14 Block Diagram of 8-Bit PPG Output Mode

If the TAOREG double buffer is enabled in this mode, the value of the register buffer will be shifted into TAOREG each time TA1REG matches UC0.

Use of the double buffer facilitates the handling of low-duty waves (when duty is varied).

Figure 3.7.15 Operation of Register Buffer

(Example)

To generate 1/4-duty 50 kHz pulses (at fc = 36 MHz):

System clock: High-frequency (fc) Clock gear: 1 (fc) Prescaler clock: fFPH

Calculate the value which should be set in the timer register.

To obtain a frequency of 50 kHz, the pulse cycle t should be: t = 1/50 kHz = 20 μ s ϕ T1 = (2³/fc)s (at 36 MHz); 20 μ s \div (2³/fc)s \approx 90

Therefore set TA1REG to 90 (5AH) The duty is to be set to 1/4: t × 1/4 = 20 μ s × 1/4 = 5 μ s 5 μ s ÷ (2³/fc)s ≈ 22

Therefore, set TAOREG = 22 = 16H.

_		7	6	5	4	3	2	1	0	
TA01RUN	←	0	Х	Х	Х	-	0	0	0	Stop TMRA0 and TMRA0, 1 and clear it to 0.
TA01MOD	←	1	0	Х	Х	Х	Х	0	1	Set the 8-bit PPG mode, and select ϕ T1 as input clock.
TA0REG	←	0	0	0	1	0	1	1	0	Write 16H
TA1REG	←	0	1	0	1	1	0	1	0	Write 5AH
TA1FFCR	←	Х	Х	Х	Х	0	1	1	Х	Set TA1FF, enabling both inversion and the double buffer.
						-				Writing 10 provides negative logic pulse.
PAFC2	←	Х	Х	Х	Х	-	-	1	-	Set PA1 as the TA1OUT pin.
TA01RUN	←	1	Х	Х	Х	-	1	1	1	Start TMRA0 and TMRA01 counting.

X: Don't care, -: No change

(4) 8-bit PWM (Pulse width modulation) output mode

This mode is only valid for TMRA0. In this mode, a PWM pulse with the maximum resolution of 8 bits can be output.

When TMRA0 is used the PWM pulse is output on the TA1OUT pin (which is also used as P71). TMRA1 can also be used as an 8-bit timer.

The timer output is inverted when the up counter (UC0) matches the value set in the timer register TA0REG or when 2^n counter overflow occurs (n = 6, 7 or 8 as specified by TA01MOD<PWM01:00>). The up counter UC0 is cleared when 2^n counter overflow occurs.

The following conditions must be satisfied before this PWM mode can be used.

Value set in TAOREG < value set for 2^n counter overflow Value set in TAOREG $\neq 0$

Figure 3.7.16 8-Bit PWM Waveforms

Figure 3.7.17 Block Diagram of 8-Bit PWM Mode

In this mode, the value of the register buffer will be shifted into TAOREG if 2^n overflow is detected when the TAOREG double buffer is enabled.

Use of the double buffer facilitates the handling of low duty ratio waves.

Figure 3.7.18 Register Buffer Operation

Example: To output the following PWM waves on the TA1OUT pin at fc = 16 MHz:

Clock state
 System clock: High-frequency (fc)
 Clock gear: 1 (fc)
 Prescaler clock: fFPH

To achieve a 64.0- μ s PWM cycle by setting ϕ T1 to (2³/fc)s (at fc = 36 MHz): 28.4 μ s ÷ (2³/fc)s ≈ 128 = 2ⁿ Therefore n should be set to 7. Since the low-level period is 16.0 μ sec when ϕ T1 = (2³/fc)s, set the following value for TAOREG:

16.0 μ s ÷ (2³/fc)s \approx 72 = 48H

	MSB			I	LSB				
_	7	6	5	4	3	2	1	0	
TA01RUN	← −	Х	Х	Х	-	_	-	0	Stop TMRA0 and clear it to 0.
TA01MOD	← 1	1	1	0	-	-	0	1	Select 8-bit PWM mode (cycle: 2^7) and select ϕ T1 as the input clock.
TAOREG	← 0	1	0	0	1	0	0	0	Write 48H.
TA1FFCR	← X	Х	Х	Х	1	0	1	Х	Clear TA1FF to 0, enable the inversion and double buffer.
PAFC2	← X						-		Set PA1 and the TA1OUT pin.
TA01RUN	← 1	Х	Х	Х	-	1	-	1	Start TMRA0 counting.
X: Don't ca	re, –: N	o cł	nan	ge					

at fc = 36 MHz, fs = 32.768 kHz

Select System	Select Prescaler	Gear Value				P١	VM Cyc	le			
Clock	Clock	SYSCR1		2 ⁶	_		2 ⁷	_		2 ⁸	
SYSCR1 <sysck></sysck>	SYSCR0 <prck1:0></prck1:0>	<gear2:0></gear2:0>	φT1	φT4	φT16	φT1	φT4	φT16	φT1	φT4	φT16
1 (fs)		XXX	15.6 ms	62.5 ms	250 ms	31.3 ms	125 ms	500 ms	62.5 ms	250 ms	1000 ms
		000 (fc)	14.2 μs	56.8 μs	227 μs	28.4 μs	113 μs	455 μs	56.8 μs	227 μs	910 μs
	00 (f _{FPH})	001 (fc/2)	28.4 μs	113 μs	455 μs	56.8 μs	227 μs	910 μs	113 μs	455 μs	1820 μs
$O(t_{\tau})$	00 (IFPH)	010 (fc/4)	56.8 μs	227 μS	910 μs	113 μs	455 μs	1820 μs	227 μs	910 μs	3640 μs
0 (fc)		011 (fc/8)	113 μs	455 μs	1820 μs	227 μs	910 μs	3640 μs	455 μs	1820 μs	7281 μs
		100 (fc/16)	227 μs	910 μs	3640 μs	455 μs	1820 μs	7281 μs	910 μs	3640 μs	14563 μs
	10 (fc/16 clock)	XXX	227 μs	910 μs	3640 μs	455 μs	1820 μs	7281 μs	910 μs	3640 μs	14563 μs

Table 3.7.3 PWM Cycle

XXX: Don't care

(5) Settings for each mode

Table 3.7.4 shows the SFR settings for each mode.

					1
Register Name		TA01	MOD		TA1FFCR
<bit symbol=""></bit>	<ta01m1:0></ta01m1:0>	<pwm01:00></pwm01:00>	<ta1clk1:0></ta1clk1:0>	<ta0clk1:0></ta0clk1:0>	TA1FFIS
Function	Timer Mode	PWM Cycle	Upper Timer Input Clock	Lower Timer Input Clock	Timer F/F Invert Signal Select
8-bit timer × 2 channels	00	_	Lower timer match \$\overline{T1}, \$\overline{T16}, \$\overline{T256}\$ (00, 01, 10, 11)	External clock φT1, φT4, φT16 (00, 01, 10, 11)	0: Lower timer output 1: Upper timer output
16-bit timer mode	01	_	_	External clock φT1, φT4, φT16 (00, 01, 10, 11)	_
8-bit PPG × 1 channel	10	-	-	External clock φT1, φT4, φT16 (00, 01, 10, 11)	_
8-bit PWM × 1 channel	11	2 ⁶ , 2 ⁷ , 2 ⁸ (01, 10, 11)	-	External clock φT1, φT4, φT16 (00, 01, 10, 11)	_
8-bit timer × 1 channel	11	_	φT1, φT16 , φT256 (01, 10, 11)	=	Output disabled

Table 3.7.4	Timer Mode	Setting	Registers
		ocuing	regiotoro

-: Don't care

(6) LCDC and MELODY/ALARM circuit supply mode

This function can operate only TMRA3. It can use LCDC and MELODY/ALARM source clock TA3 clock generated by TMRA3. But this function is special mode, without low clock (XTIN, XTOUT) so keep the rule under below.

Operate

- a. Clock generate by timer 3
- b. Clock supply start (EMCCR0 <TA3LCDE> = 1)
- c. Need setup time
- d. LCDC or MELODY/ALARM start to operate

STOP

- e. LCDC or MELODY/ALARM stop to operate
- f. Clock supply cut off ($\langle TA3LCDE \rangle = 0$ or $\langle TA3MLDE \rangle = 0$)

		7	6	5	4	3	2	1	0
EMCCR0	Bit symbol	PROTECT	TA3LCDE	AHOLD	TA3MLDE	-	EXTIN	DRVOSCH	DRVOSCL
(00E3H)	Read/Write	R	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	After reset	0	0	0	0	0	0	1	1
	Function	Protect flag	LCDC source	Address hold	Melody/Alarm	Always write	1: External	fc oscillator	fs oscillator
		0: Off	CLK	0: Normal	source clock.	0.	clock	driver ability.	driver ability.
		1: On	0: 32 kHz	1: Enable	0: 32 kHz			1: Normal	1: Normal
			1: TA3OUT		1: TA3OUT			0: Weak	0: Weak

3.8 External Memory Extension Function (MMU)

This is MMU function which can expand program/data area to 104 Mbytes by having 4 local areas.

Address pins to external memory are 2 extended address bus pins (EA24, EA25) or 3 extended chip select pins ($\overline{CS2A}$ to $\overline{CS2C}$) in addition to 24 address bus pins (A0 to A23) which are common specification of TLCS-900 and 4 chip select pins ($\overline{CS0}$ to $\overline{CS3}$) output from CS/WAIT controller.

The feature and the recommendation setting method of two types are shown below.

In addition, AH in the table is the value which number address 23 to 16 displayed as hex.

Purpose	Item	(A): For Standard Extended Memory	(B): For Many Pieces Extended Memory		
	Maximum memory size	16 Mbytes: BANK (16 Mbytes × 1 pcs)		
Dragram DOM	Used local area, BANK number	LOCAL2 (AH = C0 to D	F: 2 Mbytes × 7 BANK)		
Program ROM	Setting CS/WAIT	Setup AH = C0 to FF to CS2	Setup AH = 80 to FF to CS2		
	Used CS pin	CS2	CS2A		
	Maximum memory size	64 Mbytes : BANK (64 Mbytes × 1 pcs)	32 Mbytes : BANK (16 Mbytes × 2 pcs)		
Data ROM	Used local area, BANK number	LOCAL3 (AH = 80 to BF: 4 Mbytes × 16 BANK)	LOCAL3 (AH = 80 to BF: 4 Mbytes × 8 BANK)		
	Setting CS/WAIT	Setup AH = 80 to BF to CS3	Setup AH = 80 to FF to CS2		
	Used CS pins	CS3 , EA24, EA25	CS2B, CS2C		
	Maximum memory size	16 Mbytes: BANK (16 Mbytes × 1 pcs)		
Option Program ROM	Used local area, BANK number	LOCAL1 (AH = 40 to 5	F: 2 Mbytes × 7 BANK)		
	Setting CS/WAIT	Setup AH = 40	0 to 7F to CS1		
	Used CS pin	<u>C:</u>	<u>S1</u>		
	Maximum memory size	8 Mbytes: BANK (8 Mbytes × 1 pcs)		
Data RAM	Used local area, BANK number	LOCAL0 (AH = 10 to 1F: 1 Mbyte \times 7 BANK)			
Data KAW	Setting CS/WAIT	Setup AH = 00 to 1F to CS0	Setup AH = 00 to 1F to CS3		
	Used CS pin	CS0	CS3		
	Maximum memory size		2 Mbytes (2 Mbytes × 1 pcs)		
Extended memory 1	Used local area, BANK number		None		
Extended memory 1	Setting CS/WAIT		Setup AH = 20 to 3F to CS0		
	Used CS pin		CS0		
Total memory size		16 M + 64 M + 16 M + 8 M = 104 Mbytes	16 M + 32 M + 16 M + 8 M + 2 M = 74 Mbytes		

3.8.1 Recommendable Memory Map

The recommendation logic address memory map at the time of varieties extension memory correspondence is shown in Figure 3.8.1. And a physical-address map is shown in Figure 3.8.2.

However, when memory area is less than 16 Mbytes and is not expanded, please refer to section of CS/WAIT controller. Setting of register in MMU is not necessary.

Since it is being fixed, the address of a local-area cannot be changed.

Figure 3.8.1 Logical Address Map

Figure 3.8.2 Physical Address Map

3.8.2 Control Registers

Set a bank setting value and bank enable/disable in each local register in the common area. At this time, also specify the pin function and mapping by the CS/WAIT controller. When the CPU outputs the logical address of the local area, the MMU outputs its physical address to the external address bus pin according to the value in the bank setting register. This enables access to external memory.

		7	6	5	4	3	2	1	0
LOCAL0	Bit symbol	L0E					L0EA22	L0EA21	L0EA20
(0350H)	Read/Write	R/W						R/W	
	After reset	0					0	0	0
	Function	BANK for LOCAL0 0: Disable 1: Enable					"000" setting	IK number fo g is prohibited d COMMON	d because it
				LOCA	L1 Regist	ter			
		7	6	5	4	3	2	1	0
LOCAL1	Bit symbol	L1E	/				L1EA23	L1EA22	L1EA21
(0351H)	Read/Write	R/W						R/W	
	After reset	0					0	0	0
	Function	BANK for LOCAL1 0: Disable					"001" setting	IK number fo	d because it
		1: Enable					preten	d COMMON	0 area
		-7	0		L2 Regist	1	0	4	
		7	6	5	4	3	2	1	0
LOCAL2	Bit symbol	L2E					L2EA23	L2EA22	L2EA21
(0352H)	Read/Write	R/W						R/W	
	After reset	0					0	0	0
	Function	BANK for LOCAL2 0: Disable 1: Enable					"111" setting	NK number fo is prohibited d COMMON	l because it
				LOCA	L3 Regist	ter			
		7	6	5	4	3	2	1	0
LOCAL3	Bit symbol	L3E	/	/	-	L3EA25	L3EA24	L3EA23	L3EA22
(0353H)	Read/Write	R/W			R/W	R/W	R/W	R/W	R/W
	After reset	0		/	0	0	0	0	0
	Function	BANK for LOCAL3 0: Disable 1: Enable			Always write 0.	0000~0011: 0100~0111: 1000~1111:		on	
			Fig	gure 3.8.3	Register	of MMU			

LOCAL0 Register

rigule	J.O.J	Register	01	

Figure 3.8.4 H/W Setting Example

A15

A16

At Figure 3.8.4, it shows example of connection TMP91C025 and some memories: Program ROM: MROM, 16 Mbytes, Data ROM: MROM, 64 Mbytes, Data RAM: SRAM, 8 Mbytes, 8-bit bus, Option ROM: Flash, 16 Mbytes.

Α7

A7

In case of 16-bit bus memory connection, it need to shift 1-bit address bus from TMP91C025 and 8-bit bus case, direct connection address bus from TMP91C025.

In that figure, logical address and physical address are shown. And each memory allot each chip select signal, RAM: $\overline{\text{CS0}}$, FLASH_ROM: $\overline{\text{CS1}}$, Program MROM: $\overline{\text{CS2}}$, Data MROM: $\overline{\text{CS3}}$. In case of this example, as data MROM is 64 Mbytes, this MROM connect to EA24 and EA25.

Initial condition after reset, because TMP91C025 access from CS2 area, CS2 area allots to program ROM. It can set free setting except program ROM.

;Initia	l Setting		
;CS0			
	LD	(MSAR0), 00H	; Logical address area: 000000H to 1FFFFFH
	LD	(MAMR0), FFH	; Logical address size: 2 Mbytes
	LD	(B0CS), 89H	; Condition: 8-bit, 1 waits (8 Mbytes, SRAM)
;CS1			
	LD	(MSAR1), 40H	; Logical address area: 400000H to 7FFFFFH
	LD	(MAMR1), FFH	; Logical address size: 4 Mbytes
	LD	(B1CS), 80H	; Condition: 16-bit, 2 waits (16 Mbytes, Flash ROM)
;CS2			
	LD	(MSAR2), C0H	; Logical address area: C00000H to FFFFFFH
	LD	(MAMR2), 7FH	; Logical address size: 4 Mbytes
	LD	(B2CS), C3H	; Condition: 16-bit, 0 waits (16 Mbytes, MROM)
;CS3			
	LD	(MSAR3), 80H	; Logical address area: 800000H to BFFFFFH
	LD	(MAMR3), 7FH	; Logical address size: 4 Mbytes
	LD	(B3CS), 85H	; Condition: 16-bit, 3 waits (64 Mbytes, MROM)
;CSX			
	LD	(BEXCS), 00H	; Other: 16-bit, 2 waits (Don't care)
;Port			
	LD	(P6FC), 3FH	; $\overline{\mathrm{CS0}}$ to $\overline{\mathrm{CS3}}$, EA24, EA25: port 6 setting
to			

Secondly, Figure 3.8.5 shows example of initial setting at BANK operation S/W example 1 of the above.

Because $\overline{\text{CS0}}$ connect to RAM: 8-bit bus, 8 Mbytes, it need to set 8-bit bus. At this example, it set 1-wait setting. In the same way $\overline{\text{CS1}}$ set to 16-bit bus and 2 waits, $\overline{\text{CS2}}$ set 16-bit bus and 0 waits, $\overline{\text{CS3}}$ set 16-bit bus and 3 waits.

By CS/WAIT controller, each chip selection signal's memory size, don't set actual connect memory size, need to set that logical address size: fitting to each local area. Actual physical address is set by each area's BANK register setting.

 $\ensuremath{\mathrm{CSEX}}$ setting of $\ensuremath{\mathrm{CS/WAIT}}$ controller is except above $\ensuremath{\mathrm{CS0}}$ to $\ensuremath{\mathrm{CS3's}}$ setting.

Finally pin condition is set. Port 60 to 65 set to $\overline{\text{CS0}}$, 1, 2, 3, EA24, EA25.

	Operation	I
	/CS2 *****	
I ORG	000000H	; Program ROM: Start address at BANK0 of LOCAL2
I ORG	200000H	; Program ROM: Start address at BANK1 of LOCAL2
ORG	400000H	; Program ROM: Start address at BANK2 of LOCAL2
	600000H 800000H	; Program ROM: Start address at BANK3 of LOCAL2
ORG ORG	a00000H	; Program ROM: Start address at BANK4 of LOCAL2
I ORG	c00000H	; Program ROM: Start address at BANK5 of LOCAL2 ; Program ROM: Start address at BANK6 of LOCAL2
	0000011	, i rogram nom: Start address at DANNO of LOCAL2
, ORG	E00000H	; Program ROM: Start address at BANK7 (= COMMON2) of LOCAL2
1		; Logical address E00000H to FFFFFFH
-		; Physical address 0E00000H to 0FFFFFFH
÷ .	LD (LOCAL3), 85H	; LOCAL3 BANK5 set 14xxxxH
i	LDW HL,(800000H) —	; Load data (5555H) form BANK5 (140000H: Physical address) of LOCAL3 (CS3)
1	LD (LOCAL3), 88H	; LOCAL3 BANK8 set 20xxxxH
1	LDW BC,(800000H) —	; Load data (AAAAH) form BANK8 (200000H: Physical address)
		of LOCAL3 ($\overline{CS3}$)
ORG	FFFFFFH 	; Program ROM: End address at BANK7 (= COMMON2) of LOCAL2
;****	/CS3 ****	
ORG	0000000H	; Data ROM: Start address at BANK0 of LOCAL3
ORG	0400000H	; Data ROM: Start address at BANK1 of LOCAL3
i ORG	0800000H	; Data ROM: Start address at BANK2 of LOCAL3
I ORG	0C00000H	; Data ROM: Start address at BANK3 of LOCAL3
ORG	1000000H	; Data ROM: Start address at BANK4 of LOCAL3
ORG	1400000H	; Data ROM: Start address at BANK5 of LOCAL3
	dw 5555H ←	
	10000011	
I ORG	1800000H	; Data ROM: Start address at BANK6 of LOCAL3
I ORG	1C00000H	; Data ROM: Start address at BANK7 of LOCAL3
I ORG	2000000H dw AAAAH←	; Data ROM: Start address at BANK8 of LOCAL3
to	dw AAAAH←	- I
ORG	2400000H	; Data ROM: Start address at BANK9 of LOCAL3
ORG	2400000H 2800000H	; Data ROM: Start address at BANK9 of LOCAL3
ORG	2C00000H	; Data ROM: Start address at BANK10 of LOCAL3
I ORG	3000000H	; Data ROM: Start address at BANK12 of LOCAL3
I ORG	3400000H	; Data ROM: Start address at BANK12 of LOCAL3
I ORG	3800000H	; Data ROM: Start address at BANK14 of LOCAL3
ORG	3C00000H	; Data ROM: Start address at BANK15 of LOCAL3
ORG	3FFFFFFH	; Data ROM: End address at BANK15 of LOCAL3
'		

Figure 3.8.6 Bank Operation S/W Example 2

Figure 3.8.6 shows example of data access between one BANK and other BANK is one software example. A dot line square area shows one memory and each dot line square shows $\overline{CS2}$'s program ROM and $\overline{CS3}$'s data ROM. Program start from E00000H address, firstly, write to BANK register of LOCAL3 area upper 5-bit address of access point.

In case of this TMP91C025, because most upper address bit of physical address is EA25, most upper address bit of BANK register is meaningless. 4 bits of upper 5-bit address means 16 BANKs. After setting BANK5, accessing 800000H to BFFFFFH address: Logical local3 address, actually access to physical 1400000H to 1700000H address.

DRG	000000H		; Program ROM: Start address at BANK0 of LOCAL2
ORG	200000H		; Program ROM: Start address at BANK1 of LOCAL2 ←
	NOP		; Operation at BANK1of LOCAL2
0			
	$_{\rm JP}$	E00100H	; Jump to BANK7 (= COMMON2) of LOCAL2
ORG	400000H		; Program ROM: Start address at BANK2 of LOCAL2
ORG	600000H		; Program ROM: Start address at BANK3 of LOCAL2
	NOP		; Operation at BANK3 of LOCAL2
0			
	JP	E00200H	; Jump to BANK7 (= COMMON2) of LOCAL2
DRG	800000H		; Program ROM: Start address at BANK4 of LOCAL2
ORG	a00000H		; Program ROM: Start address at BANK5 of LOCAL2
ORG	c00000H		; Program ROM: Start address at BANK6 of LOCAL2
III Prov	gram Start !		
DRG	E00000H		; Program ROM: Start address at BANK7 (= COMMON2) of LOCAL2
	10000011		; Logical address E00000H to FFFFFH
			; Physical address 0E00000H to 0FFFFFFH
	LD	(LOCAL2), 81H	; LOCAL2 BANK1 set 20xxxxH
	$_{\rm JP}$	С00000Н	; Jump to BANK1 (200000H: Physical address) of LOCAL2
0			
ORG	E00100H		
	LD	(LOCAL2), 83H	; LOCAL2 BANK3 set 60xxxxH
	$_{\rm JP}$	C00000H	; Jump to BANK3 (600000H: Physical address) of LOCAL2
0 0	Decessor		
ORG	E00200H		
	LD ID	(LOCAL1),84H	; LOCAL1 BANK4 set 80xxxxH
ORG	JP FFFFFFI	400000H	; Jump to BANK4 (800000H: Physical address) of LOCAL1 ; Program ROM: End address at BANK7(= COMMON2) of LOCAL2
– –			
*****	/CS1 *****		
	000000H		; Program ROM: Start address at BANK0 of LOCAL1 ←
JRG			; Program ROM: Start address at BANK1 of LOCAL1
	200000H		
ORG	200000H 400000H		; Program ROM: Start address at BANK2 of LOCAL1
ORG ORG			; Program ROM: Start address at BANK2 of LOCAL1 ; Program ROM: Start address at BANK3 (= COMMON1) of LOCAL1
ORG ORG	400000H	(LOCAL1),87H	
ORG ORG	400000H 600000H	(LOCAL1),87H 400000H	; Program ROM: Start address at BANK3 (= COMMON1) of LOCAL1
ORG ORG ORG	400000H 600000H LD JP 800000H		; Program ROM: Start address at BANK3 (= COMMON1) of LOCAL1 ; LOCAL1 BANK7 set E0xxxxH
ORG ORG ORG	400000H 600000H LD JP		; Program ROM: Start address at BANK3 (= COMMON1) of LOCAL1 ; LOCAL1 BANK7 set E0xxxxH ; Jump to BANK7 (E00000H: Physical address) of LOCAL1
ORG ORG ORG ORG	400000H 600000H LD JP 800000H NOP	400000H	; Program ROM: Start address at BANK3 (= COMMON1) of LOCAL1 ; LOCAL1 BANK7 set E0xxxH ; Jump to BANK7 (E00000H: Physical address) of LOCAL1 ; Program ROM: Start address at BANK4 of LOCAL1 ; Operation at BANK4 of LOCAL1
DRG DRG DRG DRG	400000H 600000H LD JP 800000H NOP JP		; Program ROM: Start address at BANK3 (= COMMON1) of LOCAL1 ; LOCAL1 BANK7 set E0xxxxH ; Jump to BANK7 (E00000H: Physical address) of LOCAL1 ; Program ROM: Start address at BANK4 of LOCAL1 ; Operation at BANK4 of LOCAL1 ; Jump to BANK3 (= COMMON1) of LOCAL1
DRG DRG DRG DRG 0 RG DRG	400000H 600000H LD JP 800000H NOP JP a00000H	400000H	 ; Program ROM: Start address at BANK3 (= COMMON1) of LOCAL1 ; LOCAL1 BANK7 set E0xxxxH ; Jump to BANK7 (E00000H: Physical address) of LOCAL1 ; Program ROM: Start address at BANK4 of LOCAL1 ; Operation at BANK4 of LOCAL1 ; Jump to BANK3 (= COMMON1) of LOCAL1 ; Program ROM: Start address at BANK5 of LOCAL1
ORG ORG ORG ORG ORG ORG ORG	400000H 600000H LD JP 800000H NOP JP a00000H c00000H	400000H 600000H	 ; Program ROM: Start address at BANK3 (= COMMON1) of LOCAL1 ; LOCAL1 BANK7 set E0xxxxH ; Jump to BANK7 (E00000H: Physical address) of LOCAL1 ; Program ROM: Start address at BANK4 of LOCAL1 ; Operation at BANK4 of LOCAL1 ; Jump to BANK3 (= COMMON1) of LOCAL1 ; Program ROM: Start address at BANK5 of LOCAL1 ; Program ROM: Start address at BANK5 of LOCAL1 ; Program ROM: Start address at BANK6 of LOCAL1
DRG DRG DRG DRG DRG DRG DRG	400000H 600000H LD JP 800000H NOP JP a00000H c00000H E00000H	400000H 600000H	 ; Program ROM: Start address at BANK3 (= COMMON1) of LOCAL1 ; LOCAL1 BANK7 set E0xxxxH ; Jump to BANK7 (E00000H: Physical address) of LOCAL1 ; Program ROM: Start address at BANK4 of LOCAL1 ; Operation at BANK4 of LOCAL1 ; Jump to BANK3 (= COMMON1) of LOCAL1 ; Program ROM: Start address at BANK5 of LOCAL1 ; Program ROM: Start address at BANK6 of LOCAL1 ; Program ROM: Start address at BANK6 of LOCAL1 ; Program ROM: Start address at BANK6 of LOCAL1
DRG DRG DRG DRG DRG DRG DRG	400000H 600000H LD JP 800000H NOP JP a00000H c00000H E00000H E00000H	400000H 600000H (LOCAL1),80H	; Program ROM: Start address at BANK3 (= COMMON1) of LOCAL1 ; LOCAL1 BANK7 set E0xxxxH ; Jump to BANK7 (E00000H: Physical address) of LOCAL1 ; Program ROM: Start address at BANK4 of LOCAL1 ; Operation at BANK4 of LOCAL1 ; Jump to BANK3 (= COMMON1) of LOCAL1 ; Program ROM: Start address at BANK5 of LOCAL1 ; Program ROM: Start address at BANK6 of LOCAL1 ; Program ROM: Start address at BANK6 of LOCAL1 ; Program ROM: Start address at BANK6 of LOCAL1 ; Drogram ROM: Start address at BANK6 of LOCAL1 ; Program ROM: Start address at BANK7 of LOCAL1
DRG DRG DRG DRG DRG DRG DRG	400000H 600000H LD JP 800000H NOP JP a00000H c00000H E00000H	400000H 600000H	 ; Program ROM: Start address at BANK3 (= COMMON1) of LOCAL1 ; LOCAL1 BANK7 set E0xxxH ; Jump to BANK7 (E00000H: Physical address) of LOCAL1 ; Program ROM: Start address at BANK4 of LOCAL1 ; Operation at BANK4 of LOCAL1 ; Jump to BANK3 (= COMMON1) of LOCAL1 ; Program ROM: Start address at BANK5 of LOCAL1 ; Program ROM: Start address at BANK6 of LOCAL1 ; Program ROM: Start address at BANK6 of LOCAL1 ; Program ROM: Start address at BANK6 of LOCAL1
DRG DRG DRG DRG DRG 20	400000H 600000H LD JP 800000H NOP JP a00000H c00000H E00000H E00000H JP	400000H 600000H (LOCAL1),80H 400000H	; Program ROM: Start address at BANK3 (= COMMON1) of LOCAL1 ; LOCAL1 BANK7 set E0xxxxH ; Jump to BANK7 (E00000H: Physical address) of LOCAL1 ; Program ROM: Start address at BANK4 of LOCAL1 ; Operation at BANK4 of LOCAL1 ; Jump to BANK3 (= COMMON1) of LOCAL1 ; Program ROM: Start address at BANK5 of LOCAL1 ; Program ROM: Start address at BANK6 of LOCAL1 ; Program ROM: Start address at BANK6 of LOCAL1 ; Program ROM: Start address at BANK6 of LOCAL1 ; Drogram ROM: Start address at BANK6 of LOCAL1 ; Program ROM: Start address at BANK7 of LOCAL1

Figure 3.8.7 Bank Operation S/W Example 3

At bank operation S/W Example 3 of the above, Figure 3.8.7 shows example of program jump.

In the same way with before example, two dot line squares show each $\overline{\text{CS2}}$'s program ROM and $\overline{\text{CS1}}$'s option ROM. Program start from E00000H common address, firstly, write to BANK register of LOCAL2 area upper 3-bit address of jumping point.

After setting BANK1, jumping C00000H to DFFFFFH address: logical local2 address, actually jump to physical 2000000H to 3FFFFFH address. When return to common area, it can only jump to E00000H to FFFFFFH without writing to BANK register of LOCAL2 area.

By a way of setting of BANK register, the setting that BANK address and common address conflict with is possible. When two kinds or more logical addresses to show common area exist, management of BANK is confused. We recommends not using the BANK setting, BANK address and common address conflict with.

When it jumps to one memory from other different memory, it can set same as the last time setting. It needs to write to BANK register of LOCAL1 area upper 3-bit address of jumping point. After setting BANK4, jumping 400000H to 5FFFFFH address: logical local1 address, actually jump to physical 8000000H to 9FFFFFH address.

It is a mark paid attention to here, it needs to go by way of common area by all means when moves from a bank to a bank. In other words, it must write to BANK register only in common area and it is prohibit writing the BANK register in BANK area. If it modify the BANK register's data in BANK area, program runaway.

3.9 Serial Channels

TMP91C025 includes 2 serial I/O channels. For both channels either UART mode (Asynchronous transmission) or I/O Interface mode (Synchronous transmission) can be selected.

I/O interface mode		Mode 0:	For transmitting and receiving I/O data using the synchronizing signal SCLK for extending I/O.
UART mode	—	Mode 2:	7-bit data 8-bit data 9-bit data

In mode 1 and mode 2 a parity bit can be added. mode 3 has a wakeup function for making the master controller start slave controllers via a serial link (A multi-controller system).

Figure 3.9.2, Figure 3.9.3 are block diagrams for each channel.

Serial channels 0 and 1 can be used independently.

Both channels operate in the same fashion except for the following points; hence only the operation of channel 0 is explained below.

/	Channel 0	Channel 1
Pin name	TXD0 (PC0) RXD0 (PC1) CTS0 /SCLK0 (PC2)	TXD1 (PC3) RXD1 (PC4) CTS1/SCLK1 (PC5)
IrDA mode	Yes	No

Table 3.9.1 Differences between Channels 0 to 1

This chapter contains the following sections:

- 3.9.1 Block Diagrams
- 3.9.2 Operation of Each Circuit
- 3.9.3 SFRs
- 3.9.4 Operation in Each Mode
- 3.9.5 Support for IrDA

3.9.1 Block Diagrams

Figure 3.9.2 is a block diagram representing serial channel 0.

Figure 3.9.2 Block Diagram of the Serial Channel 0 (SIO0)

Figure 3.9.3 Block Diagram of the Serial Channel 1 (SIO1)

3.9.2 Operation of Each Circuit

(1) Prescaler

There is a 6-bit prescaler for generating a clock to SIO0. The clock selected using SYSCR<PRCK1:0> is divided by 4 and input to the prescaler as ϕ T0. The prescaler can be run by selecting the baud rate generator as the serial transfer clock.

Table 3.9.2 shows prescaler clock resolution into the baud rate generator.

Select System	Select Prescaler	Gear Value	Prescale	er Output	Clock Re	esolution
Clock <sysck></sysck>	Clock <prck1:0></prck1:0>	<gear2:0></gear2:0>	φ T 0	φ T 2	φΤ8	φT32
1 (fs)		XXX	2²/fs	2 ⁴ /fs	2 ⁶ /fs	2 ⁸ /fs
		000 (fc)	2 ² /fc	2 ⁴ /fc	2 ⁶ /fc	2 ⁸ /fc
	00 (4)	001 (fc/2)	2 ³ /fc	2 ⁵ /fc	2 ⁷ /fc	2 ⁹ /fc
0 (fc)	00 (f _{FPH})	010 (fc/4)	2 ⁴ /fc	2 ⁶ /fc	2 ⁸ /fc	2 ¹⁰ /fc
0 (fc)		011 (fc/8)	2 ⁵ /fc	2 ⁷ /fc	2 ⁹ /fc	2 ¹¹ /fc
		100 (fc/16)	2 ⁶ /fc	2 ⁸ /fc	2 ¹⁰ /fc	2 ¹² /fc
	10 (fc/16 clock)	XXX	-	2 ⁸ /fc	2 ¹⁰ /fc	2 ¹² /fc

Table 3.9.2 Prescaler Clock Resolution to Baud Rate Generator

X: Don't care, -: Cannot be used

The baud rate generator selects between 4 clock inputs: $\phi T0,\,\phi T2,\,\phi T8,$ and $\phi T32$ among the prescaler outputs.

(2) Baud rate generator

The baud rate generator is a circuit which generates transmission and receiving clocks which determine the transfer rate of the serial channels.

The input clock to the baud rate generator, $\phi T0$, $\phi T2$, $\phi T8$ or $\phi T32$, is generated by the 6-bit prescaler which is shared by the timers. One of these input clocks is selected using the BR0CR<BR0CK1:0> field in the baud rate generator control register.

The baud rate generator includes a frequency divider, which divides the frequency by 1 or N + (16 - K)/16 to 16 values, determining the transfer rate.

The transfer rate is determined by the settings of BR0CR<BR0ADDE, BR0S3:0> and BR0ADD<BR0K3:0>.

- In UART mode
- (1) When BROCR < BROADDE > = 0

The settings BR0ADD<BR0K3:0> are ignored. The baud rate generator divides the selected prescaler clock by N, which is set in BR0CK<BR0S3:0>. (N = 1, 2, 3 ... 16)

(2) When BR0CR < BR0ADDE > = 1

The N + (16 – K)/16 division function is enabled. The baud rate generator divides the selected prescaler clock by N + (16 – K)/16 using the value of N set in BR0CR <BR0S3:0> (N = 2, 3 ... 15) and the value of K set in BR0ADD<BR0K3:0> (K = 1, 2, 3 ... 15)

Note: If N = 1 or N = 16, the N + (16 - K)/16 division function is disabled. Set BR0CR <BR0ADDE> to 0.

• In I/O interface mode

The N + (16 - K)/16 division function is not available in I/O interface mode. Set BR0CR<BR0ADDE> to 0 before dividing by N.

The method for calculating the transfer rate when the baud rate generator is used is explained below.

In UART mode

Baud rate = $\frac{\text{Input clock of baud rate generator}}{\text{Frequency divider for baud rate generator}} \div 16$

• In I/O interface mode

Baud rate = $\frac{\text{Input clock of baud rate generator}}{\text{Frequency divider for baud rate generator}} \div 2$

• Integer divider (N divider)

For example, when the source clock frequency (fc) = 12.288 MHz, the input clock frequency = $\phi T2$ (fc/16), the frequency divider N (BR0CR<BR0S3:0>) = 5, and BR0CR<BR0ADDE> = 0, the baud rate in UART mode is as follows:

```
* Clock state System clock: High-frequency (fc)
Clock gear: 1 (fc)
Prescaler clock: System clock
```

Baud rate
$$= \frac{\text{fc}/16}{5} \div 16$$

 $= 12.288 \times 10^6 \div 16 \div 5 \div 16 = 9600$ (bps)

- Note: The N + (16 K)/16 division function is disabled and setting BR0ADD<BR0K3:0> is invalid.
- N + (16 K)/16 divider (UART mode only)

Accordingly, when the source clock frequency (fc) = 4.8 MHz, the input clock frequency = ϕ T0, the frequency divider N (BR0CR<BR0S3:0>) = 7, K (BR0ADD<BR0K3:0>) = 3, and BR0CR<BR0ADDE> = 1, the baud rate in UART Mode is as follows:

* Clock state System clock: High-frequency (fc) Clock gear: 1 (fc) Prescaler clock: System clock

Baud rate =
$$\frac{\text{fc}/4}{7 + (16 - 3)/16} \div 16$$

= $4.8 \times 10^6 \div 4 \div (7 + 13/16) \div 16 = 9600 \text{ (bps)}$

Table 3.9.3 show examples of UART mode transfer rates.

Additionally, the external clock input is available in the serial clock. (Serial channels 0, 1). The method for calculating the baud rate is explained below:

• In UART mode

Baud rate = External clock input frequency ÷ 16

It is necessary to satisfy (External clock input cycle) $\ge 4/fc$

• In I/O interface mode

Baud rate = External clock input frequency

It is necessary to satisfy (External clock input cycle) $\ge 16/fc$

			-	-	Unit (kbps
fc [MHz]	Input Clock	φ Τ0	φ Τ2	φ Τ8	φT32
	Frequency Divider N (BR0CR <br0s3:0>)</br0s3:0>	φισ	ψTZ	φισ	ψισΖ
9.830400	2	76.800	19.200	4.800	1.200
\uparrow	4	38.400	9.600	2.400	0.600
\uparrow	8	19.200	4.800	1.200	0.300
\uparrow	0	9.600	2.400	0.600	0.150
12.288000	5	38.400	9.600	2.400	0.600
\uparrow	A	19.200	4.800	1.200	0.300
14.745600	2	115.200	28.800	7.200	1.800
\uparrow	3	76.800	19.200	4.800	1.200
\uparrow	6	38.400	9.600	2.400	0.600
\uparrow	С	19.200	4.800	1.200	0.300
19.6608	1	307.200	76.800	19.200	4.800
\uparrow	2	153.600	38.400	93.600	2.400
\uparrow	4	76.800	19.10	4.800	1.200
\uparrow	8	38.400	9.600	2.400	0.600
\uparrow	10	19.200	4.800	1.200	0.300
22.1184	3	115.200	28.800	7.200	1.800
24.576	1	384.000	96.000	24.000	6.000
\uparrow	2	192.000	48.000	12.000	3.000
\uparrow	4	96.000	24.000	6.000	1.500
\uparrow	5	76.800	19.200	4.800	1.200
\uparrow	8	48.000	12.000	3.000	0.750
\uparrow	А	38.400	9.600	2.400	0.600
\uparrow	10	24.000	6.000	1.500	0.375
27.0336	В	38.400	9.600	2.400	0.600
29.4912	1	460.800	115.200	28.800	7.200
\uparrow	3	153.600	38.400	9.600	2.400
\uparrow	4	115.200	28.800	7.200	1.800
\uparrow	6	76.800	19.200	4.800	1.200
\uparrow	9	51.200	12.800	3.200	1.800
\uparrow	С	38.400	9.600	2.400	1.600
\uparrow	F	30.720	7.680	1.920	1.480
\uparrow	10	28.800	7.200	1.800	0.450
31.9488	D	38.400	9.600	2.400	0.600
34.4064	7	76.800	19.200	4.800	1.200

Note 1: Transfer rates in I/O interface mode are eight times faster than the values given above.

Note 2: The values in this table are calculated for when fc is selected as the system clock, the clock gear is set for fc/1 and the system clock is the prescaler clock input f_{FPH}.

Timer out clock (TA0TRG) can be used for source clock of UART mode only.

Calculation method the frequency of TA0TRG

Frequency of TA0TRG = Baud rate \times 16

Note: The TMRA0 match detect signal cannot be used as the transfer clock in I/O interface mode.

(3) Serial clock generation circuit

This circuit generates the basic clock for transmitting and receiving data.

In I/O interface mode

In SCLK output mode with the setting SCOCR < IOC > = 0, the basic clock is generated by dividing the output of the baud rate generator by 2, as described previously.

In SCLK input mode with the setting SCOCR<IOC> = 1, the rising edge or falling edge will be detected according to the setting of the SCOCR<SCLKS> register to generate the basic clock.

• In UART mode

The SC0MOD0<SC1:0> setting determines whether the baud rate generator clock, the internal system clock fSYS, the match detect signal from timer TMRA0 or the external clock (SCLK0) is used to generate the basic clock SIOCLK.

(4) Receiving counter

The receiving counter is a 4-bit binary counter used in UART mode which counts up the pulses of the SIOCLK clock. It takes 16 SIOCLK pulses to receive 1 bit of data; each data bit is sampled three times – on the 7th, 8th and 9th clock cycles.

The value of the data bit is determined from these three samples using the majority rule.

For example, if the data bit is sampled respectively as 1, 0 and 1 on 7th, 8th and 9th clock cycles, the received data bit is taken to be 1. A data bit sampled as 0, 0 and 1 is taken to be 0.

- (5) Receiving control
 - In I/O interface mode

In SCLK output mode with the setting SCOCR < IOC > = 0, the RXD0 signal is sampled on the rising or falling edge of the shift clock which is output on the SCLK0 pin, according to the SCOCR < SCLKS> setting.

In SCLK input mode with the setting SCOCR < IOC > = 1, the RXD0 signal is sampled on the rising or falling edge of the SCLK0 input, according to the SCOCR < SCLKS> setting.

• In UART mode

The receiving control block has a circuit which detects a start bit using the majority rule. Received bits are sampled three times; when two or more out of three samples are 0, the bit is recognized as the start bit and the receiving operation commences.

The values of the data bits that are received are also determined using the majority rule.

(6) The receiving buffers

To prevent overrun errors, the receiving buffers are arranged in a double-buffer structure.

Received data is stored one bit at a time in receiving buffer 1 (which is a shift register). When 7 or 8 bits of data have been stored in receiving buffer 1, the stored data is transferred to receiving buffer 2 (SCOBUF); this cause an INTRX0 interrupt to be generated. The CPU only reads receiving buffer 2 (SCOBUF). Even before the CPU reads receiving buffer 2 (SCOBUF), the received data can be stored in receiving buffer 1. However, unless receiving buffer 2 (SCOBUF) is read before all bits of the next data are received by receiving buffer 1, an overrun error occurs. If an overrun error occurs, the contents of receiving buffer 1 will be lost, although the contents of receiving buffer 2 and SCOCR<RB8> will be preserved.

SCOCR < RB8 > is used to store either the parity bit – added in 8-bit UART mode – or the most significant bit (MSB) – in 9-bit UART mode.

In 9-bit UART mode the wake-up function for the slave controller is enabled by setting SC0MOD0<WU> to 1; in this mode INTRX0 interrupts occur only when the value of SC0CR<RB8> is 1.

(7) Transmission counter

The transmission counter is a 4-bit binary counter which is used in UART mode and which, like the receiving counter, counts the SIOCLK clock pulses; a TXDCLK pulse is generated every 16 SIOCLK clock pulses.

Figure 3.9.4 Generation of the Transmission Clock

- (8) Transmission controller
 - In I/O interface mode

In SCLK output mode with the setting SCOCR < IOC > = 0, the data in the transmission buffer is output one bit at a time to the TXD0 pin on the rising or falling edge of the shift clock which is output on the SCLK0 pin, according to the SCOCR < SCLKS > setting.

In SCLK input mode with the setting SCOCR < IOC > = 1, the data in the transmission buffer is output one bit at a time on the TXD0 pin on the rising or falling edge of the SCLK0 input, according to the SCOCR <SCLKS> setting.

• In UART mode

When transmission data sent from the CPU is written to the transmission buffer, transmission starts on the rising edge of the next TXDCLK, generating a transmission shift clock TXDSFT.

Handshake function

Use of $\overline{\text{CTS}}$ pin allows data can be sent in units of one frame; thus, Overrun errors can be avoided. The handshake functions is enabled or disabled by the SCOMOD<CTSE> setting.

When the $\overline{\text{CTS0}}$ pin foes high on completion of the current data send, data transmission is halted until the $\overline{\text{CTS0}}$ pin foes low again. However, the INTTX0 interrupt is generated, it requests the next data send to the CPU. The next data is written in the transmission buffer and data sending is halted.

Though there is no $\overline{\text{RTS}}$ pin, a handshake function can be easily configured by setting any port assigned to be the $\overline{\text{RTS}}$ function. The $\overline{\text{RTS}}$ should be output high to request send data halt after data receive is completed by software in the RXD interrupt routine.

Note 1: If the CTS signal goes high during transmission, no more data will be sent after completion of the current transmission.

Note 2: Transmission starts on the first falling edge of the TXDCLK clock after the CTS signal has fallen.

Figure 3.9.6 CTS (Clear to send) Timing

(9) Transmission buffer

The transmission buffer (SC0BUF) shifts out and sends the transmission data written from the CPU form the least significant bit (LSB) in order. When all the bits are shifted out, the transmission buffer becomes empty and generates an INTTX0 interrupt.

(10) Parity control circuit

When SCOCR<PE> in the serial channel control register is set to 1, it is possible to transmit and receive data with parity. However, parity can be added only in 7-bit UART mode or 8-bit UART mode. The SCOCR<EVEN> field in the serial channel control register allows either even or odd parity to be selected.

In the case of transmission, parity is automatically generated when data is written to the transmission buffer SCOBUF. The data is transmitted after the parity bit has been stored in SCOBUF<TB7> in 7-bit UART mode or in SCOMODO<TB8> in 8-bit UART mode. SCOCR<PE> and SCOCR<EVEN> must be set before the transmission data is written to the transmission buffer.

In the case of receiving, data is shifted into receiving buffer 1, and the parity is added after the data has been transferred to receiving buffer 2 (SCOBUF), and then compared with SCOBUF<RB7> in 7-bit UART mode or with SCOCR<RB8> in 8-bit UART mode. If they are not equal, a parity error is generated and the SCOCR<PERR> flag is set.

(11) Error flags

Three error flags are provided to increase the reliability of data reception.

1. Overrun error <OERR>

If all the bits of the next data item have been received in receiving buffer 1 while valid data still remains stored in receiving buffer 2 (SC0BUF), an overrun error is generated.

The below is a recommended flow when the overrun-error is generated.

(INTRX interrupt routine)

- 1) Read receiving buffer
- 2) Read error flag
- 3) If $\langle OERR \rangle = 1$

then

- a) Set to disable receiving (Write 0 to SC0MOD0<RXE>)
- b) Wait to terminate current frame
- c) Read receiving buffer
- d) Read error flag
- e) Set to enable receiving (Write 1 to SC0MOD0<RXE>)
- f) Request to transmit again
- 4) Other
- 2. Parity error <PERR>

The parity generated for the data shifted into receiving buffer 2 (SC0BUF) is compared with the parity bit received via the RXD pin. If they are not equal, a Parity error is generated.

3. Framing error <FERR>

The stop bit for the received data is sampled three times around the center. If the majority of the samples are 0, a framing error is generated.

(12) Timing generation

a. In UART mode

Receiving

Mode	9 Bits	8 Bits + Parity	8 Bits, 7 Bits + Parity, 7 Bits
Interrupt Timing	Center of last bit. (Bit8)	Center of last bit. (Parity bit)	Center of stop bit.
Framing Error Timing	Center of stop bit.	Center of stop bit.	Center of stop bit.
Parity Error Timing	_	Center of last bit. (Parity bit)	Center of stop bit.
Overrun Error Timing	Center of last bit. (Bit8)	Center of last bit. (Parity bit)	Center of stop bit.

Note: In 9-Bit and 8-Bit+Parity mode, interrupts coincide with the ninth bit pulse. Thus, when servicing the interrupt, it is necessary to wait for a 1-bit period (to allow the stop bit to be transferred) to allow checking for a framing error.

Transmitting

Mode	9 Bits	8 Bits + Parity	8 Bits, 7 Bits + Parity, 7 Bits
Interrupt Timing	Just before stop bit is	•	
	transmitted.	transmitted.	transmitted.

b. I/O interface

Transmission	SCLK output mode	Immediately after last bit data. (See Figure 3.9.19.)
Interrupt	CCL K innut mode	Immediately after rise of last SCLK signal rising mode, or
Timing	SCLK input mode	immediately after fall in falling mode. (See Figure 3.9.20.)
Dessiving		Timing used to transfer received to data receive buffer 2 (SC0BUF)
Receiving	SCLK output mode	(e.g. immediately after last SCLK). (See Figure 3.9.21.)
Interrupt		Timing used to transfer received data to receive buffer 2 (SC0BUF)
Timing	SCLK input mode	(e.g. immediately after last SCLK). (See Figure 3.9.22.)

3.9.3 SFRs

		7	6	5	4	3	2	1	0
SC0MOD0	Bit symbol	TB8	CTSE	RXE	WU	SM1	SM0	SC1	SC0
(0202H)	Read/Write				R/W				
	After reset	0	0	0	0	0	0	0	0
	Function	Transfer data bit8.	Hand shake 0: CTS disable 1: CTS enable	Receive function. 0: Receive disable 1: Receive enable	Wakeup function. 0: Disable 1: Enable	Serial trans mode. 00: I/O inte 01: 7-bit U/ 10: 8-bit U/ 11: 9-bit U/	rface mode ART mode ART mode	Serial transmis (UART) 00: TMRA0 tr 01: Baud rate generato 10: Internal c 11: External	sion clock. rigger e lock f _{SYS}
								(SCLK0 i	
						00 01 10 11 No Se 00 01 10 11	 Timer TMF Baud rate Internal clo External clo External clo interface serial boo rial transmission I/O interface UART model 	bock f _{SYS} lock (SCLK0 ir k selection for mode is contro ntrol register (S sion mode ace mode 7-bit mo 9-bit mo	aput) the I/O olled by the SCOCR).
						0	data is rece Interrupt ge	enerated when	Other mode Don't car
						0	ceiving funct Receive c Receive e	ion lisabled) Enable
						0		(Always transf	

Figure 3.9.7 Serial Mode Control Register (SIO0, SC0MOD0)

Figure 3.9.8 Serial Mode Control Register (SIO1, SC1MOD0)

Note: As all error flags are cleared after reading do not test only a single bit with a bit testing instruction.

Figure 3.9.9 Serial Control Register (SIO0, SC0CR)

Note: As all error flags are cleared after reading do not test only a single bit with a bit testing instruction.

Figure 3.9.10 Serial Control Register (SIO1, SC1CR)

		7	6	5	4	3	2	1	0
BR0CR	Bit symbol	_	BR0ADDE	BR0CK1	BR0CK0	BR0S3	BR0S2	BR0S1	BR0S0
0203H)					R/				
	After reset	0	0	0	0	0	0	0	0
	Function	Always	+(16 – K)/16	00:					
		write 0.	division.	01:					
			0: Disable	10:		Setti	-	d frequency	"N".
			1: Enable	11:			(0 to	o F)	
	_								
	\downarrow				\downarrow				
-	+(16 – K)/16 d	ivision enab	le	Setting the	input clock	of baud rate of	generator		
_	0 Disable			00 Inte	ernal clock ø	Т0			
	1 Enable				ernal clock ø				
					ernal clock ø				
				11 Inte	ernal clock ø	T32			
			_	-		_		4	0
		7	6	5	4	3	2	1	0
	Bit symbol	7	6	5	4	3 BR0K3	2 BR0K2	1 BR0K1	0 BR0K0
	Bit symbol Read/Write	7	6	5	4			BR0K1	
		7	6	5	4		BR0K2	BR0K1	
	Read/Write	7	6	5	4	BR0K3	BR0K2 R/	BR0K1 W	BR0K0
	Read/Write After reset	7	6	5	4	BR0K3 0	BR0K2 R/ 0	BR0K1 W 0	BR0K0 0
	Read/Write After reset	7	6	5	4	BR0K3 0	BR0K2 R/ 0	BR0K1 W 0	BR0K0 0
	Read/Write After reset	7	6	5	4	BR0K3 0	BR0K2 R/ 0	BR0K1 W 0	BR0K0 0
	Read/Write After reset	7	6	5	4	BR0K3 0	BR0K2 R/ 0	BR0K1 W 0	BR0K0 0
	Read/Write After reset	7	6	5	4	BR0K3 0	BR0K2 R/ 0	BR0K1 W 0	BR0K0 0
	Read/Write After reset					BR0K3 0	BR0K2 R/ 0	BR0K1 W 0	BR0K0 0
80ADD 0204H)	Read/Write After reset		d rate generate	or frequency	divisor ←	BR0K3 0 ([BR0K2 R/ 0 Sets frequend Divided by N	BR0K1 W 0	BR0K0 0
	Read/Write After reset Function	Sets bauc	d rate generate BR0CR <bf< td=""><td>or frequency ROADDE> =</td><td>divisor ← 1 BR0C</td><td>BR0K3 0 ([R<br0adde< td=""><td>$\frac{BR0K2}{R}$ 0 Sets frequence Divided by N $\overline{E} = 0$</td><td>BR0K1 W 0</td><td>BR0K0 0</td></br0adde<></td></bf<>	or frequency ROADDE> =	divisor ← 1 BR0C	BR0K3 0 ([R <br0adde< td=""><td>$\frac{BR0K2}{R}$ 0 Sets frequence Divided by N $\overline{E} = 0$</td><td>BR0K1 W 0</td><td>BR0K0 0</td></br0adde<>	$\frac{BR0K2}{R}$ 0 Sets frequence Divided by N $\overline{E} = 0$	BR0K1 W 0	BR0K0 0
	Read/Write After reset Function	Sets baue	d rate generate BR0CR <bf 0000 (N = 16)</bf 	or frequency ROADDE> = 0010 (N =	divisor ← 1 BR0C	<u>BR0K3</u> 0 (I R <br0adde (N = 1) (UART</br0adde 	$\frac{BR0K2}{R}$ 0 Sets frequence Divided by N $\overline{E} = 0$	BR0K1 W 0	BR0K0 0
	Read/Write After reset Function	Sets bauc	d rate generate BR0CR <bf 0000 (N = 16) or</bf 	or frequency ROADDE> = 0010 (N = to	divisor ← 1 BR0C = 2) 0001	BR0K3 0 (I R <br0adde (N = 1) (UART to</br0adde 	$BR0K2$ $R/$ 0 Sets frequence Divided by N $\overline{F} = 0$ Sets frequence $\overline{F} = 0$	BR0K1 W 0	BR0K0 0
	Read/Write After reset Function	Sets baue	d rate generate BR0CR <bf 0000 (N = 16)</bf 	or frequency ROADDE> = 0010 (N =	divisor ← 1 BR0C = 2) 0001 15)	<u>BR0K3</u> 0 (I R <br0adde (N = 1) (UART</br0adde 	$BR0K2$ $R/$ 0 Sets frequence Divided by N $\overline{S} = 0$ Sets frequence $\overline{S} = 0$	BR0K1 W 0	BR0K0 0
	Read/Write After reset Function BR0ADD	Sets baue ROCR BR0S3:0>	d rate generate BR0CR <bf 0000 (N = 16) or</bf 	or frequency ROADDE> = 0010 (N = to	divisor ← 1 BR0C = 2) 0001 15) (BR0K3 0 (I R <br0adde (N = 1) (UART to I111 (N = 15)</br0adde 	$BR0K2$ $R/$ 0 Sets frequence Divided by N $\overline{S} = 0$ Sets frequence $\overline{S} = 0$	BR0K1 W 0	BR0K0 0
	Read/Write After reset Function BR0ADD <br0k3:0></br0k3:0>	Sets baue ROCR BR0S3:0>	d rate generate BR0CR <bf 0000 (N = 16) or 0001 (N = 1) Disable</bf 	or frequency ROADDE> = 0010 (N = 1111 (N = Disable	divisor ← 1 BR0C = 2) 0001 15) (→	BR0K3 0 (I (I (N = 1) (UART to I111 (N = 15) 0000 (N = 16)	$BR0K2$ $R/$ 0 Sets frequence Divided by N $\overline{S} = 0$ Sets frequence $\overline{S} = 0$	BR0K1 W 0	BR0K0 0
	Read/Write After reset Function BR0ADD <br0k3:0> 000</br0k3:0>	Sets baue ROCR BR0S3:0>	d rate generate BR0CR <bf 0000 (N = 16) or 0001 (N = 1)</bf 	or frequency ROADDE> = 0010 (N = to 1111 (N =	divisor ← 1 BR0C = 2) 0001 15) (→ by	BR0K3 0 (I R <br0adde (N = 1) (UART to I111 (N = 15)</br0adde 	$BR0K2$ $R/$ 0 Sets frequence Divided by N $\overline{S} = 0$ Sets frequence $\overline{S} = 0$	BR0K1 W 0	BR0K0 0

N	UART mode	I/O mode
2 to 15	0	×
1 , 16	×	×

The baud rate generator can be set "1" in UART mode and disable +(16-K)/16 division function.Don't use in I/O interface mode.

Note2:Set BR0CR <BR0ADDE> to 1 after setting K (K = 1 to 15) to BR0ADD<BR0K3:0> when +(16-K)/16 division function is used. Writes to unused bits in the BR0ADD register do not affext operation, and undefined data is read from these unused bits.

Figure 3.9.11 Baud Rate Generator Control (SIO0, BR0CR, BR0ADD)

		7	6	5	5	4	3	2	1	0	
R1CR	Bit symbol	_	BR1ADDE	BR10	CK1	BR1CK0	BR1S3	BR1S2	BR1S1	BR1S0	
0BH)	Read/Write					R	/W		i	i	
	After reset	0	0	0		0	0	0	0	0	
	Function	-	+(16 – K)/16	00: φT							
			division.	01: φT							
			0: Disable	10: φT			Setti	ng the divide		"N".	
			1: Enable	11: φT	32			(0 to	oF)		
						1					
						ļ					
	+(16 – K)/16 d	ivision enabl	е	Input	t clock	selection fo	r baud rate g	enerator			
	0 Disabled			00	Inter	nal clock _{\$} T	0				
	1 Enabled			01	Inter	nal clock _{\$} T	2				
				10	Inter	nal clock _{\$} T	8				
				11	Inter	nal clock _{\$} T	32				
		7	6	5	5	4	3	2	1	0	
	Bit symbol	7	6	5		4	3 BR1K3	2 BR1K2	1 BR1K1		
	Bit symbol Read/Write	7	6	5		4			BR1K1	0 BR1K0	
		7	6	5		4		BR1K2	BR1K1		
	Read/Write	7	6	5		4	BR1K3	BR1K2 R/	BR1K1 W	BR1K0	
	Read/Write After reset	7	6	5		4	BR1K3 0	BR1K2 R/ 0	BR1K1 W 0	BR1K0 0	
	Read/Write After reset	7	6	5		4	BR1K3 0	BR1K2 R/ 0	BR1K1 W 0 cy divisor "K"	BR1K0 0	
	Read/Write After reset	7	6	5		4	BR1K3 0	BR1K2 R/ 0	BR1K1 W 0 cy divisor "K"	BR1K0 0	
	Read/Write After reset	7	6	5		4	BR1K3 0	BR1K2 R/ 0	BR1K1 W 0 cy divisor "K"	BR1K0 0	
	Read/Write After reset	7	6	5		4	BR1K3 0	BR1K2 R/ 0	BR1K1 W 0 cy divisor "K"	BR1K0 0	
	Read/Write After reset		enerator free				BR1K3 0	BR1K2 R/ 0	BR1K1 W 0 cy divisor "K"	BR1K0 0	
ADD 0CH)	Read/Write After reset			Juency	divisc	or setting ←	BR1K3 0 (I	BR1K2 R/ 0	BR1K1 W 0 cy divisor "K" + (16 – K)/1	BR1K0 0	
	Read/Write After reset Function	Baud rate g	penerator free	uency R <br1< td=""><td>divisc</td><td>or setting \leftarrow</td><td>BR1K3 0 (I BR1CR<bf< td=""><td>BR1K2 R/ 0 Sets frequent Divided by N</td><td>BR1K1 W 0 cy divisor "K" + (16 – K)/11</td><td>BR1K0 0</td></bf<></td></br1<>	divisc	or setting \leftarrow	BR1K3 0 (I BR1CR <bf< td=""><td>BR1K2 R/ 0 Sets frequent Divided by N</td><td>BR1K1 W 0 cy divisor "K" + (16 – K)/11</td><td>BR1K0 0</td></bf<>	BR1K2 R/ 0 Sets frequent Divided by N	BR1K1 W 0 cy divisor "K" + (16 – K)/11	BR1K0 0	
	Read/Write After reset Function	Baud rate g	penerator free BR1CF 0000 (N =	uency R <br1< td=""><td>divisc</td><td>for setting \leftarrow = 1 (N = 2)</td><td>BR1K3 0 (I BR1CR<bf 0001 (N = 1</bf </td><td>BR1K2 R/ 0 Sets frequend Divided by N</td><td>BR1K1 W 0 cy divisor "K" + (16 – K)/11</td><td>BR1K0 0</td></br1<>	divisc	for setting \leftarrow = 1 (N = 2)	BR1K3 0 (I BR1CR <bf 0001 (N = 1</bf 	BR1K2 R/ 0 Sets frequend Divided by N	BR1K1 W 0 cy divisor "K" + (16 – K)/11	BR1K0 0	
	Read/Write After reset Function	Baud rate g	penerator frec BR1CF 0000 (N = or	quency R <br1 16)</br1 	divisc ADDE 0010	or setting \leftarrow = 1 (N = 2) to	BR1K3 0 (I BR1CR <bf 0001 (N = 1 1111</bf 	BR1K2 R/ 0 Sets frequent Divided by N Divided by N R1ADDE> = 0) (UART only to (N = 15)	BR1K1 W 0 cy divisor "K" + (16 – K)/11	BR1K0 0	
	Read/Write After reset Function BR1ADD <br1k3:0></br1k3:0>	Baud rate g BR0CR BR1S3:0>	penerator frec BR1CF 0000 (N = or 0001 (N =	uency R <br1 16) = 1)</br1 	diviscc ADDE 0010	or setting \leftarrow = = 1 (N = 2) to (N = 15)	BR1K3 0 (I BR1CR <bf 0001 (N = 1 1111</bf 	BR1K2 R/ 0 Sets frequent Divided by N N R1ADDE> = 0) (UART only to	BR1K1 W 0 cy divisor "K" + (16 – K)/11	BR1K0 0	
	Read/Write After reset Function BR1ADD <br1k3:0></br1k3:0>	Baud rate g BR0CR BR1S3:0>	penerator frec BR1CF 0000 (N = or	uency R <br1 16) = 1)</br1 	diviscc ADDE 0010	or setting \leftarrow = 1 (N = 2) to	BR1K3 0 (I BR1CR <bf 0001 (N = 1 1111</bf 	BR1K2 R/ 0 Sets frequent Divided by N Divided by N R1ADDE> = 0) (UART only to (N = 15)	BR1K1 W 0 cy divisor "K" + (16 – K)/11	BR1K0 0	
	Read/Write After reset Function BR1ADD <br1k3:0> 00 0001 (</br1k3:0>	Baud rate g BR0CR BR1S3:0> 00 K = 1)	enerator frec BR1CF 0000 (N = or 0001 (N = Disable	uency R <br1 16) = 1)</br1 	divisc ADDE 0010 11111 Disa	or setting \leftarrow $\Rightarrow = 1$ (N = 2) to (N = 15) sable bled by	BR1K3 0 ([BR1CR <bf 0001 (N = 1 1111 0000</bf 	BR1K2 R/ 0 Sets frequent Divided by N Divided by N R1ADDE> = 0) (UART only to (N = 15)	BR1K1 W 0 cy divisor "K" + (16 – K)/11	BR1K0 0	
	Read/Write After reset Function BR1ADD <br1k3:0></br1k3:0>	Baud rate g BR0CR BR1S3:0> 00 K = 1)	penerator frec BR1CF 0000 (N = or 0001 (N =	uency R <br1 16) = 1)</br1 	divisc ADDE 0010 11111 Disa	or setting \leftarrow E > = 1 P(N = 2) to P(N = 15) sable	BR1K3 0 ([BR1CR <bf 0001 (N = 1 1111 0000</bf 	BR1K2 $R/$ 0 Sets frequend Divided by N $R1ADDE > = 0$ $(UART only)$ to $(N = 15)$ $(N = 16)$	BR1K1 W 0 cy divisor "K" + (16 – K)/11	BR1K0 0	

N	UART mode	I/O mode
2 to 15	0	×
1 , 16	×	×

The baud rate generator can be set "1" in UART mode and disable +(16-K)/16 division function.Don't use in I/O interface mode.

Note2:Set BR1CR <BR1ADDE> to 1 after setting K (K = 1 to 15) to BR10ADD<BR1K3:0> when +(16-K)/16 division function is used. Writes to unused bits in the BR1ADD register do not affext operation, and undefined data is read from these unused bits.

Figure 3.9.12 Baud Rate Generator Control (SIO1, BR1CR, BR1ADD)

		7	6	5	4	3	2	1	0
SC0MOD1	Bit symbol	12S0	FDPX0		/	/	/	/	/
(0205H)	Read/Write	R/W	R/W			/	/	/	/
	After reset	0	0			/	/	/	
	Function	IDLE2	Duplex						
		0: Stop	0: Half						
		1: Run	1: Full						

Figure 3.9.14 Serial Mode Control Register 1 (SIO0, SC0MOD1)

Note: Prohibit read-modify-write for SC1BUF.

Figure 3.9.15 Serial Transmission/Receiving Buffer Registers (SIO1, SC1BUF)

		7	6	5	4	3	2	1	0
SC1MOD1	Bit symbol	I2S1	FDPX1		/			/	
(020DH)	Read/Write	R/W	R/W	/	/	/		/	
	After reset	0	0	/		/		/	
	Function	IDLE2	Duplex						
		0: Stop	0: Half						
		1: Run	1: Full						

	Serial Mode Control Register 1		
FIGURE 3 9 TO	Serial Mode Control Redister 1	15101	SCHWODD
1 19010 010110	Contai mode Conta of Regiotor 1		001110017

3.9.4 Operation in Each Mode

(1) Mode 0 (I/O interface mode)

This mode allows an increase in the number of I/O pins available for transmitting data to or receiving data from an external shift register.

This mode includes the SCLK output mode to output synchronous clock SCLK and SCLK input mode to input external synchronous clock SCLK.

Figure 3.9.17 SCLK Output Mode Connection Example

Figure 3.9.18 SCLK Input Mode Connection Example

a. Transmission

In SCLK output mode 8-bit data and a synchronous clock are output on the TXD0 and SCLK0 pins respectively each time the CPU writes the data to the transmission buffer. When all data is output, INTESO<ITX0C> will be set to generate the INTTX0 interrupt.

Figure 3.9.19 Transmitting Operation in I/O Interface Mode (SCLK0 output mode)

In SCLK input mode, 8-bit data is output on the TXD0 pin when the SCLK0 input becomes active after the data has been written to the transmission buffer by the CPU.

When all data is output, INTESO<ITX0C> will be set to generate INTTX0 interrupt.

Figure 3.9.20 Transmitting Operation in I/O Interface Mode (SCLK0 input mode)

b. Receiving

In SCLK output mode, the synchronous clock is outputted from SCLK0 pin and the data is shifted to receiving buffer 1. This starts when the receive interrupt flag INTESO<IRX0C> is cleared by reading the received data. When 8-bit data are received, the data will be transferred to receiving buffer 2 (SC0BUF according to the timing shown below) and INTESO<IRX0C> will be set to generate INTRX0 interrupt.

The outputting for the first SCLK0 starts by setting SC0MOD0<RXE> to 1.

Figure 3.9.21 Receiving Operation in I/O Interface Mode (SCLK0 output mode)

In SCLK input mode, the data is shifted to receiving buffer 1 when the SCLK input becomes active after the receive interrupt flag INTESO<IRX0C> is cleared by reading the received data. When 8-bit data is received, the data will be shifted to receiving buffer 2 (SC0BUF according to the timing shown below) and INTESO<IRX0C> will be set again to be generate INTRX0 interrupt.

Figure 3.9.22 Receiving Operation in I/O Interface Mode (SCLK0 input mode)

Note: The system must be put in the receive enable state (SCMOD0<RXE> = 1) before data can be received.

c. Transmission and receiving (Full duplex mode)

When the full duplex mode is used, set the level of receive interrupt to 0 and set enable the interrupt level (1 to 6) to the transfer interrupt. In the transfer interrupt program, the receiving operation should be done like the above example before setting the next transfer data.

(Example)

Channel 0, SCLK output

Baud rate = 9600 bps

fc = 14.7456 MHz

System clock: High-frequency (fc)

Clock gear: 1 (fc)

Prescaler clock: fFPH

Main routine

INTES0 PCCR	7 0 -	6 0 -	5 0 -	4 1 -	3 0 -	2 0 1	1 0 0	0 0 1	Set the INTTX0 level to 1. Set the INTRX0 level to 0. Set PC0, PC1 and PC2 to function as the TXD0, RXD0 and SCLK0 pins respectively.
PCFC	-	-	-	-	-	1	-	1	
SC0MOD0	0	0	0	0	0	0	0	0	Select I/O interface Mode.
SC0MOD1	1	1	Х	Х	Х	Х	Х	Х	Select full duplex Mode.
SC0CR	0	0	0	0	0	0	0	0	SCLK output, transmit on negative edge, receive on positive edge
BR0CR	0	0	1	1	0	0	1	1	Baud rate = 9600 bps
SC0MOD0	0	0	1	0	0	0	0	0	Enable receiving
SC0BUF	*	*	*	*	*	*	*	*	Set the transmit data and start.
INTTX0 i	nte	rru	pt 1	out	tine	;			
Acc SC0BU SC0BUF	F *	*	*	*	*	*	*	*	Read the receiving buffer. Set the next transmit data.

X: Don't care, -: No change

(2) Mode 1 (7-bit UART mode)

7-bit UART mode is selected by setting serial channel mode register SC0MOD0 <SM1:0> to 01.

In this mode, a parity bit can be added. Use of a parity bit is enabled or disabled by the setting of the serial channel control register SCOCR<PE> bit; whether even parity or odd parity will be used is determined by the SCOCR<EVEN> setting when SCOCR<PE> is set to 1 (Enabled).

(Setting example)

When transmitting data of the following format, the control registers should be set as described below. This explanation applies to channel 0.

X: Don't care, -: No change

(3) Mode 2 (8-bit UART mode)

8-bit UART mode is selected by setting SC0MOD0<SM1:0> to 10. In this mode, a parity bit can be added (Use of a parity bit is enabled or disabled by the setting of SC0CR<PE>); whether even parity or odd parity will be used is determined by the SC0CR<EVEN> setting when SC0CR<PE> is set to 1 (Enabled).

(Setting example)

When receiving data of the following format, the control registers should be set as described below.

Transmission direction (transmission rate: 9600 bps at fc = 12.288 MHz)

* Clock state System clock: High-frequency (fc) Clock gear: 1 (fc) Prescaler clock: fFPH Main settings 7 6 5 4 3 2 1 0 PCCR - - - - 0 -Set PC1 to function as the RXD0 pin. SC0MOD \leftarrow - 0 1 X 1 0 0 1 Enable receiving in 8-bit UART mode. SC0CR $\leftarrow X 0 1 X X X 0 0$ Add even parity. BR0CR $\leftarrow 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1$ Set the transfer rate to 9600 bps. INTES0 \leftarrow - - - - 1 1 0 0 Enable the INTRX0 interrupt and set it to interrupt level 4. Interrupt processing ← SC0CR AND 00011100 Acc Check for errors. if Acc ≠ 0 then ERROR ← SC0BUF Read the received data. Acc

- X: Don't care, -: No change
- (4) Mode 3 (9-bit UART mode)

9-bit UART mode is selected by setting SC0MOD0<SM1:0> to 11. In this mode parity bit cannot be added.

In the case of transmission the MSB (9th bit) is written to SCOMODO<TB8>. In the case of receiving it is stored in SCOCR<RB8>. When the buffer is written and read, the MSB is read or written first, before the rest of the SCOBUF data.

Wakeup function

In 9-bit UART mode, the wakeup function for slave controllers is enabled by setting SCOMOD0<WU> to 1. The interrupt INTRX0 occurs only when<RB8> = 1.

Note: The TXD pin of each slave controller must be in open-drain output mode.

Figure 3.9.23 Serial Link Using Wakeup Function

Protocol

- a. Select 9-bit UART mode on the master and slave controllers.
- b. Set the SC0MOD0<WU> bit on each slave controller to 1 to enable data receiving.
- c. The master controller transmits one-frame data including the 8-bit select code for the slave controllers. The MSB (bit8)<TB8> is set to 1.

- d. Each slave controller receives the above frame. Each controller checks the above select code against its own select code. The controller whose code matches clears its WU bit to 0.
- e. The master controller transmits data to the specified slave controller whose SC0MOD<WU> bit is cleared to 0. The MSB (bit8) <TB8> is cleared to 0.

f. The other slave controllers (whose <WU> bits remain at 1) ignore the received data because their MSBs (Bit8 or <RB8>) are set to 0, disabling INTRX0 interrupts.

The slave controller (WU bit = 0) can transmit data to the master controller, and it is possible to indicate the end of data receiving to the master controller by this transmission.

(Setting example)

To link two slave controllers serially with the master controller using the internal clock fsys as the transfer clock.

Figure 3.9.24 UART Block Connection

Since serial channels 0 and 1 operate in exactly the same way, channel 0 only is used for the purposes of this explanation.

• Setting the	he master controller	
Main		
PCCR	$\left.\begin{array}{c}\leftarrow & - & - & - & - & - & 0 & 1\\ \leftarrow & X & X & - & X & - & - & X & 1\end{array}\right\}$	Set PC0 and PC1 to function as the TXD0 and RXD0 pins
PCFC INTES0	$\leftarrow X X - X X 1 J$ $\leftarrow 1 1 0 0 1 1 0 1$	respectively. Enable the INTTX0 interrupt and set it to interrupt level 4.
INTEGO	~ 1 1 0 0 1 1 0 1	Enable the INTRX0 interrupt and set it to interrupt level 4.
SC0MOD0	\leftarrow 1 0 1 0 1 1 1 0	Set f _{SYS} as the transmission clock for 9-bit UART mode.
SC0BUF	$\leftarrow \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 1$	Set the select code for slave controller 1.
INTTX0 ir	nterrupt	
SC0MOD0	← 0	Set TB8 to 0.
SC0BUF	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Set data for transmission.
• Setting tl	he slave controller	
Main		
PCCR	$\left. \begin{array}{c} \leftarrow 0 \ 1 \\ \leftarrow X \ X - X X \ 1 \\ \leftarrow X \ X \ X \ X - X \ - X \ 1 \end{array} \right\}$	
PCFC	$\leftarrow X X - X - X 1 $	Set PC1 to RXD and PC0 to TXD0 (Open-drain output).
PCODE	$\leftarrow X X X X - X X 1 J$	
INTES0	\leftarrow 1 1 0 1 1 1 1 0	Enable INTRX0 and INTTX0.
SC0MOD0	← 0 0 1 1 1 1 1 0	Set <wu> to 1 in 9-bit UART transmission mode using f_{SYS} as the transfer clock.</wu>
INTRX0 ir	nterrupt	
$Acc \leftarrow SC0B$	UF	
if Acc = Selec	t code	

```
if Acc = Select code
Then SC0MOD0 \leftarrow - - - 0 - - - -
```

3.9.5 Support for IrDA

SIO0 includes support for the IrDA 1.0 infrared data communication specification. Figure 3.9.25 shows the block diagram.

Figure 3.9.25 IrDA Block Diagram

(1) Modulation of the transmission data

When the transfer data is 0, the modem outputs 1 to TXD0 pin with either 3/16 or 1/16 times for width of baud-rate. The pulse width is selected by the SIRCR<PLSEL>. When the transfer data is 1, the modem outputs 0.

Figure 3.9.26 Modulation Example of Transfer Data

(2) Demodulation of the receive data

When the receive data has the effective high-level pulse width (Software selectable), the modem outputs 0 to SIO0. Otherwise the modem outputs 1 to SIO0. The receive pulse logic is also selectable by SIRCR<RXSEL>.

Figure 3.9.27 Demodulation Example of Receive Data

(3) Data format

The data format is fixed as follows:

- Data length: 8 bits
- Parity bits: None
- Stop bits: 1

Any other settings don't guarantee the normal operation.

(4) SFR

Figure 3.9.28 shows the control register SIRCR. Set the data SIRCR during SIO0 is inhibited (Both TXEN and RXEN of this register should be set to 0).

Any changing for this register during transmission or receiving operation doesn't guarantee the normal operation.

The following example describes how to set this register:

1)	SIO setting	; Set the SIO to UART mode.
	\downarrow	
2)	LD (SIRCR), 07H	; Set the receive data pulse width to 16×.
3)	LD (SIRCR), 37H	; TXEN, RXEN enable the transmission and receiving of
		SIO.
	\downarrow	
4)	Start transmission	
	and measuring of fam CIOO	The meden energies of fellows:

and receiving for SIO0 ; The modem operates as follows:

- SIO0 starts transmitting.
- IR receiver starts receiving.

(5) Notes

- Baud rate generator for IrDA To generate baud-rate for IrDA, use baud-rate generator in SIO0 by setting 01 to SC0MOD0<SC1:0>. To use another source (TA0TRG, f_{SYS} and SCLK0 input) are not allowed.
- 2) As the IrDA 1.0 physical layer specification, the data transfer speed and infra red pulse width is specified.

Baud Rate	Modulation	Rate Tolerance (% of rate)	Pulse Width (Min)	Pulse Width (Typ.)	Pulse width (Max)
2.4 kbps	RZI	±0.87	1.41 μs	78.13 μs	88.55 μs
9.6 kbps	RZI	±0.87	1.41 μs	19.53 μs	22.13 μs
19.2 kbps	RZI	±0.87	1.41 μs	9.77 μs	11.07 μs
38.4 kbps	RZI	±0.87	1.41 μs	4.88 μs	5.96 μs
57.6 kbps	RZI	±0.87	1.41 μs	3.26 μs	4.34 μs
115.2 kbps	RZI	±0.87	1.41 μs	1.63 μs	2.23 μs

Table 3.9.4 Baud Rate and Pulse Width Specifications
--

The infra red pulse width is specified either baud rate T x 3/16 or $1.6 \ \mu s$ ($1.6 \ \mu s$ is equal to 3/16 pulse width when baud rate is $115.2 \ kbps$).

The TMP91C025 has the function selects the pulse width on the transmission either 3/16 or 1/16. But 1/16 pulse width can be selected when the baud rate is equal or less than 38.4 kbps only. When 38.4 kbps and 115.2 kbps, the output pulse width should not be set to T x 1/16.

As the same reason, +(16 - K)/16 division functions in the baud rate generator of SIO0 can not be used to generate 115.2 kbps baud-rate.

Also when the 38.4 kbps and 1/16 pulse width, + (16 - K)/16 divisions function can not be used. Table 3.9.5 shows "Baud-rate and Pulse Width for (16 - K)/16 Division Function".

Table 3.9.5 Baud-rate and Pulse Width for (16 - K)/16 Division Function

Pulse Width			Baud	I-rate		
	115.2 kbps	57.6 kbps	38.4 kbps	19.2 kbps	9.6 kbps	2.4 kbps
T × 3/16	×	0	0	0	0	0
T × 1/16	-	_	×	0	0	0

 \circ : Can be used (16 – K)/16 division function

- \times : Can not be used (16 K)/16 division function
- -: Can not be set to 1/16 pulse width

		7	6	5	4	3	2	1	0		
SIRCR	Bit symbol	PLSEL	RXSEL	TXEN	RXEN	SIRWD3	SIRWD2	SIRWD1	SIRWD0		
(0207H)	Read/Write				R	N					
	After reset	0	0	0	0	0	0	0	0		
	Function	Select transmit pulse width. 0:3/16 1:1/16	transmit data. bulse 0: H pulse width. 1: L pulse D:3/16		TransmitReceive0: Disable0: Disable1: Enable1: Enable		Select receive pulse width Set effective pulse width for equal or more than $2x \times (value + 1) + 100ns$ Can be set: 1 to 14 Can not be set: 0, 15.				
						Formula Effectiv 0000 0001 to 1110 1111		$h \ge 2x \times (value)$ et re than $4x +$ re than $30x +$			
						1	Enabled				
						\rightarrow Transmit	t operation Disabled				
						1	Enabled				
		L					ansmit pulse	width			
						0	3/16				
						1	1/16				

Figure 3.9.28 IrDA Control Register

3.10 Touch Screen Interface (TSI)

The TMP91C025 has an interface for 4-terminal resistor network touch-screen. This interface supports two procedures: an X/Y position measurement and touch detection. Each procedure can be performed by setting the TSI control register (TSICR0 and TSICR1) and using an internal AD converter.

3.10.1 Touch Screen Interface Module Internal/External Connection

Figure 3.10.1 External Connection of TSI (A)

Figure 3.10.2 Internal Block Diagram of TSI (B)

3.10.2 Touch Screen Interface (TSI) Control Register

		7	6	5	4	3	2	1	0
TSICR0	Bit symbol	TSI7	/	PTST	TWIEN	PYEN	PXEN	MYEN	MXEN
(002BH)			R	R/W	R/W	R/W	R/W	R/W	
	After reset	0		0	0	0	0	0	0
	Function	0: Disable	Detection I		INT2	SPY	SPX	SMY	SMX
		1: Enable		condition	interrupt	0 : OFF	0 : OFF	0 : OFF	0 : OFF
				0: no touch	control	1 : ON	1 : ON	1 : ON	1 : ON
				1: touch	0: Disable				
					1: Enable				

TSI Control Register

PXD (Internal Pull-down resistor) ON/OFF setting

<pxen></pxen>	0	1
0	OFF	OFF
1	ON	OFF

→ Bit5 monitors whether the screen was touched or not.

The bit is 1 while the screen has been touched.

De-bounce Time Setting Register

						0				
		7	6	5	4	3	2	1	0	
TSICR1	Bit symbol	DBC7	DB1024	DB256	DB64	DB8	DB4	DB2	DB1	
(002CH)	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
	After reset	0	0	0	0	0	0	0	0	
	Function 0: Disable 1024				64	8	4	2	1	
		1: Enable	De-bounce time is set by "(N \times 64 – 16)/f _{SYS} " – formula.							
	"N" is sum of number which is set to 1 in bit6 to bit0.									
1: Enable De-bounce time is set by " $(N \times 64 - 16)/f_{SYS}$ " – formula										

3.10.3 Touch Detection Procedure

A touch detection procedure is a preparing procedure till a pen touches to the screen.

When the waiting state, ON only SPY-switch and OFF other 3-switch (SMY, SPX and SMX).

During this waiting state, PB5/INT2/PX pin's level is L because of the internal resistors between X and Y directions in the touch screen are not connected and INT2 isn't generated.

If the pen touches, PB5/INT2/PX pin's level is H because of the internal pull-down register (PXD) between X and Y direction in the touch screen are connected and INT2 will be generated.

And the de-bounce circuit like following diagram is prepared to avoid some number's interrupt generation though one time touch.

This can ignore the pulse under the time which is set to TSICR1 register.

Figure 3.10.3 Block Diagram of De-bounce Circuit

Figure 3.10.4 Timing Diagram of De-bounce Circuit

3.10.4 X/Y Position Measuring Procedure

In the INT2 routine, execute an X/Y position measuring procedure like below.

<X position measurement>

At first, ON both SPX and SMX-switches and OFF SPY, SMY-switches.

By this setting, analog-voltage which shows the X position will be inputted to P83/MY/AN3 pin. The X position can be measured by converting this voltage to digital code with AD converter.

<Y position measurement>

AVCC = 3.3 V

R1

R2

SPY (SPX)

typ.20 Ω

Rty (Rtx)

SMY (SMX) ON resistor: Rmy (Rmx) typ.20 Ω

ON resistor: Rpy (Rpx)

Touch screen resistor:

a touch screen.

A value depends on

Next, ON both SPY and SMY-switches and OFF SPX, SMX-switches.

By this setting, analog voltage which shows the Y position will be inputted to P82/MX/AN2 pin. The Y position can be measured by converting this voltage to digital code with AD converter.

The above analog voltage which is inputted to AN3 or AN2 pin can be calculated.

It is a ratio between resistance value in TMP91C025FG and resistance value in touch screen shown in Figure 3.10.5.

Therefore, if the pen touches a corner area on touch screen, analog-voltage will not be to 3.3 V or 0.0 V.

As a notice, since each resistor has an uneven, consider about it.

And it is recommended that an average code among a few times AD conversion will be adopted as a correct code.

 $E1 = ((R2 + Rmy)/(Rpy + Rty + Rmy)) \times AVCC [V]$

(Example) The case of AVCC = 3.3 V, Rpy = Rmy = 20 Ω , R1 = 400 Ω and R2 = 100 Ω E1 = ((100 + 20)/(20 + 400 + 100 + 20) \times 3.3 = 0.733 V

Note 1: An X position can be calculated in the same way though above formula is for Y position. Note 2: Rty = R1 + R2.

AN2 (AN3) pin

Touch point

(2) X/Y position measurement procedure

3.10.5 Flow Chart for TSI

(1) Touch detection procedure

Figure 3.10.6 Flow Chart for TSI

It shows the circuit for each statement (a), (b) and (c) in the next page.

91C025-159

----- : AVSS ----- : AVCC

---- : AVSS ----- : AVCC

- : AVCC

3.11 Analog/Digital Converter

The TMP91C025 incorporates a 10-bit successive approximation type analog/digital converter (AD converter) with 4-channel analog input.

Figure 3.11.1 is a block diagram of the AD converter. The 4-channel analog input pins (AN0 to AN3) are shared with the input only port 4 and can thus be used as an input port.

Note: When IDLE2, IDLE1 or STOP mode is selected, so as to reduce the power, with some timings the system may enter a standby mode even though the internal comparator is still enabled. Therefore be sure to check that AD converter operations are halted before a HALT instruction is executed.

Figure 3.11.1 Block Diagram of AD Converter

3.11.1 Analog/Digital Converter Registers

The AD converter is controlled by the two AD mode control registers: ADMOD0 and ADMOD1. The AD conversion results are stored in 8 kinds of AD conversion data upper and lower registers: ADREG04H/L, ADREG15H/L, ADREG26H/L and ADREG37H/L.

Figure 3.11.2 shows the registers related to the AD converter.

AD Mode Control Register 0

Figure 3.11.2 AD Converter Related Register

		7	6		5	4		3	2		1	0
ADMOD1	Bit symbol	VREFON	I2AD	/		/	A	DTRGE	ADCH2	AD	CH1	ADCH0
(02B1H)	Read/Write	R/W	R/W	/					•	R/W		
	After reset	0	0	/				0	0	(0	0
	Function	VREF	IDLE2				AD		Analog in	put char	nnel se	election.
		application	0: Stop					ernal				
		control. 0: Off	1: Operate					ger start trol.				
		1: On						lisable				
		1. 011					-	nable				
											•	
				1			A	nalog inp	out channe	l selectio	'n.	
						<sc< td=""><td>AN></td><td></td><td></td><td></td><td>1</td><td></td></sc<>	AN>				1	
							_	Chan	11	(Char	
					<adch< td=""><td></td><td>\geq</td><td>fixe</td><td></td><td>\ </td><td>scan</td><td>ned J</td></adch<>		\geq	fixe		\ 	scan	ned J
						000		AN AN		$0 \rightarrow AN1$		
						010		AN		$0 \rightarrow AN1$		12
					(011 (Note)		AN				$N2 \rightarrow AN3$
						00 to 111		_		prohibiti		
								(ADTRO 0 Dis 1 En IDLE2 0 0 Ste	5 input) sabled nabled control	irts contro	ol by e	xternal trigge
							→ 	Control AD con 0 Of 1 Or	verter. f			e voltage to
									-			re writing 1 to FON> bit to 1

AD Mode Control Register 1

Note: As pin AN3 also functions as the \overline{ADTRG} input pin, do not set $\langle ADCH2:0 \rangle = 011$ when using \overline{ADTRG} with $\langle ADTRGE \rangle = 0$.

Figure 3.11.3	AD Converter Related Registers
---------------	--------------------------------

		7	6	5	4	3	2	1	0
ADREG04L	Bit symbol	ADR01	ADR00						ADR0RF
(02A0H)	Read/Write	R			/	/	/	/	R
	After reset	Unde	fined		/		/	/	0
	Function	Stores lower	r 2 bits of						AD
		AD conversi	on result.						conversion
									data storage
									flag.
									1:Conversion
									result
									stored

AD Conversion Data Lower Register 0/4

AD Conversion Data Upper Register 0/4

ADR

		7	6	5	4	3	2	1	0				
REG04H	Bit symbol	ADR09	ADR08	ADR07	ADR06	ADR05	ADR04	ADR03	ADR02				
(02A1H)	Read/Write		R										
	After reset		Undefined										
Function Stores upper 8 bits AD conversion result.													

AD Conversion Data Lower Register 1/5

		7	6	5	4	3	2	1	0
ADREG15L	Bit symbol	ADR11	ADR10						ADR1RF
(02A2H)	Read/Write	R							R
	After reset	Unde	fined						0
	Function	Stores lower	2 bits of						AD
		AD conversi	on result.						conversion
									result flag.
									1: Conversion
									result
									stored

7 6 5 4 3 2 1 0 ADREG15H ADR19 ADR18 ADR17 ADR16 ADR15 ADR14 ADR13 ADR12 Bit symbol (02A3H) Read/Write R After reset Undefined Stores upper 8 bits of AD conversion result. Function 8 9 7 6 5 3 2 0 4 Channel x conversion result ADREGxH ADREGxL 3 0 7 6 5 4 0 Bits 5 to 1 are always read as 1. • Bit0 is the AD conversion data storage flag <ADRxRF>. When the AD • conversion result is stored, the flag is set to 1. When either of the registers (ADREGxH, ADREGxL) is read, the flag is cleared to 0.

AD Conversion Data Upper Register 1/5

		7	6	5	4	3	2	1	0
ADREG26L	Bit symbol	ADR21	ADR20						ADR2RF
(02A4H)	Read/Write	R			/	/	/	/	R
	After reset	Unde	fined				/	/	0
	Function	Stores lower	r 2 bits of						AD
		AD conversi	on result.						conversion
									data storage
									flag.
									1: Conversion
									result
									stored

AD Conversion Result Lower Register 2/6

AD Conversion Data Upper Register 2/6

		7	6	5	4	3	2	1	0
ADREG26H	Bit symbol	ADR29	ADR28	ADR27	ADR26	ADR25	ADR24	ADR23	ADR22
(02A5H) Read/Write R After reset Undefined									
	Function	Stores upper 8 bits of AD conversion result.							

AD Conversion Data Lower Register 3/7

	/	1		1		<u> </u>			
		7	6	5	4	3	2	1	0
ADREG37L	Bit symbol	ADR31	ADR30						ADR3RF
(02A6H)	Read/Write	R							R
	After reset	Unde	fined						0
	Function	Stores lower	2 bits of						AD
		AD conversi	on result.						conversion
									data storage
									flag.
									1: Conversion
									result
									stored

AD Conversion Result Upper Register 3/7

				10101011			900	rtogiot	0.0	<i>,</i> , 1		
		7	6	5		4		3		2	1	0
ADREG37H	Bit symbol	ADR39	ADR38	ADR3	37	ADR	36	ADR3	5	ADR34	ADR33	ADR32
(02A7H)	Read/Write		R									
	After reset		Undefined									
	Function			Store	es upp	per 8 b	its of	AD conv	ersic	on result.		
			98	7 6	5	4	3	2 1	0			
	Channel x co result	nversion										
									1			
			ADREGxH	`	↓				Ŷ			REGxL
			76	5 4	3	2 1	0	7	6	5 4	3 2 1	0
											\times \times \times	
										\square	~	
		 Bits 5 to1 are always read as 1. 										
				•	Bit0) is the	AD c	onversior	n dat	a storage fl	ag <adrxr< td=""><td>F>. When the</td></adrxr<>	F>. When the
					con	versior	n resu	ult is store	əd, th	ne flag is se	t to 1. When	either of the
					regi	isters (ADRE	EGxH, AD	DRE	GxL) is read	l, the flag is	cleared to 0.

3.11.2 Description of Operation

(1) Analog reference voltage

A high-level analog reference voltage is applied to the VREFH pin; a low-level analog reference voltage is applied to the VREFL pin. To perform AD conversion, the reference voltage as the difference between VREFH and VREFL, is divided by 1024 using string resistance. The result of the division is then compared with the analog input voltage.

To turn off the switch between VREFH and VREFL, write 0 to ADMOD1<VREFON> in AD mode control register 1. To start AD conversion in the off state, first write 1 to ADMOD1<VREFON>, wait 3 μ s until the internal reference voltage stabilizes (this is not related to fc), then set ADMOD0<ADS> to 1.

(2) Analog input channel selection

The analog input channel selection varies depends on the operation mode of the AD converter.

- In analog input channel fixed mode (ADMOD0<SCAN> = 0)
 Setting ADMOD1<ADCH2:0> selects one of the input pins AN0 to AN3 as the input channel.
- In analog input channel scan mode (ADMOD0<SCAN> = 1) Setting ADMOD1<ADCH2:0> selects one of the 4 scan modes.

Table 3.11.1 illustrates analog input channel selection in each operation mode.

After reset, ADMOD0<SCAN> = 0 and ADMOD1<ADCH2:0> = 000. Thus pin AN0 is selected as the fixed input channel. Pins not used as analog input channels can be used as standard input port pins.

<adch2:0></adch2:0>	Channel Fixed <scan> = 0</scan>	Channel Scan <scan> = 1</scan>
000	AN0	AN0
001	AN1	$AN0 \rightarrow AN1$
010	AN2	$AN0 \rightarrow AN1 \rightarrow AN2$
011	AN3	$AN0 \to AN1 \to AN2 \to AN3$
100-111	Use prohibition	Use prohibition

Table 3.11.1 Analog Input Channel Selection

(3) Starting AD conversion

To start AD conversion, write 1 to ADMOD0<ADS> in AD mode control register 0, or ADMOD1<ADTRGE> in AD mode control register 1 and input falling edge on ADTRG pin. When AD conversion starts, the AD conversion busy flag ADMOD0<ADBF> will be set to 1, indicating that AD conversion is in progress.

Writing 1 to ADMOD0<ADS> during AD conversion restarts conversion. At that time, to determine whether the AD conversion results have been preserved, check the value of the conversion data storage flag ADREGxL<ADRxRF>.

During AD conversion, a falling edge input on the ADTRG pin will be ignored.

(4) AD conversion modes and the AD conversion end interrupt

The 4 AD conversion modes are:

- Channel fixed single conversion mode
- Channel scan single conversion mode
- Channel fixed repeat conversion mode
- Channel scan repeat conversion mode

The ADMOD0<REPEAT> and ADMOD0<SCAN> settings in AD mode control register 0 determine the AD mode setting.

Completion of AD conversion triggers an INTAD AD conversion end interrupt request. Also, ADMOD0<EOCF> will be set to 1 to indicate that AD conversion has been completed.

(a) Channel fixed single conversion mode

Setting ADMOD0<REPEAT> and ADMOD0<SCAN> to 00 selects channel fixed single conversion mode.

In this mode, data on one specified channel is converted once only. When the conversion has been completed, the ADMOD0<EOCF> flag is set to 1, ADMOD0 <ADBF> is cleared to 0, and an INTAD interrupt request is generated.

(b) Channel scan single conversion mode

Setting ADMOD0<REPEAT> and ADMOD0<SCAN> to 01 selects channel scan single conversion mode.

In this mode, data on the specified scan channels is converted once only. When scan conversion has been completed, ADMOD0<EOCF> is set to 1, ADMOD0<ADBF> is cleared to 0, and an INTAD interrupt request is generated.

(c) Channel fixed repeat conversion mode

Setting ADMOD0<REPEAT> and ADMOD0<SCAN> to 10 selects channel fixed repeat conversion mode.

In this mode, data on one specified channel is converted repeatedly. When conversion has been completed, ADMOD0<EOCF> is set to 1 and ADMOD0<ADBF> is not cleared to 0 but held 1. INTAD interrupt request generation timing is determined by the setting of ADMOD0<ITM0>.

Setting <ITM0> to 0 generates an interrupt request every time an AD conversion is completed.

Setting <ITM0> to 1 generates an interrupt request on completion of every fourth conversion.

(d) Channel scan repeat conversion mode

Setting ADMOD0<REPEAT> and ADMOD0<SCAN> to 11 selects channel scan repeat conversion mode.

In this mode, data on the specified scan channels is converted repeatedly. When each scan conversion has been completed, ADMOD0<EOCF> is set to 1 and an INTAD interrupt request is generated. ADMOD0<ADBF> is not cleared to 0 but held 1.

To stop conversion in a repeat conversion mode (e.g., in cases (C) and (d)), write 0 to ADMOD0<REPEAT>. After the current conversion has been completed, the repeat conversion mode terminates and ADMOD0<ADBF> is cleared to 0.

Switching to a halt state (IDLE2 mode with ADMOD1<I2AD> cleared to 0, IDLE1 mode or STOP mode) immediately stops operation of the AD converter even when AD conversion is still in progress. In repeat conversion modes (e.g., in cases (C) and (d)), when the halt is released, conversion restarts from the beginning. In single conversion modes (e.g., in cases (a) and (b)), conversion does not restart when the halt is released (the converter remains stopped).

Table 3.11.2 shows the relationship between the AD conversion modes and interrupt requests.

Mode	Interrupt Request	ADMOD0				
Mode	Generation	<itm0></itm0>	<repeat></repeat>	<scan></scan>		
Channel fixed single conversion mode	After completion of conversion	х	0	0		
Channel scan single conversion mode	After completion of scan conversion	х	0	1		
Channel fixed repeat	Every conversion	0	1	0		
conversion mode	Every forth conversion	1	I	0		
Channel scan repeat After completion of conversion mode every scan conversion		х	1	1		

Table 3.11.2 Relationship between AD Conversion Modes and Interrupt Requests

X: Don't care

(e) AD conversion time

84 states (4.7 μ s at fFPH = 36 MHz) are required for the AD conversion for one channel.

(f) Storing and reading the results of AD conversion

The AD conversion data upper and lower registers (ADREG04H/L to ADREG37H/L) store the AD conversion results. (ADREG04H/L to ADREG37H/L are read-only registers.)

In channel fixed repeat conversion mode, the conversion results are stored successively in registers ADREG04H/L to ADREG37H/L. In other modes, the ANO, AN1, AN2 and AN3 conversion results are stored in ADREG04H/L, ADREG15H/L, ADREG26H/L and ADREG37H/L respectively.

Table 3.11.3 shows the correspondence between the analog input channels and the registers which are used to hold the results of AD conversion.

AD Conversion Result Registers							
	AD Conversion	Result Register					
Analog Input Channel (Port A)	Conversion Modes Other than at Right	Channel Fixed Repeat Conversion Mode (<itm0>=1)</itm0>					
ANO	ADREG04H/L	ADREG04H/L ←					
AN1	ADREG15H/L	ADREG15H/L					
AN2	ADREG26H/L	ADREG26H/L					
AN3	ADREG37H/L	ADREG37H/L —					

Table 3.11.3 Correspondence between Analog Input Channels and AD Conversion Result Registers

<ADRxRF>, bit0 of the AD conversion data lower register, is used as the AD conversion data storage flag. The storage flag indicates whether the AD conversion result register has been read or not. When a conversion result is stored in the AD conversion result register, the flag is set to 1. When either of the AD conversion result registers (ADREGxH or ADREGxL) is read, the flag is cleared to 0.

Reading the AD conversion result also clears the AD conversion end flag ADMOD0<EOCF> to 0.

(Setting example)

(0800H)

a. Convert the analog input voltage on the AN3 pin and write the result, to memory address 0800H using the AD interrupt (INTAD) processing routine.

	Main rou	atine:	
1		7 6 5 4 3 2 1 0 ← X 1 0 0	Enable INTAD and set it to interrupt level 4.
	-	← 1 1 X X 0 0 1 1	Set pin AN3 to be the analog input channel.
	_ADMOD0	$\leftarrow X X 0 0 0 0 0 1$	Start conversion in channel fixed single conversion mode.
	Interrup	t routine processing example	mple:
	WA	\leftarrow ADREG37	Read value of ADREG37L and ADREG37H into 16-bit
	WA	>>6	general-purpose register WA. Shift contents read into WA six times to right and zero-fill upper
	•••		bits.

- Write contents of WA to memory address 0800H.
- b. This example repeatedly converts the analog input voltages on the three pins AN0, AN1 and AN2, using channel scan repeat conversion mode.

INTE0AD	$\leftarrow \ X \ 0 \ 0 \ 0 \ - \ - \ -$	Disable INTAD.
ADMOD1	← 1 1 X X 0 0 1 0	Set pins AN0 to AN2 to be the analog input channels.
_ADMOD0	\leftarrow X X 0 0 0 1 1 1	Start conversion in channel scan repeat conversion mode.

X: Don't care, -: No change

← WA

3.12 Watchdog Timer (Runaway detection timer)

The TMP91C025 features a watchdog timer for detecting runaway.

The watchdog timer (WDT) is used to return the CPU to normal state when it detects that the CPU has started to malfunction (Runaway) due to causes such as noise.

When the watchdog timer detects a malfunction, it generates a non-maskable interrupt INTWD to notify the CPU. Connecting the watchdog timer output to the Reset pin internally forces a reset. (The level of external $\overrightarrow{\text{RESET}}$ pin is not changed.)

3.12.1 Configuration

Figure 3.12.1 is a block diagram of he watchdog timer (WDT).

Figure 3.12.1 Block Diagram of Watchdog Timer

Note: It needs to care designing the total machine set, because Watchdog timer can't operate completely by external noise.

3.12.2 Operation

The watchdog timer generates an INTWD interrupt when the detection time set in the WDMOD<WDTP1:0> has elapsed. The watchdog timer must be cleared 0 by software before an INTWD interrupt will be generated. If the CPU malfunctions (e.g. if runaway occurs) due to causes such as noise, but does not execute the instruction used to clear the binary counter, the binary counter will overflow and an INTWD interrupt will be generated. The CPU will detect malfunction (Runaway) due to the INTWD interrupt and in this case it is possible to return to the CPU to normal operation by means of an anti-malfunction program.

The watchdog timer works immediately after reset.

The watchdog timer does not operate in IDLE1 or STOP mode, as the binary counter continues counting during bus release (When $\overline{\text{BUSAK}}$ goes low).

When the device is in IDLE2 mode, the operation of WDT depends on the WDMOD <I2WDT> setting. Ensure that WDMOD<I2WDT> is set before the device enters IDLE2 mode.

The watchdog timer consists of a 22-stage binary counter which uses the system clock (fsys) as the input clock. The binary counter can output $f_{SYS}/2^{15}$, $f_{SYS}/2^{17}$, $f_{SYS}/2^{19}$ and $f_{SYS}/2^{21}$.

The runaway is detected when an overflow occurs, and the watchdog timer can reset device. In this case, the reset time will be between 22 and 29 states (19.6 to 25.8 μ s at fFPH = 36MHz, f_{OSCH} = 2.25 state)is f_{FPH}/2, where f_{FPH} is generated by dividing the high-speed oscillator clock (f_{OSCH}) by sixteen through the clock gear function.

Figure 3.12.3 Reset Mode

3.12.3 Control Registers

The watchdog timer WDT is controlled by two control registers WDMOD and WDCR.

- (1) Watchdog timer mode register (WDMOD)
 - a. Setting the detection time for the watchdog timer in <WDTP1:0>

This 2-bit register is used for setting the watchdog timer interrupt time used when detecting runaway. After reset, this register is initialized to WDMOD < WDTP1:0 > = 00.

The detection times for WDT are shown in Figure 3.12.4.

b. Watchdog timer enable/disable control register <WDTE>

After reset, WDMOD<WDTE> is initialized to 1, enabling the watchdog timer.

To disable the watchdog timer, it is necessary to set this bit to 0 and to write the disable code (B1H) to the watchdog timer control register WDCR. This makes it difficult for the watchdog timer to be disabled by runaway.

However, it is possible to return the watchdog timer from the disabled state to the enabled state merely by setting <WDTE> to 1.

c. Watchdog timer out reset connection <RESCR>

This register is used to connect the output of the watchdog timer with the RESET terminal internally. Since WDMOD<RESCR>is initialized to 0 on reset, a reset by the watchdog timer will not be performed.

(2) Watchdog timer control register (WDCR)

This register is used to disable and clear the binary counter for the watchdog timer.

Disable control the watchdog timer can be disabled by clearing WDMOD<WDTE> to 0 and then writing the disable code (B1H) to the WDCR register.

WDCR	\leftarrow 0 1 0 0 1 1 1 0	Write the clear code (4EH).
WDMOD	$\leftarrow 0 X X 0$	Clear WDMOD <wdte> to 0.</wdte>
WDCR	\leftarrow 1 0 1 1 0 0 0 1	Write the disable code (B1H).

• Enable control

Set WDMOD<WDTE> to 1.

• Watchdog timer clear control

To clear the binary counter and cause counting to resume, write the clear code (4EH) to the WDCR register.

WDCR $\leftarrow 0 \ 1 \ 0 \ 0 \ 1 \ 1 \ 1 \ 0$ Write the clear code (4EH).

Note1: If it is used disable control, set the disable code (B1H) to WDCR after write the clear code (4EH) once. (Please refer to setting example.)

Note2: If it is changed Watchdog timer setting, change setting after set to disable condition once.

DMOD		7	6	5	4	3	2	1	0	
0300H)	Bit symbol	WDTE	WDTP1	WDTP0			I2WDT	RESCF	. –	
(03000)	Read/Write	R/W	R/W					R/W		N
	After reset	1	0	0			0	0	0	
	Function	WDT	Select detect				IDLE2	1: Interna	Ily Always	S
		control	00: 215/f _{SYS}				0: Stop	connec	ts write 0).
		1: Enable	01: 2 ¹⁷ /f _{SYS}				1: Operate	WDT o	ut	
			10: 2 ¹⁹ /f _{SYS}					to the		
			11: 2 ²¹ /f _{SYS}					reset p	in	
									I	
							og timer out	control		
						0	_			
					1 Connects WDT out to a reset					
			→ IDLE2	Control						
				1 Operation						
							operation			
L	→ Watchdog tir	mer detectior	n time				at	fc = 36 MHz,	fs = 32.76	8 k⊢
	SYSCR1SYSCR1System ClockGear ValueSelection <gear2:0></gear2:0>		R1	Watchdog Timer Detection Time						
			alue	WDMOD <wdtp1:0></wdtp1:0>						
			<gear2:0></gear2:0>	00	0	1	10	11		
	1 (f:	s)	XXX	(2.0 s	8.0) s	32.0 s	128.0	S
			000 (f	c)	1.82 ms	s 7.2	28 ms	29.13 ms	116.51	ms
			001 (f	c/2)	3.64 ms	s 14.5	i6 ms	58.25 ms	233.02	m
	0 (f	c)	010 (f	c/4)	7.28 ms	s 29.1	3 ms 1	16.51 ms	466.03	m
			011 (f	c/8)	14.56 ms	58.2	25 ms 2	33.02 ms	932.07	m
			100 (f		29.13 ms	s 116.5	51 ms 4	66.03 ms	1864.14	

Watchdog timer enable/disable control

0	Disabled
1	Enabled

Figure 3.12.4 Watchdog Timer Mode Register

Others	Don't care

4EH

Clear code

- 3.13 Real Time Clock (RTC)
 - 3.13.1 Function Description for RTC
 - 1) Clock function (hour, minute, second)
 - 2) Calendar function (month and day, day of the week, and leap year)
 - 3) 24- or 12-hour (AM/PM) clock function
 - 4) \pm 30 second adjustment function (by software)
 - 5) Alarm function (Alarm output
 - 6) Alarm interrupt generate

3.13.2 Block Diagram

Figure 3.13.1 Block Diagram

Note 1: The Christian era year column:

This product has year column toward only lower two columns. Therefore the next year in 99 works as 00 years. In system to use it, please manage upper two columns with the system side when handle year column in the christian era.

Note 2: Leap year:

A leap year is the year which is divisible with 4, but the year which there is exception, and is divisible with 100 is not a leap year. However, the year which is divisible with 400 is a leap year. But there is not this product for the correspondence to the above exception. Because there are only with the year which is divisible with 4 as a leap year, please cope with the system side if this function is problem.

3.13.3 Control Registers

			Table	011011	17102 0		raneao	i) rtegie			
Symbol	Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Function	Read/Write
SECR	0320H	/	40 s	20 s	10 s	8 s	4 s	2 s	1 s	Second column	R/W
MINR	0321H		40 min.	20 min.	10 min.	8 min.	4 min.	2 min.	1 min.	Minute column	R/W
HOURR	0322H			20 /PM/AM	10 hours	8 hours	4 hours	2 hours	1 hour	Hour column	R/W
DAYR	0323H						W2	W1	W0	Day of the week column	R/W
DATER	0324H			Day 20	Day 10	Day 8	Day 4	Day 2	Day 1	Day column	R/W
MONTHR	0325H				Oct.	Aug.	Apr.	Feb.	Jan.	Month column	R/W
YEARR	0326H	Year 80	Year 40	Year 20	Year 10	Year 8	Year 4	Year 2	Year 1	Year column (Lower two columns)	R/W
PAGER	0327H	Interrupt enable			Adjust -ment function	Clock enable	Alarm enable		PAGE setting	PAGE register	W, R/W
RESTR	0328H	1Hz enable	16Hz enable	Clock reset	Alarm reset		Always	write "0"		Reset register	W only

Table 3.13.1 PAGE 0 (Clock function) Registers

Note: As for SECR, MINR, HOURR, DAYR, MONTHR, YEARR of PAGE0, current state is read when read it.

						•		, .			
Symbol	Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Function	Read/Write
SECR	0320H										R/W
MINR	0321H		40 min.	20 min.	10 min.	8 min.	4 min.	2 min.	1 min.	Minute column for alarm	R/W
HOURR	0322H			20 /PM/AM	10 hours	8 hours	4 hours	2 hours	1 hour	Hour column for alarm	R/W
DAYR	0323H						W2	W1	WO	Day of the week column for alarm	R/W
DATER	0324H			Day 20	Day 10	Day 8	Day 4	Day 2	Day 1	Day column for alarm	R/W
MONTHR	0325H								24/12	24-hour clock mode	R/W
YEARR	0326H	/	/	/	/	/		Leap-yea	ar setting	Leap-year mode	R/W
PAGER	0327H	Interrupt enable			Adjust -ment function	Clock enable	Alarm enable		PAGE setting	PAGE register	W, R/W
RESTR	0328H	1Hz enable	16Hz enable	Clock reset	Alarm reset		Always	write "0"		Reset register	W only

 Table 3.13.2
 PAGE 1 (Alarm function) Registers

Note: As for MINR, HOURR, DAYR, MONTHR, YEARR of PAGE1, current state is read when read it.

Detailed Explanation of Control Register 3.13.4

RTC is not initialized by reset. Therefore, all registers must be initialized at the beginning of the program.

(1)	Second	column	register	(for	PAGE0	only)
-----	--------	--------	----------	------	-------	-------

		7	6	5	4	3	2	1	0
SECR	Bit symbol	/	SE6	SE5	SE4	SE3	SE2	SE1	SE0
(0320H)	Read/Write					R/W			
	After reset	/				Undefined			
	Function	"0" is read.	40 sec.	20 sec.	10 sec.	8 sec.	4 sec.	2 sec.	1 sec.
			column	column	column	column	column	column	column

0	0	0	0	0	0	0	0 sec
0	0	0	0	0	0	1	1 sec
0	0	0	0	0	1	0	2 sec
0	0	0	0	0	1	1	3 sec
0	0	0	0	1	0	0	4 sec
0	0	0	0	1	0	1	5 sec
0	0	0	0	1	1	0	6 sec
0	0	0	0	1	1	1	7 sec
0	0	0	1	0	0	0	8 sec
0	0	0	1	0	0	1	9 sec
0	0	1	0	0	0	0	10 sec
				:			
0	0	1	1	0	0	1	19 sec
0	1	0	0	0	0	0	20 sec
				•			
0	1	0	1	0	0	1	29 sec
0	1	1	0	0	0	0	30 sec
				•			
0	1	1	1	0	0	1	39 sec
1	0	0	0	0	0	0	40 sec
				:			
1	0	0	1	0	0	1	49 sec
1	0	1	0	0	0	0	50 sec
				:			
1	0	1	1	0	0	1	59 sec

Note: Do not set the data other than showing above.

		6		5	4	3	2	1	0
Bit symbol	/	MI6	;	MI5	MI4	MI3	MI2	M	I1 MIO
Read/Write						R/W			
After reset	/					Undefined			
Function	"0" is read.	40 mi	in, 2	20 min,	10 min,	8 min,	4 min,	2 m	nin, 1 min
		colum	nn	column	column	column	column	colu	ımn columi
	Г	0	0	0	0	0	0	0	0 min.
		0	0	0	0	0	0	1	1 min.
		0	0	0	0	0	1	0	2 min.
		0	0	0	0	0	1	1	3 min.
		0	0	0	0	1	0	0	4 min.
		0	0	0	0	1	0	1	5 min.
		0	0	0	0	1	1	0	6 min.
		0	0	0	0	1	1	1	7 min.
		0	0	0	1	0	0	0	8 min.
		0	0	0	1	0	0	1	9 min.
		0	0	1	0	0	0	0	10 min.
						:			
		0	0	1	1	0	0	1	19 min.
		0	1	0	0	0	0	0	20 min.
	_					:			
	_	0	1	0	1	0	0	1	29 min.
		0	1	1	0	0	0	0	30 min.
	F			<u> </u>		:			
		0	1	1	1	0	0	1	39 min.
		1	0	0	0	0	0	0	40 min.
	Г	4	0	0	4		0	4	10 min
		1	0	0	<u> </u>	0	0	<u>1</u> 0	49 min. 50 min.
	L	I	U		U	:	U	U	50 mm.
						-			

(2) Minute column register (for PAGE0/1)

MINR (0321H)

Note: Do not set the data other than showing above.

	а.	III case (J 24 Hour	LIOCK IIIOUC		II - 11100× =	- 1) 01 1110	111	
		7	6	5	4	3	2	1	0
HOURR	Bit symbol			HO5	HO4	HO3	HO2	HO1	HO0
(0322H)	Read/Write					R/	W		
	After reset					Unde	fined		
	Function	"0" is	read.	20 hour	10 hour	8 hour	4 hour	2 hour	1 hour
				column	column	column	column	column	column

(3) Hour column register (for PAGE0/1)

a. In case of 24-hour clock mode (MONTHR<MO0> = 1) of PAGE1

0	0	0	0	0	0	0 o'clock
0	0	0	0	0	1	1 o'clock
0	0	0	0	1	0	2 o'clock
		:				
0	0	1	0	0	0	8 o'clock
0	0	1	0	0	1	9 o'clock
0	1	0	0	0	0	10 o'clock
		:				
0	1	1	0	0	1	19 o'clock
1	0	0	0	0	0	20 o'clock
		:				
1	0	0	0	1	1	23 o'clock

Note: Do not set the data other than showing above.

b. In case of 12-hour clock mode (MONTHR<MO0> = 0) of PAGE1

	7	6	5	4	3	2	1	0
Bit symbol	/	/	HO5	HO4	HO3	HO2	HO1	HO0
Read/Write	/	/			R/	W		
After reset	/	/			Unde	fined		
Function	"0" is	read.		10 hour	8 hour	4 hour	2 hour	1 hour
			PM/AM	column	column	column	column	column

0	0	0	0	0	0	0 o'clock (AM)
0	0	0	0	0	1	1 o'clock
0	0	0	0	1	0	2 o'clock
_			:			
0	0	1	0	0	1	9 o'clock
0	1	0	0	0	0	10 o'clock
0	1	0	0	0	1	11 o'clock
1	0	0	0	0	0	0 o'clock
						(PM)
1	0	0	0	0	1	1 o'clock

Note: Do not set the data other than showing above.

HOURR (0322H)

		7	6	5	4	3	2	1	0
DAYR	Bit symbol	/					WE2	WE1	WE0
(0323H)	Read/Write	/		/				R/W	
	After reset	/						Undefined	
	Function			"0" is read.			W2	W1	W0

(4) Day of the week column register (for PAGE0/1)

0	0	0	Sunday
0	0	1	Monday
0	1	0	Tuesday
0	1	1	Wednesday
1	0	0	Thursday
1	0	1	Friday
1	1	0	Saturday

Note: Do not set the data other than showing above.

(5) Day column register (for PAGE0/1)

		7	6	5	4	3	2	1	0		
DATER	Bit symbol	/	/	DA5	DA4	DA3	DA2	DA1	DA0		
(0324H)	Read/Write	/	/	R/W							
	After reset	/	/	Undefined							
	Function	"0" is	read.	Day 20	Day 10	Day 8	Day 4	Day 2	Day 1		

0										
~	0	0	0	0	0					
0	0	0	0	1	1st day					
0	0	0	1	0	2nd day					
0	0	0	1	1	3rd day					
0	0	1	0	0	4th day					
:										
0	1	0	0	1	9th day					
1	0	0	0	0	10th day					
1	0	0	0	1	11th day					
	:									
1	1	0	0	1	19th day					
0	0	0	0	0	20th day					
	:									
0	1	0	0	1	29th day					
1	0	0	0	0	30th day					
1	0	0	0	1	31st day					
	0 0 0 1 1 1 0 0 1 0 1 0 1	0 0 0 0 0 0 0 1 1 0 1 1 0 0 : 1 1 0 : 1 0 0 : 1 0 0 : 1 0 1 1 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					

Note1: Do not set the data other than showing above.

Note2: Do not set the day which is not existed. (ex: 30th Feb)

		7	6	5	4	3	2	1	0
MONTHR	Bit symbol	/			MO4	MO4	MO2	MO1	MO0
(0325H)	Read/Write	/			R/W				
	After reset	/					Undefined		
	Function		"0" is read.		10 months	8 months	4 months	2 months	1 month

(6) Month column register (for PAGE0 only)

0	0	0	0	1	January
0	0	0	1	0	February
0	0	0	1	1	March
0	0	1	0	0	April
0	0	1	0	1	Мау
0	0	1	1	0	June
0	0	1	1	1	July
0	1	0	0	0	August
0	1	0	0	1	September
1	0	0	0	0	October
1	0	0	0	1	November
1	0	0	1	0	December

Note: Do not set the data other than showing above.

(7) Select 24-hour clock or 12-hour clock (for PAGE1 or

		7	6	5	4	3	2	1	0			
MONTHR	Bit symbol	/							MO0			
(0325H)	Read/Write	/	/		/				R/W			
	After reset	/	/		/				Undefined			
	Function											
			"0" is read.									

(8) Year column register (for PAGE0 onl)
--

YEARR (0326H)

/	7	6	5	4	3	2	1	0				
Bit symbol	YE7	YE6	YE5	YE4	YE3	YE2	YE1	YE0				
Read/Write	R/W											
After reset	Undefined											
Function	80 Years	40 Years	20 Years	10 Years	8 Years	4 Years	2 Years	1 Year				
	r	1	1		· · · · ·		-1	1				

0		0	0	0	0	0	0	0	00 years	
0		0	0	0	0	0	0	1	01 years	
0		0	0	0	0	0	1	0	02 years	
0		0	0	0	0	0	1	1	03 years	
0		0	0	0	0	1	0	0	04 years	
0		0	0	0	0	1	0	1	05 years	
1		0	0	1	1	0	0	1	99 years	

Note: Do not set the data other than showing above.

(9) Leap-year register (for PAGE1 only)

YEARR (0326H)

	7	6	5	4	3	2	1	0	
Bit symbol	/						LEAP1	LEAP0	
Read/Write	/	/		/	/	/	R/W		
After reset	/	/		/	/	/	不定		
Function							00: Leap-year		
							01: One year leap year 10: Two years leap year 11: Three years leap year		

0	0	Current year is leap year
0		Present is next year of a
0	1	leap year
4	0	Present is two years after
1		a leap year
4	4	Present is three
1	1	years after leap year

	(10) 111(
		7	6	5	4	3	2	1	0					
PAGER	Bit symbol	INTENA			ADJUST	ENATMR	ENAALM		PAGE					
(0327H)	Read/Write	R/W			W	R/	W		R/W					
Read-modify	After reset	0			Undefined	Unde	fined		Undefined					
write	Function	INTRTC			0:Don't care	Clock	ALARM	"0" is read.	PAGE					
instruction		1: Enable	"0" is read.		1:Adjust	1: Enable	1: Enable		selection					
are prohibited		0: Disable				0: Disable	0: Disable							

(10) PAGE register setting (for PAGE0/1)

Note: Please keep the setting order below of <ENATMR>, <ENAAML> and <INTENA>. Set different times for Clock/Alarm setting and interrupt setting

(Example) Clock setting/Alarm setting

ld (pager), 0ch

Clock, Alarm enable

ld (pager), 8ch

Interrupt enable

:

:

	0	Select Page0
PAGE	1	Select Page1

	0	Don't care
ADJUST	1	Adjust sec. counter.
		When set this bit is set to "1" the sec. counter
		becomes to "0" when the value of the sec.
		counter is 0 - 29.When the value of sec.
ADJUST		counter is 30-59, the min. counter is carried and
		sec. counter becomes "0". Output Adjust signal
		during 1 cycle of f _{SYS} . After being adjusted
		once, Adjust is released automatically.
		(PAGE0 only)

(11) Reset register setting (for PAGE0/1)

		7	6	5	4	3	2	1	0
RESTR	Bit symbol	DIS1Hz	DIS16Hz	RSTTMR	RSTALM	RE3	RE2	RE1	RE0
(1328H)	Read/Write		W						
Read-modify	After reset		Undefined						
write	Function	1Hz	16Hz	1: Clock	1:				
instruction		0: Enable	0: Enable	reset	Alarm reset	Always write "0"			
are prohibited		1: Disable	1: Disable						

RSTALM	0	Unused
	1	Reset alarm register

DOTTUD	0	Unused
RSTTMR	1	Reset Counter

<dis1hz></dis1hz>	<dis1hz></dis1hz>	PAGER <enaalm></enaalm>	Source signal
1	1	1	Alarm
0	1	0	1Hz
1	0	0	16Hz
	Output "0"		

3.13.5 Operational description

- (1) Reading clock data
 - 1. Using 1Hz interrupt

1Hz interrupt and the count up of internal data synchronize. Therefore, data can read correctly if reading data after 1Hz interrupt occurred.

2. Using two times reading

There is a possibility of incorrect clock data reading when the internal counter carries over. To ensure correct data reading, please read twice, as follows:

Figure 3.13.2 Flowchart of clock data read

(2) Writing clock data

When a carry over occurs during a write operation, the data cannot be written correctly. Please use the following method to ensure data is written correctly.

1. Using 1Hz interrupt

1Hz interrupt and the count up of internal data synchronize. Therefore, data can write correctly if writing data after 1Hz interrupt occurred.

2. Resets counter

There are 15-stage counter inside the RTC, which generates a 1Hz clock from 32,768 KHz. The data is written after reset this counter.

However, if clearing the counter, it is counted up only first writing at half of the setting time, first writing only. Therefore, if setting the clock counter correctly, after clearing the counter, set the 1Hz-interrupt to enable. And set the time after the first interrupt (occurs at 0.5Hz) is occurred.

Figure 3.13.3 Flowchart of data write

3. Disabling the clock

A clock carry over is prohibited when "0" is written to PAGER<ENATMR> in order to prevent malfunction caused by the Carry hold circuit. While the clock is prohibited, the Carry hold circuit holds a one sec. carry signal from a divider. When the clock becomes enabled, the carry signal is output to the clock, the time is revised and operation continues. However, the clock is delayed when clock-disabled state continues for one second or more. Note that at this time system power is down while the clock is disabled. In this case the clock is stopped and clock is delayed.

During clock disabling, pay attention with system power is downed. In this case the clock is stopped and time is delayed.

Figure 3.13.4 Flowchart of Clock disable

3.13.6 Explanation of the interrupt signal and alarm signal

The alarm function used by setting the PAGE1 register and outputting either of the following three signals from $\overline{\text{ALARM}}$ pin as follows by write writing "1" to PAGER<PAGE>. INTRTC outputs a 1-shot pulse when the falling edge is detected. RTC is not initialized by RESET. Therefore, when the clock or alarm function is used, clear interrupt request flag in INTC (interrupt controller).

- (1) When the alarm register and the timer clock correspond, output "0".
- (2) 1Hz Output clock of 1Hz.
- (3) 16Hz Output clock of 16Hz.
- (1) In accordance with alarm register and a clock, output "0".

When value of a clock of PAGE0 accorded with alarm register of PAGE1 with a state of PAGER<ENAALM>= "1", output "0" to ALARM pin and occur INTRTC.

Follows are ways using alarm.

Initialization of alarm is done by writing in "1" at RESTR<RSTALM>, setting value of all alarm becomes don't care. In this case, always accorded with value of a clock and request INTRTC interrupt if PAGER<ENAALM> is "1".

Setting alarm min., alarm hour, alarm day and alarm the day week are done by writing in data at each register of PAGE1.

When all setting contents accorded, RTC generates INTRTC interrupt, if PAGER<INTENA><ENAALM> is "1". However, contents (don't care state) which does not set it up is considered to always accord.

The contents, which set it up once, cannot be returned to don't care state in independence. Initialization of alarm and resetting of alarm register set to "Don't care".

The following is an example program for outputting alarm from ALARM -pin at noon (PM12:00) every day.

LD	(PAGER), 09H	; Alarm disable, setting PAGE1
LD	(RESTR), D0H	; Alarm initialize
LD	(DAYR), 01H	; W0
LD	(DATAR),01H	1 day
LD	(HOURR), 12H	; Setting 12 o'clock
LD	(MINR), 00H	; Setting 00 min
		; Set up time 31 µs (Note)
LD	(PAGER), 0CH	; Alarm enable
(LD	(PAGER), 8CH	; Interrupt enable)

When CPU is operated by high frequency oscillation, it may take a maximum of one clock at 32 kHz (about 30μ s) for the time register setting to become valid. In the above example, it is necessary to set 31μ s of set up time between setting the time register and enabling the alarm register.

Note: This set up time is unnecessary when you use only internal interruption.

(2) With 1Hz output clock

RTC outputs clock of 1Hz to ALARM pin by setting up PAGER<ENAALM> = "0", RESTR<DIS1HZ> = "0", <DIS16HZ>= "1". RTC also generates an INTRTC interrupt of the falling edge of the clock.

(3) With 16Hz output clock

RTC outputs clock of 16Hz to ALARM pin by setting up PAGER<ENAALM> = "0", RESTR<DIS1HZ> = "1", <DIS16HZ> = "0". RTC also generates INTRTC an interrupt on the falling edge of the clock.

3.14 LCD Driver Controller (LCDC)

The TMP91C025 incorporates two types liquid crystal display driving circuit for controlling LCD driver LSI.

One circuit handles a RAM build-in type LCD driver that can store display data in the LCD driver in itself, and the other circuit handles a shift-register type LCD driver that must serially transfer the display data to LCD driver for each display picture.

• Shift-register type LCD driver control mode (SR mode)

Set the mode of operation, start address of source data save memory and LCD size to control register before setting start register.

After set start register LCDC outputs bus release request to CPU and read data from source memory. After that LCDC transmits data of volume of LCD size to external LCD driver through data bus.

At this time, control signals (D1BSCP etc.) connected LCD driver output specified waveform synchronizes with data transmission.

After finish data transmission, LCDC cancels the bus release request and CPU will restart.

• RAM built-in type LCD driver control mode (RAM mode)

Data transmission to LCD driver is executed by move instruction of CPU.

After setting mode of operation to control register, when move instruction of CPU is executed LCDC outputs chip select signal to LCD driver connected to the outside from control pin. (D1BSCP etc.)

Therefore control of data transmission numbers corresponding to LCD size is controlled by instruction of CPU.

• Special mode

It is assigned <TA3LCDE> at bit6 and <TA3MLDE> at bit4, of EMCCR0 register (00E3hex). These bits are used when you want to operate LCDD and MELODY circuit without low frequency clock (XT1, XT2). After reset these two bits are set to "0" and low clock is supplied each LCDD and MELODY circuit. If you write these bits to 1, TA3OUT (Generate by timer 3) is supplied each LCDD and MELODY circuit. In this case, you should set 32 kHz timer 3 frequency. For detail, look AC specification characteristics.

This section is constituted as follows.

- 3.14.1 Feature of LCDC of Each Mode
- 3.14.2 Block Diagram

3.14.3 Control Registers

3.14.4 Shift-register Type LCD Driver Control Mode (SR type)

3.14.4.1 Settlement of Frame Frequency Function

3.14.4.2 Timer Out LCDCK

3.14.4.3 Transfer Time by Data Bus Width

3.14.4.4 LCDC Operation in HALT Mode

3.14.5 RAM Built-in Type LCD Driver Control Mode (RAM Type)

3.14.1 Feature of LCDC of Each Mode

Each feature and operation of pin is as follows.

Table 3.14.1 Feature of LCDC of Each Mode

		Shift-register Type LCD Driver Control Mode	RAM Built-in Type LCD Driver Control Mode			
The number of picture elements can be handled		Common (row): 64, 68, 80, 100, 120, 128, 144, 160, 200, 240 Segment (column): 32, 64, 80, 120, 128, 160, 240, 320, 360	There is not a limitation			
Receiver da	ta bus width	8 bits, 16 bits selectable	8 bit, 16 bit, selectable (depend on CPU command)			
Transfer dat	a bus width	8 bits, 4 bits selectable	8-bit fixed			
Transfer rate (at f _{FPH} = 16	-	250 ns/1 byte at Byte mode 375 ns/1 byte at Nibble mode	Equal to memory cycle			
	Data Bus: (D7 to D0)	Data bus: Connect with DI pin of column driver. Upper 7 pins do not use in byte mode and upper 4 pins do not use in nibble mode.	Data bus: Connect with DB pin of column/row driver.			
	Write Strobe: (WR)	not used	Write strobe: Connect with /WR pin of column/row driver.			
	Address Bus: (A0)	not used	Address 0: Connect with D/I pin of column driver. When $A0 = 1$ data bus value means display data, when $A0 = 0$ data bus means instruction data.			
External pins	Shift Clock Pulse: (D1BSCP)	Shift clock pulse: Connect with SCP pin of column driver. LCD driver latches data bus value by falling edge of this pin.	Chip enable for column driver 1: Connect with \overline{CE} pin of column driver 1.			
	Latch Pulse: (D2BLP)	Latch pulse output: Connect with LP/EIO1 pin of column/row driver. Display data is latched in output buffer in LCD driver by rising edge of this pin.	Chip enable for column driver 2: Connect with \overline{CE} pin of column driver 2.			
	Frame: (D3BFR)	LCD frame output: Connect with FR pin of column/row driver.	Chip enable for column driver 3: Connect with/ \overline{CE} pin of column driver 3.			
	Cascade Pulse: (DLEBCD)	Cascade pulse output: Connect with DIO1 pin of row driver. This pin outputs 1 shot pulse by every D3BFR pin changes.	Chip enable for row driver: Connect with $\overline{\text{LE}}$ pin of row driver.			
	Display Off: (DOFF)	Display off output: Connect with /DSPOF terminal of column/row driver. L means display off and H means display on.				

3.14.2 Block Diagram

Figure 3.14.1 LCDC Block Diagram

3.14.3 Control Registers

	LCDSAL Register									
		7	6	5	4	3	2	1	0	
LCDSAL	Bit symbol	SAL15	SAL14	SAL13	SAL12		-	-	MODE	
(0360H)	Read/Write	R/W	R/W	R/W	R/W		R/W	R/W	R/W	
	After reset	0	0	0	0		0	0	0	
	Function		SR n	node			Always	Always	Mode	
		Display memory address. (Low: A15 to A12)					write 0.	write 0.	select	
									0: RAM	
									1: SR	

	/
LCDSAH	Bit
(0361H)	Rea
	Afte

LCDSAH Register

		7	6	5	4	3	2	1	0
DSAH	Bit symbol	SAL23	SAL22	SAL21	SAL20	SAL19	SAL18	SAL17	SAL16
361H)	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	After reset	0	0	0	0	0	0	0	0
Function SR mode									
		Display memory address. (High: A23 to A16)							

LCDSIZE Register

		7	6	5	4	3	2	1	0
LCDSIZE	Bit symbol	COM3	COM2	COM1	COM0	SEG3	SEG2	SEG1	SEG0
(0362H)	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	After reset	0	0	0	0	0	0	0	0
	Function	LCD comm	on number.	(SR mode)		LCD segment number. (SR mode)			
		0000: 64	0101:	128		0000: 32	0101:	160	
		0001: 68	0110:	144		0001: 64	0110:	240	
		0010: 80	0111:	160		0010: 80	0111:	320	
		0011: 100	0 1000:	200		0011: 12	0 1000:	360	
		0100: 120	0 1001:	240 Other: F	Reserved	0100: 12	B Other:	Reserved	

LCDCTL Register

LCD (036

		7	6	5	4	3	2	1	0
DCTL	Bit symbol	LCDON	-	-	BUS1	BUS0	MMULCD	FP8	START
63H)	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	After reset	0	0	0	0	0	0	0	0
	Function	DOFF	Always	Always	Data bus wi	dth.	Туре	Setting bit8	Start
		(SR,RAM	write 0.	write 0.	(SR mode)		selection	for f _{FP} .	control.
		mode)			00: 8 bits (B	yte mode)	LCDD (build		(SR mode)
					01: 4 bits (N	ibble mode)	in RAM).		
		0: Off			10: Reserve	d	0: Sequential		0: Stop
		1: On			11: Reserve	d	1: Random		1: Start

Note 1: There is a limitation about to set LCDSAH and LCDSAL start address. It prohibit to set A13 carry to A14 by all 1-frame data transmitting. e.g. In case 240 (Row) × 360 (Column): 2a30 bytes Start address of LCDC: SAL15 to SAL12 = 0000 or 0001;

Note 2: Initial incrementer's address (LSB 14 bits) for LCDC DMA is 0000 (hex).

10: Type C 11: Reserved

		7	6	5	4	3	2	1	0				
LCDFFP	Bit symbol	FP7	FP6	FP5	FP4	FP3	FP2	FP1	FP0				
(0364H)	Read/Write				R/	W							
	After reset	0	0	0	0	0	0	0	0				
	Function		Setting bit7 to bit0 for fFP.										
		7	6	LCDC 5	TR2 Regis 4	ster 3	2	1	0				
LCDCTL2	Bit symbol	-	-	-			RAMBUS	AC1	AC0				
(0366H)	Read/Write	R/W	R/W	R/W	/	/	R/W	R/W	R/W				
	After reset	0	0	0			0	0	0				
	Function	Always write	e to "111".				0: Byte 1: Word	00: Type A 01: Type B					

LCDFFP Register

Note: Please write bit7:5 to "111", even if you use <RAMBUS>, <AC1> and <AC0> as initial setting.

LCDC1L/LCDC1H/LCDC2L/LCDC2H/LCDC3L/LCDC3H/LCDR1L/LCDR1H Register

	7	6	5	4	3	2	1	0			
Bit symbol	D7	D6	D5	D4	D3	D2	D1	D0			
Read/Write		Depend on the specification of external LCD driver.									
After reset		Depend on the specification of external LCD driver.									
Function		Depend on the specification of external LCD driver.									

These registers do not exist on TMP91C025. These are image for instruction registers and display registers of external RAM built-in sequential access type (Note) LCD driver.

Address as Table 3.14.2 is assigned to these registers, and the following chip enable pin becomes active when accesses corresponding address.

And, the area of these address is external area, so $\overline{\text{RD}}$, $\overline{\text{WR}}$ terminal becomes active by external access. Table 3.14.3 shows the address map in the case of controlling RAM built-in random access type (Note) LCD driver.

The explanation part of MMU circuit also explains this. This setup is performed by LCDCTL<MMULCD>.

Register	Address	Pu Sequential	Chip Enable Terminal	A0 Terminal	
LCDC1L	0FE0H	RAM built-in type	Instruction	D1BSCP	0
LCDC1H	0FE1H	column driver 1	Display data		1
LCDC2L	0FE2H	RAM built-in type	Instruction	D2BLP	0
LCDC2H	0FE3H	column driver 2	Display data		1
LCDC3L	0FE4H	RAM built-in type	Instruction	D3BFR	0
LCDC3H	0FE5H	column driver 3	Display data		1
LCDR1L	0FE6H	RAM built-in type row	Instruction	DLEBCD	0
LCDR1H	0FE7H	driver	Display data		1

Table 3.14.2 Memory Mapping for Direct Addressed Built-in RAM Type

Table 3.14.3 Memory Mapping for Built-in RAM Random Access Type

Address	Purpose Random Access Type	Chip Enable Terminal
3C0000H to 3CFFFFH	RAM built-in type driver 1	D1BSCP
3D0000H to 3DFFFFH	RAM built-in type driver 2	D2BLP
3E0000H to 3EFFFFH	RAM built-in type driver 3	D3BFR
3F0000H to 3FFFFFH	RAM built-in type driver 4	DLEBCD

Note: We call built-in RAM sequential access type LCD driver that use register to access to display-ram without address. (e.g., T6B65A,T6C84 etc: mar/2000)

We call built-in RAM random access type LCD driver that is same method to access to SRAM. (e.g., T6C23, T6K01 etc: mar/2000)

3.14.4 Shift-register Type LCD Driver Control Mode (SR type)

Set the mode of operation, start address of source data save memory and LCD size to control registers before setting start register.

After set start register LCDC outputs bus release request to CPU and read data from source memory.

After that LCDC transmits data of volume of LCD size to external LCD driver through data bus.

At this time, control signals (D1BSCP etc.) connected LCD driver output specified waveform synchronizes with data transmission.

After finish data transmission, LCDC cancels the bus release request and CPU will re-start.

LCDC timing figure in the case of 240 seg \times 120 com and BYTE mode is shown in Figure 3.14.2, Figure 3.14.3.

The table of t_{LP} (D2BLP pin cycle) by the number of segments and the common number and CPU stop time/stop ratio are shown in Table 3.14.4. And, fFP (Frame frequency) by the common number is shown in Table 3.14.5.

Moreover, the example of a 240 seg \times 120 com LCD driver connection circuit is shown in Figure 3.14.5.

3.14.4.1 Settlement of Frame Frequency Function

TMP91C025 defines so-called frame period (Refresh interval for LCD panel) by the value set in fFP [8:0]. DLEBCD pin outputs pulse every frame period. DLEBFR pin usually outputs the signal inverts polarity every frame period.

Basic frame period: DLEBCD signal, is made according to the resister fFP [8:0] setting mentioned before. However this fFP [8:0] setting is generally equal to common number, frame period can be corrected by increasing fFP [8:0] with ease.

The equation can calculate frame period.

 Frame period = LCDCK/ (D x fFP) [Hz]
 D: Constant for each common (Table 3.14.5)

 fFP: Setting of fFP [8:0] resister

 LCDCK: Source clock of LCD

 (Low clock is usually selected)

Please select the value of f_{FP} [8:0] as the frame period you want to set in the Table 3.14.5.

Note: Please make the value set to f_{FP} [8:0] into the following range. COM (Common number) $\leq FR \leq 320$

Example: In the case where frame period is set to 72.10 Hz by 240 coms. $f_{FP} = 240 (COM) + 63 = 303 = 12FH (by Table 3.14.5)$

Therefore, LCDCTL<FP8> = 1 and LCDFFP<FP7:0> = 2FH are setup.

		7	6	5	4	3	2	1	0
LCDCTL	Bit symbol	LCDON	-	-	BUS1	BUS0	MMULCD	FP8	START
(0363H)	Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	After reset	0	0	0	0	0	0	0	0
	Function	DOFF	Always	Always	Data bus wi	dth.	TYPE	Setting bit	Start
		(SR, RAM	write 0.	write 0.	(SR mode)		selection	8 for f _{FP} .	control.
		mode)			00: 8 bits (B	syte mode)	LCDD (Build		(SR mode)
		,			01: 4 bits (N	ibble mode)	in RAM).		
		0: Off			10: Reserve	9	0:Sequential		0: Stop
		1: On			11: Reserve	9	1:Random		1: Start

LCDCTL Register

LCDFFP Register

		7	6	5	4	3	2	1	0					
	Bit symbol	Bit symbol FP7 FP6 FP5 FP4 FP3 FP2 FP1												
(0364H)	Read/Write		R/W											
	After reset	0												
	Function Setting bit7 to bit0 for f _{FP} .													

3.14.4.2 Timer Out LCDCK

LCD source clock (LCDCK) can select low frequency (XT1, XT2: 32.768 [kHz]) or timer out (TA3OUT) outputs from internal TMRA23.

```
Here indicates the method that frame period is set 70 [Hz] by selecting
Example:
            TA3OUT for source clock of LCD (fc = 6 [MHz], 120 COM).
  The next equation calculates frame period.
         Frame period = 1/(t_{LP} \times f_{FP}) [Hz]
                                                t<sub>LP</sub>: The period of D2BLP
  Source clock for LCDC defines as XT [Hz] and then this tLP represents
         t_{LP} = D/XT
                                                 D: The value is 3.5 at 120 COM
  Therefore if you set the frame period at 70 [Hz] under 120 COM,
         XT = 120 \times 3.5 \times 70
             = 29400 [Hz]
  XT should be above value.
  In order to make XT = 29400 [Hz] under fc = 6 [MHz] with \phi T1 of timer3,
         1/XT = T3 \times 2 \times 8/fc [s]
                                      T3: the value of timer resister (TA3REG)
         in short, XT = fc/(T3 \times 2 \times 8) [Hz]
  However T3 = (TA3REG) is 12.75 after calculate, it's impossible to set the value
under a decimal point.
  So if (TA3REG) is set 0CH, XT = 31250 [Hz]. And because of D = 3.5,
         Frame period = 31250/(120 \times 3.5)
                        = 74.404 \, [Hz]
         Further if f_{FP} is 127 (COM + 7) with correction,
  Frame period = 31250/(127 \times 3.5)
                        = 70.30 \dots [Hz]
```

Reference: To maintain quality for display, please refer to following value for each gray scale. (You have to use settlement of frame frequency function, frame invert

adjustment function and timer out LCDCK.) Monochrome: Frame period = 70 [Hz]

Figure 3.14.2 Timing Diagram for SR Mode

Figure 3.14.3 Timing Diagram for SR Mode (Detail)

		64 com	68 com	80 com	100 com	120 com	128 com	144 com	160 com	200 com	240 com	Unit
XT numbe t _{LP} making	r of counts for g: D	6.5	6	5	4	3.5	3	2.5	2.5	2	1.5	
t _{LP}		198.4	183.1	152.6	122.1	106.8	91.6	76.3	76.3	61.0	45.8	μS
	tSTOP					0.	.4					μS
32 seg	CPU stop rate	0.2	0.2	0.3	0.4	0.4	0.5	0.6	0.6	0.7	1.0	%
	t _{STOP}					0.	.9					μS
64 seg	CPU stop rate	0.4	0.5	0.6	0.7	0.8	1.0	1.2	1.2	1.5	1.9	%
	t _{STOP}					1.	.1				•	μS
80 seg	CPU stop rate	0.6	0.6	0.7	0.9	1.0	1.2	1.5	1.5	1.8	2.4	%
	t _{STOP}	1.7									μS	
120 seg	CPU stop rate	0.8	0.9	1.1	1.4	1.6	1.8	2.2	2.2	2.7	3.6	%
400	t _{STOP}					1.	.8					μS
128 seg	CPU stop rate	0.9	1.0	1.2	1.5	1.7	1.9	2.3	2.3	2.9	3.9	%
400	t _{STOP}					2.	.2					μS
160 seg	CPU stop rate	1.1	1.2	1.5	1.8	2.1	2.4	2.9	2.9	3.6	4.9	%
0.40	t _{STOP}					3.	.3					μS
240 seg	CPU stop rate	1.7	1.8	2.2	2.7	3.1	3.6	4.4	4.4	5.5	7.3	%
000	t _{STOP}					4.	.4					μS
320 seg	CPU stop rate	2.2	2.4	2.9	3.6	4.2	4.9	5.8	5.8	7.3	9.7	%
	t _{STOP}					5.	.0					μS
360 seg	CPU stop rate	2.5	2.7	3.3	4.1	4.7	5.5	6.6	6.6	8.2	10.9	%

Table 3.14.4 Performance Listing for Each Segment and Common Number

Note 1: The above value is at $f_{FPH} = 36$ [MHz].

- Note 2: CPU stop time t_{STOP}: A value is value when reading a transmitting memory by 0 waits in the BYTE write/BYTE read mode. The value becomes x1.5 in NIBBLE write mode. Details, see the "state/cycle" is each type timing table. The time required to the transmission start accompanied by bus opening demand is not included in the above-mentioned numerical value.
- Note 3: The following equation can calculate t_{LP} listed below.

t_{LP} = D/32768 [s]

(e.g.) If the row is 240 and D=1.5 by the above table

 $t_{LP} = 1.5/32768 = 45.8 \ [\mu s]$

Figure 3.14.4 Stop Time and BUS Occupation Rate of CPU

D	6.5	6	5	4	3.5	3	2.5	2.5	2	1.5
СОМ	64	68	80	100	120	128	144	160	200	240
COM+0	78.77	80.31	81.92	81.92	78.02	85.33	91.02	81.92	81.92	91.02
COM+1	77.56	79.15	80.91	81.11	77.37	84.67	90.39	81.41	81.51	90.64
СОМ	76.38	78.02	79.92	80.31	76.74	84.02	89.78	80.91	81.11	90.27
СОМ	75.24	76.92	78.96	79.53	76.12	83.38	89.16	80.41	80.71	89.90
СОМ	74.14	75.85	78.02	78.77	75.50	82.75	88.56	79.92	80.31	89.53
СОМ	73.06	74.81	77.10	78.02	74.90	82.13	87.97	79.44	79.92	89.16
СОМ	72.02	73.80	76.20	77.28	74.30	81.51	87.38	78.96	79.53	88.80
СОМ	71.00	72.82	75.33	76.56	73.72	80.91	86.80	78.49	79.15	88.44
СОМ	70.02	71.86	74.47	75.85	73.14	80.31	86.23	78.02	78.77	88.09
СОМ	69.06	70.93	73.64	75.16	72.58	79.73	85.67	77.56	78.39	87.73
COM + 10	68.12	70.02	72.82	74.47	72.02	79.15	85.11	77.10	78.02	87.38
СОМ	67.22	69.13	72.02	73.80	71.47	78.58	84.56	76.65	77.65	87.03
СОМ	66.33	68.27	71.23	73.14	70.93	78.02	84.02	76.20	77.28	86.69
СОМ	65.47	67.42	70.47	72.50	70.39	77.47	83.49	75.76	76.92	86.35
СОМ	64.63	66.60	69.72	71.86	69.87	76.92	82.96	75.33	76.56	86.01
СОМ	63.81	65.80	68.99	71.23	69.35	76.38	82.44	74.90	76.20	85.67
СОМ	63.02	65.02	68.27	70.62	68.84	75.85	81.92	74.47	75.85	85.33
СОМ	62.24	64.25	67.56	70.02	68.34	75.33	81.41	74.05	75.50	85.00
СОМ	61.48	63.50	66.87	69.42	67.84	74.81	80.91	73.64	75.16	84.67
СОМ	60.74	62.77	66.20	68.84	67.35	74.30	80.41	73.22	74.81	84.34
COM + 20	60.01	62.06	65.54	68.27	66.87	73.80	79.92	72.82	74.47	84.02
СОМ	59.31	61.36	64.89	67.70	66.40	73.31	79.44	72.42	74.14	83.70
СОМ	58.62	60.68	64.25	67.15	65.93	72.82	78.96	72.02	73.80	83.38
COM	57.95	60.01	63.63	66.60	65.47	72.34	78.49	71.62	73.47	83.06
СОМ	57.29	59.36	63.02	66.06	65.02	71.86	78.02	71.23	73.14	82.75
COM	56.64	58.72	62.42	65.54	64.57	71.39	77.56	70.85	72.82	82.44
СОМ	56.01	58.10	61.83	65.02	64.13	70.93	77.10	70.47	72.50	82.13
СОМ	55.40	57.49	61.25	64.50	63.69	70.47	76.65	70.09	72.18	81.82
COM	54.80	56.89	60.68	64.00	63.26	70.02	76.20	69.72	71.86	81.51
СОМ	54.21	56.30	60.12	63.50	62.83	69.57	75.76	69.35	71.55	81.21
COM + 30	53.63	55.73	59.58	63.02	62.42	69.13	75.33	68.99	71.23	80.91
COM	53.07	55.16	59.04	62.53	62.00	68.70	74.90	68.62	70.93	80.61
СОМ	52.51	54.61	58.51	62.06	61.59	68.27	74.47	68.27	70.62	80.31
СОМ	51.97	54.07	58.00	61.59	61.19	67.84	74.05	67.91	70.32	80.02
СОМ	51.44	53.54	57.49	61.13	60.79	67.42	73.64	67.56	70.02	79.73
COM	50.92	53.02	56.99	60.68	60.40	67.01	73.22	67.22	69.72	79.44
COM	50.41	52.51	56.50	60.24	60.01	66.60	72.82	66.87	69.42	79.15
СОМ	49.91	52.01	56.01	59.80	59.63	66.20	72.42	66.53	69.13	78.86
СОМ	49.42	51.52	55.54	59.36	59.25	65.80	72.02	66.20	68.84	78.58
COM + 39	48.94	51.04	55.07	58.94	58.88	65.41	71.62	65.87	68.55	78.30

Table 3.14.5 f_{FP} Table for Each Common Number (1/2)

Note 1: f_{FP} can be calculated in the following formulas.

$$\begin{split} f_{FP} &= 32768 / (D \times FP) \text{ [Hz]} \\ & \text{Example: In case of } 120 \text{ com, } <\!\!FP8:0\!\!> = 131, \\ & f_{FP} &= 32768 / (3.5 \times 131) = 71.5 \text{ [Hz]} \end{split}$$

Note 2: The above is at fs = 32 [kHz].

D	6.5	6	5	4	3.5	3	2.5	2.5	2	1.5
COM	64	68	80	100	120	128	144	160	200	240
COM + 40	48.47	50.57	54.61	58.51	58.51	65.02	71.23	65.54	68.27	78.02
СОМ	48.01	50.10	54.16	58.10	58.15	64.63	70.85	65.21	67.98	77.74
СОМ	47.56	49.65	53.72	57.69	57.79	64.25	70.47	64.89	67.70	77.47
СОМ	47.11	49.20	53.28	57.29	57.44	63.88	70.09	64.57	67.42	77.19
СОМ	46.68	48.76	52.85	56.89	57.09	63.50	69.72	64.25	67.15	76.92
СОМ	46.25	48.33	52.43	56.50	56.74	63.14	69.35	63.94	66.87	76.65
СОМ	45.83	47.91	52.01	56.11	56.40	62.77	68.99	63.63	66.60	76.38
СОМ	45.42	47.49	51.60	55.73	56.06	62.42	68.62	63.32	66.33	76.12
СОМ	45.01	47.08	51.20	55.35	55.73	62.06	68.27	63.02	66.06	75.85
СОМ	44.61	46.68	50.80	54.98	55.40	61.71	67.91	62.71	65.80	75.59
COM + 50	44.22	46.28	50.41	54.61	55.07	61.36	67.56	62.42	65.54	75.33
СОМ	43.84	45.89	50.03	54.25	54.75	61.02	67.22	62.12	65.27	75.07
СОМ	43.46	45.51	49.65	53.89	54.43	60.68	66.87	61.83	65.02	74.81
СОМ	43.09	45.13	49.28	53.54	54.12	60.35	66.53	61.54	64.76	74.56
СОМ	42.72	44.77	48.91	53.19	53.81	60.01	66.20	61.25	64.50	74.30
СОМ	42.36	44.40	48.55	52.85	53.50	59.69	65.87	60.96	64.25	74.05
СОМ	42.01	44.04	48.19	52.51	53.19	59.36	65.54	60.68	64.00	73.80
СОМ	41.66	43.69	47.84	52.18	52.89	59.04	65.21	60.40	63.75	73.55
СОМ	41.32	43.34	47.49	51.85	52.60	58.72	64.89	60.12	63.50	73.31
СОМ	40.99	43.00	47.15	51.52	52.30	58.41	64.57	59.85	63.26	73.06
COM + 60	40.66	42.67	46.81	51.20	52.01	58.10	64.25	59.58	63.02	72.82
СОМ	40.33	42.34	46.48	50.88	51.73	57.79	63.94	59.31	62.77	72.58
СОМ	40.01	42.01	46.15	50.57	51.44	57.49	63.63	59.04	62.53	72.34
СОМ	39.69	41.69	45.83	50.26	51.16	57.19	63.32	58.78	62.30	72.10
СОМ	39.38	41.37	45.51	49.95	50.88	56.89	63.02	58.51	62.06	71.86
СОМ	39.08	41.06	45.20	49.65	50.61	56.59	62.71	58.25	61.83	71.62
СОМ	38.78	40.76	44.89	49.35	50.33	56.30	62.42	58.00	61.59	71.39
СОМ	38.48	40.45	44.58	49.05	50.07	56.01	62.12	57.74	61.36	71.16
СОМ	38.19	40.16	44.28	48.76	49.80	55.73	61.83	57.49	61.13	70.93
СОМ	37.90	39.86	43.98	48.47	49.54	55.45	61.54	57.24	60.91	70.70
COM + 70	37.62	39.57	43.69	48.19	49.28	55.16	61.25	56.99	60.68	70.47
СОМ	37.34	39.29	43.40	47.91	49.02	54.89	60.96	56.74	60.46	70.24
СОМ	37.07	39.01	43.12	47.63	48.76	54.61	60.68	56.50	60.24	70.02
СОМ	36.80	38.73	42.83	47.35	48.51	54.34	60.40	56.25	60.01	69.79
СОМ	36.53	38.46	42.56	47.08	48.26	54.07	60.12	56.01	59.80	69.57
СОМ	36.27	38.19	42.28	46.81	48.01	53.81	59.85	55.78	59.58	69.35
COM	36.01	37.93	42.01	46.55	47.77	53.54	59.58	55.54	59.36	69.13
СОМ	35.75	37.66	41.74	46.28	47.52	53.28	59.31	55.30	59.15	68.91
COM	35.50	37.41	41.48	46.02	47.28	53.02	59.04	55.07	58.94	68.70
COM	35.25	37.15	41.22	45.77	47.05	52.77	58.78	54.84	58.72	68.48
COM + 80	35.01	36.90	40.96	45.51	46.81	52.51	58.51	54.61	58.51	68.27

Table 3.14.6 f_{FP} Table for Each Common Number (2/2)

Note: Other circuit is necessary for LCD drive power supply for LCD driver display.

(Setting example)

In case of use 240 SEG \times 240 COM, 8bit bus width LCD driver.

Relation Display Panel and Display Memory (In case of above setting)

3.14.4.3 Transfer Time by Data Bus Width

Data bus width of LCD driver can be selected either of BYTE/NIBBLE by LCDCTL<BUS1:0>. And that cycle is selectable, type A, type B and type C. Each type has each timing, for detail, look for timing table.

Readout bus width of source is selectable 8 bits or 16 bits, without concern to bus width of LCD driver.

WAIT number of the read cycle is 0 waits in case of built-in RAM and works by setting value of CS/WAIT controller in case of external RAM

3.14.4.4 LCDC Operation in HALT Mode

When LCDC is working, CPU executes HALT instruction and changes in HALT mode, LCDC continue operation if CPU in IDLE2 mode. But LCDC stops in case of IDLE1, STOP mode.

Note: It need to set the same bus width setting of display RAM, CS/WAIT controller and LCDCTL2<RAMBUS>

Figure 3.14.6 Bus Width Timing (No-wait external RAM)

Read Bus Width	Туре	Write Mode	Setup Time	Hold Time	D1BSCP Pulse Width	D1BSCP Cycle	State/ Cycle
Byte	Byte		0.5x	1.0x	1.5x	4.0x	4.0x
	A	Nibble	0.5x	1.0x	1.0x	2.0x	6.0x
	D	Byte	1.0x	0.5x	2.0x	4.0x	4.0x
	В	Nibble	1.0x	0.5x	1.0x	2.0x	6.0x
	с	Byte	1.0x	2.5x	1.5x	6.0x	6.0x
	C	Nibble	1.0x	1.5x	2.5x	5.0x	10.0x
Word	۸	Byte	0.5x	1.0x	1.0x	2.0x	6.0x
	A	Nibble	0.5x	1.0x	1.0x	2.0x	10.0x
	в	Byte	1.0x	0.5x	1.0x	2.0x	6.0x
	D	Nibble	1.0x	0.5x	1.0x	2.0x	10.0x
	0	Byte	1.0x	1.5x	1.5x	3.0x	8.0x
	С	Nibble	1.0x	1.5x	2.5x	5.0x	20.0x

 Table 3.14.7
 Each Type Timing Table

Note: Number in above Table shows f_{FPH} clock cycle, for example, in case of 27 MHz frequency Xin-Xout, 1.00 equal 37 ns.

Above table don't show to guarantee the time, it shows outline. For details, look for AC timing at after page.

Figure 3.14.7 Definition of Specification

		В	8 bits	8 bits	SRAM
f _{FPH}	أأألا ألأراب ألأراب ألأراب	Ļſ	ГЦ		
Address	- (n) $(n+1)$ $(n+1)$	¦ ¦ (n +	2)	x : : :	(n + 3)
RD					
WR					
D7 to D0			БЕН	56H	78H
D1SCP		- <u> </u>			

Туре

Read

Trance

RAM

Figure 3.14.11 Word Read and Nibble Write Timing

3.14.5 RAM Built-in Type LCD Driver Control Mode (RAM Type)

Data transmission to LCD driver is executed by move instruction of CPU.

After setting mode of operation to control register, when move instruction of CPU is executed LCDC outputs chip select signal to LCD driver connected to the outside from control pin. (D1BSCP etc.)

Therefore control of data transmission numbers corresponding to LCD size is controlled by instruction of CPU. There are 2 kinds of addresses of LCD driver in this case, and which is chosen determines by LCDCTL<MMULCD> register.

It corresponds to LCD driver which has every 1 byte of instruction register and display data register in LCD driver at the time of <MMULCD> = 0. Please make the transmission place address at this time into either of FE0H to FE7H. (Table 3.14.2 references)

It corresponds to address direct writing type LCD driver at the time of $\langle MMULCD \rangle = 1$. The transmission place address at this time can also assign the memory area of 3C0000H to 3FFFFFH to four areas for every 64 Kbytes. (Table 3.14.3 references)

The example of a setting is shown as follows and connection example is shown in Figure 3.14.12 at the time below. [<MMULCD> = 0]

(Setting example)

In case of use 80 SEG \times 65 COM LCD driver.

Assign external column driver to LCDC0 and row driver to LCDR0.

This example used LD instruction in setting of instruction and used burst function of micro DMA by soft start in setting of display data.

		e of store 650 bytes in built-in RAM (10	transfer data to LCD	
			50011 10 120511).	
; Setting external terminal				
	LD	(PDCR), 19H	; $\overline{\text{CE}}$ for LCDC1: D1BSC	ЪР,
			; $\overline{\text{LE}}$ for LCDR1: DLEBO	CD,
			; Setting for/DOFF	
; Setting for LCDC				
	LD	,	; Select RAM mode	
	LD	(LCDCTL), 80H	; LCDON	
; Setting for mode of LCDC1/LCDR1				
	LD	(LCDC1L), XX	; Setting instruction for	LCDC1
	LD	(LCDR1L), XX	; Setting instruction for 1	LCDR1
; Setting for micro DMA and INTTC (ch0)				
	LD	,	; Source address INC mo	ode
		DMAMO, A	, 	
		,	; count = 650	
		DMAC0, WA	, , () 11 10001	T
		,	; Source address = 1000H	1
		DMAS0, XWA	, , , , , , , , , , , , , , , , , , , ,	
	LD	XWA, 0FE1H	; Destination address = 1	FEIH (LCDC0H)
		DMAD0, XWA		
	LD		; INTTC0 level = 6	
	EI	6	, , ,	
	LD	(,,,	; Burst mode	
	LD	(DMAR), 01H	; Soft start	

Note: Other circuit is necessary for LCD drive power supply for LCD driver display.

Figure 3.14.13 Example of Access Timing for RAM Built-in Type LCD Driver (Wait = 0)

3.15 Melody/Alarm Generator

TMP91C025 incorporates melody function and alarm function, both of which are output from the MLDALM pin. 5 kinds of fixed cycle interrupts are generated by the 15-bit free-run counter which is used for alarm generator.

Features are as follows.

Melody generator

The melody function generates signals of any frequency (4 Hz to 5461 Hz) based on low-speed clock (32.768 kHz) and outputs several signals from the MLDALM pin.

By connecting a loud speaker outside, melody tone can sound easily.

• Alarm generator

The alarm function generates 8 kinds of alarm waveform having a modulation frequency (4096 Hz) determined by the low-speed clock (32.768 kHz). And this waveform is able to invert by setting a value to a register.

By connecting a loud speaker outside, Alarm tone can sound easily.

And also 5 kinds of fixed cycle (1 Hz, 2 Hz, 64 Hz, 512 Hz, and 8192 Hz) interrupts are generated by the free-run counter which is used for alarm generator.

• Special mode

It is assigned <TA3LCDE> at bit0 and <TA3MLDE> at bit1, of EMCCR0 register (00E3hex). These bits are used when you want to operate LCDD and MELODY circuit without low-frequency clock (XTIN, XTOUT). After reset these two bits set to "0" and low clock is supplied each LCDD and MELODY circuit. If you write these bits to "1", TA3 (Generate by timer3) is supplied each LCDD and MELODY circuit. In this case, you should set 32 kHz timer3 frequency. For detail, look AC specification characteristics.

This section is constituted as follows.

- 3.15.1 Block Diagram
- 3.15.2 Control Registers
- 3.15.3 Operational Description
 - 3.15.3.1 Melody Generator
 - 3.15.3.2 Alarm Generator

3.15.1 Block Diagram

Figure 3.15.1 MLD Block Diagram

3.15.2 Control Registers

					Register				
		7	6	5	4	3	2	1	0
ALM	Bit symbol	AL8	AL7	AL6	AL5	AL4	AL3	AL2	AL1
(0330H)	Read/Write				R/	W			
	After reset	0	0	0	0	0	0	0	0
	Function				Setting ala	rm pattern.			
	-			MELALM	IC Registe	er			
		7	6	5	4	3	2	1	0
MELALMC (0331H)	Bit symbol	FC1	FC0	ALMINV	_	-	_	-	MELALM
	Read/Write	R/	W			R/	W		
	After reset	0	0	0	0	0	0	0	0
	Function	Free-run cou	nter control.	Alarm		Always	write 0.		Output
		00: Hold		waveform					waveform
		01: Restart		invert.					select.
		10: Clear		1: INVERT					0: Alarm
		11: Clear & s	tart						1: Melody
	Note 2: When	setting MELAI	_MC register		. Register	tree-run cou	nter is runnin	g, <fc1:0> i</fc1:0>	s kept 01.
	/	7	6	5	4	3	2	1	0
MELFL									
MELFL	Bit symbol	ML7	ML6	ML5	ML4	ML3	ML2	ML1	ML0
MELFL (0332H)	Bit symbol Read/Write	ML7	ML6	ML5		ML3 W	ML2	ML1	ML0
		0 ML7	ML6 0	ML5 0			ML2 0	ML1 0	0 ML0
	Read/Write			0	R/ 0	W	0		
	Read/Write After reset			0 Setting	R/ 0 melody frequ	W 0	0		
	Read/Write After reset			0 Setting	R/ 0	W 0	0		
(0332H) MELFH	Read/Write After reset	0	0	0 Setting MELFH	R/ 0 melody frequ I Register	W 0 Jency (Lower	0 8 bits).	0	0
(0332H)	Read/Write After reset Function	0	0	0 Setting MELFH	R/ 0 melody frequ I Register	W 0 Jency (Lower	0 8 bits). 2	0 1 ML9	0
(0332H) MELFH	Read/Write After reset Function Bit symbol	0 7 MELON	0	0 Setting MELFH	R/ 0 melody frequ I Register	W 0 Jency (Lower	0 8 bits). 2 ML10	0 1 ML9	0
(0332H) MELFH	Read/Write After reset Function Bit symbol Read/Write	0 7 MELON R/W	0	0 Setting MELFH	R/ 0 melody frequ I Register	W 0 Jency (Lower 3 ML11 0	0 8 bits). 2 ML10 R/ 0	0 1 ML9 W 0	0 0 ML8 0
(0332H) MELFH	Read/Write After reset Function Bit symbol Read/Write After reset	0 7 MELON R/W 0 Control	0	0 Setting MELFH	R/ 0 melody frequ I Register	W 0 Jency (Lower 3 ML11 0	0 8 bits). 2 ML10 R/	0 1 ML9 W 0	0 0 ML8 0
(0332H) MELFH	Read/Write After reset Function Bit symbol Read/Write After reset	0 7 MELON R/W 0 Control melody	0	0 Setting MELFH	R/ 0 melody frequ I Register	W 0 Jency (Lower 3 ML11 0	0 8 bits). 2 ML10 R/ 0	0 1 ML9 W 0	0 0 ML8 0
(0332H) MELFH	Read/Write After reset Function Bit symbol Read/Write After reset	0 7 MELON R/W 0 Control melody counter.	0	0 Setting MELFH	R/ 0 melody frequ I Register	W 0 Jency (Lower 3 ML11 0	0 8 bits). 2 ML10 R/ 0	0 1 ML9 W 0	0 0 ML8 0
(0332H) MELFH	Read/Write After reset Function Bit symbol Read/Write After reset	0 7 MELON R/W 0 Control melody counter. 0: Stop &	0	0 Setting MELFH	R/ 0 melody frequ I Register	W 0 Jency (Lower 3 ML11 0	0 8 bits). 2 ML10 R/ 0	0 1 ML9 W 0	0 0 ML8 0
(0332H) MELFH	Read/Write After reset Function Bit symbol Read/Write After reset	0 7 MELON R/W 0 Control melody counter. 0: Stop & clear	0	0 Setting MELFH	R/ 0 melody frequ I Register	W 0 Jency (Lower 3 ML11 0	0 8 bits). 2 ML10 R/ 0	0 1 ML9 W 0	0 0 ML8 0
(0332H) MELFH	Read/Write After reset Function Bit symbol Read/Write After reset	0 7 MELON R/W 0 Control melody counter. 0: Stop &	0	0 Setting MELFH	R/ 0 melody frequ I Register	W 0 Jency (Lower 3 ML11 0	0 8 bits). 2 ML10 R/ 0	0 1 ML9 W 0	0 0 ML8 0
(0332H) MELFH	Read/Write After reset Function Bit symbol Read/Write After reset	0 7 MELON R/W 0 Control melody counter. 0: Stop & clear	0	0 Setting MELFH 5	R/ 0 melody frequ I Register	W 0 Jency (Lower 3 ML11 0	0 8 bits). 2 ML10 R/ 0	0 1 ML9 W 0	0 0 ML8 0
(0332H) MELFH	Read/Write After reset Function Bit symbol Read/Write After reset	0 7 MELON R/W 0 Control melody counter. 0: Stop & clear	0	0 Setting MELFH 5	R/ 0 melody frequ I Register 4	W 0 Jency (Lower 3 ML11 0	0 8 bits). 2 ML10 R/ 0	0 1 ML9 W 0	0 0 ML8 0
(0332H) MELFH (0333H) ALMINT	Read/Write After reset Function Bit symbol Read/Write After reset	0 7 MELON R/W 0 Control melody counter. 0: Stop & clear 1: Start	6	0 Setting MELFF 5	R/ 0 melody frequ I Register 4	W 0 Jency (Lower 3 ML11 0 Setting	0 8 bits). 2 ML10 R/ 0 melody frequ	0 1 ML9 W 0 Jency (Uppe	0 0 ML8 0 r 4 bits).
(0332H) MELFH (0333H)	Read/Write After reset Function Bit symbol Read/Write After reset Function	0 7 MELON R/W 0 Control melody counter. 0: Stop & clear 1: Start	6	0 Setting MELFF 5	R/ 0 melody frequ I Register 4 5 7 Register 4	W 0 Jency (Lower 3 ML11 0 Setting	0 8 bits). 2 ML10 R/ 0 melody frequ melody frequ	0 1 ML9 W Jency (Uppe	0 0 ML8 0 r 4 bits).
(0332H) MELFH (0333H) ALMINT	Read/Write After reset Function Bit symbol Read/Write After reset Function Bit symbol	0 7 MELON R/W 0 Control melody counter. 0: Stop & clear 1: Start	6	0 Setting MELFF 5	R/ 0 melody frequ I Register 4 5 7 Register 4	W 0 Jency (Lower 3 ML11 0 Setting 3 IALM3E	0 8 bits). 2 ML10 R/ 0 melody frequ melody frequ	0 1 ML9 W Jency (Uppe	0 0 ML8 0 r 4 bits).
(0332H) MELFH (0333H) ALMINT	Read/Write After reset Function Bit symbol Read/Write After reset Function Bit symbol Read/Write	0 7 MELON R/W 0 Control melody counter. 0: Stop & clear 1: Start	6	0 Setting MELFF 5 -	R/ 0 melody frequ I Register 4 5 7 Register 4 1ALM4E 0	W 0 Jency (Lower 3 ML11 0 Setting Setting 1ALM3E R/ 0	0 8 bits). 2 ML10 R/ 0 melody frequ melody frequ IALM2E N	0 1 ML9 W 0 Jency (Uppe Jency (Uppe 1 IALM1E 0	0 0 ML8 0 r 4 bits). 0 IALMOE 0

3.15.3 Operational Description

3.15.3.1 Melody Generator

The melody function generates signals of any frequency (4 Hz to 5461 Hz) based on low-speed clock (32.768 kHz) and outputs the signals from the MLDALM pin.

By connecting a loud speaker outside, melody tone can sound easily.

(Operation)

At first, MELALMC<MELALM> have to be set as 1 in order to select melody waveform as output waveform from MLDALM. Then melody output frequency has to be set to 12-bit register MELFH, MELFL.

Followings are setting example and calculation of melody output frequency.

(Formula for calculating of melody waveform frequency)

 $\label{eq:melody} \begin{array}{ll} at \ fs = 32.768 \ [kHz] \\ melody \ output \ waveform & f_{MLD} \ [Hz] = 32768/(2 \times N + 4) \\ setting \ value \ for \ melody & N = (16384/f_{MLD}) - 2 \\ (Note: \ N = 1 \ to \ 4095 \ (001H \ to \ FFFH), \ 0 \ is \ not \ acceptable \) \end{array}$

(Example program)

In case of outputting La musical scale (440 Hz)

LD	(MELALMC), 11X00001B	; Select melody waveform
LD	(MELFL), 23H	; N = $16384/440 - 2 = 35.2 = 023H$
LD	(MELFH), 80H	; Start to generate waveform

(Refer to basic musical scale setting table)

Scale	Frequency [Hz]	Register Value: N
С	264	03CH
D	297	035H
Е	330	030H
F	352	02DH
G	396	027H
А	440	023H
В	495	01FH
С	528	01DH

3.15.3.2 Alarm Generator

The Alarm function generates 8 kinds of alarm waveform having a modulation frequency 4096 Hz determined by the low-speed clock (32.768 kHz). And this waveform is reversible by setting a value to a register.

By connecting a loud speaker outside, Alarm tone can sound easily.

5 kinds of fixed cycle (1 Hz, 2 Hz, 64 Hz, 512 Hz, 8192 Hz) interrupts are generate by the free-run counter which is used for alarm generator.

(Operation)

At first, MELALMC<MELALM> have to be set as 0 in order to select alarm waveform as output waveform from MLDALM. Then "10" be set on MELALMC<FC1:0> register, and clear internal counter. Finally alarm pattern has to be set on 8-bit register of ALM. If it is inverted output-data, set <ALMINV> as invert.

Followings are example program, setting value of alarm pattern and waveform of each setting value.

(Setting value	of alarm	pattern)
----------------	----------	----------

Setting Value for ALM Register	Alarm Waveform		
00H	0 fixed		
01H	AL1 pattern		
02H	AL2 pattern		
04H	AL3 pattern		
08H	AL4 pattern		
10H	AL5 pattern		
20H	AL6pattern		
40H	AL7 pattern		
80H	AL8 pattern		
Other	Undefined (do not set)		

(Example program)

LD

In case of outputting AL2 pattern (31.25 ms/8 times/1 s)

- (MELALMC), COH ; Set output alarm waveform
 - ; Free-run counter start

LD (ALM), 02H

; Set AL2 pattern, start

AL1 pattern (Continuous output)	Image: Modulation frequency (4096 Hz) Image: Modulation frequency (4096 Hz) 1 2 8 1	
AL2 pattern (8 times/1 s)	1 2 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
AL3 pattern (once) -	$\begin{array}{c c} 1 \\ \hline \\$	_
AL4 pattern (Twice/1 s) -	1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	_
AL5 pattern (3 times/1 s) -	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_
AL6 pattern (once) –	1 (62.5 ms	_
AL7 pattern (Twice)	 	_
AL8 pattern (once)	250 ms	_

(Example)

Waveform of alarm pattern for each setting value: Not invert

3.16 Hardware Standby Function

TMP91C025 have hardware standby circuit that is able to save the power consumption and protect from program runaway by supplying power voltage down. Especially, it's useful in case of battery using.

It can be shifted to "PS condition" by fixing \overline{PS} pin to "Low" level.

Figure 3.16.1 shows timing diagram of transition of PS condition below.

 $\ensuremath{\mathrm{PS}}\xspace$ mode can be released only by external RESET.

Figure 3.16.1 Hardware Standby Timing Diagram

Note 1: PS pin is effective after RESET because SYSCR2<PSENV> to 0. If you use as INT0 pin, please write SYSCR2<PSENV> to 1.

Note 2: Shifting time is 2 to 10 clock times of f_{SYS} .

Table 3.16.1	Power Save Conditions of Each HALT Mode
--------------	---

HALT Mode Setting	IDLE2	IDLE1	STOP
PS condition	IDLE1 mode + High-frequency stop	IDLE1 mode + High-frequency stop	STOP mode

Note: Settings of SYSCR2<DRVE> and <SELDRV> at HALT mode are effective as well as PS condition.

4. Electrical Characteristics

4.1 Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit
Power supply voltage	Vcc	-0.5 to 4.0	V
Input voltage	VIN	-0.5 to Vcc + 0.5	V
Output current	IOL	2	mA
Output Current (MX, MY pin)	IOL	15	mA
Output current	IOH	-2	mA
Output Current (PX, PY pin)	IOH	–15	mA
Output current (Total)	ΣIOL	80	mA
Output current (Total)	ΣΙΟΗ	-80	mA
Power dissipation $(Ta = 85^{\circ}C)$	PD	600	mW
Soldering temperature (10 s)	TSOLDER	260	°C
Storage temperature	TSTG	-65 to 150	°C
Operating temperature	TOPR	-40 to 85	°C

Note: The absolute maximum ratings are rated values which must not be exceeded during operation, even for an instant. Any one of the ratings must not be exceeded. If any absolute maximum rating is exceeded, the device may break down or its performance may be degraded, causing it to catch fire or explode resulting in injury to the user. Thus, when designing products which include this device, ensure that no absolute maximum rating value will ever be exceeded.

Solderability of lead lead-free products

Test parameter	Test condition	Note
Solderability	(1) Use of Sn-637Pb solder Bath	Pass:
	Solder bath temperature =230°C, Dipping time = 5 seconds	solderability rate until forming $\ge 95\%$
	The number of times = one, Use of R-type flux	
	(2) Use of Sn-3.0Ag-0.5Cu solder bath	
	Solder bath temperature =245°C, Dipping time = 5 seconds	
	The number of times = one, Use of R-type flux (use of lead lead-free)	

4.2 DC Characteristics (1/2)

Parameter		Symbol	Condi	tion	Min	Тур.	Max	Unit
Pow	ver supply voltage		fc = 4 to 36 MHz		3.0	-	3.6	
	(AVCC = DVCC)	VCC	fc = 4 to 27 MHz	fs = 30 to 34 kHz	2.7			V
	(AVSS = DVSS = 0 V)		fc = 4 to 16 MHz		2.4			
	D0 to D15	VIL	$Vcc \geq 2.7 \ V$				0.6	
	010 10 15	VIL	Vcc < 2.7 V				0.2 Vcc	
0	PZ2 to PD7 (Except RESET,		$Vcc \geq 2.7 \ V$				0.3 Vcc	
Input low voltage	PB3, PB5, PB6, P9)	VIL1	Vcc < 2.7 V			_	0.2 Vcc	
0 / 0	RESET , PB3, PB5, PB6, P9	\//I.O	$Vcc \ge 2.7 V$		0.2		0.25 Vcc	
t lov	RESET, FD3, FD3, FD0, F9	VIL2	Vcc < 2.7 V		-0.3	—	0.15 Vcc	
indu		\//I 0	$Vcc \ge 2.7 V$				0.3	
_	AM0 to AM1	VIL3	Vcc < 2.7 V			-	0.3	
			$Vcc \ge 2.7 V$			_	0.2 Vcc	
	X1	VIL4	Vcc < 2.7 V				0.1 Vcc	
		VIH	$3.6~V \geq Vcc \geq 2.7~V$		2.4			V
	D0 to D15		3.3 V > Vcc ≥ 2.7 V		2.0			
			0.7 < Vcc		0.7 Vcc			
age	PZ2 to PD7 (Except RESET,	VIH1	$Vcc \ge 2.7 V$		0.7 Vcc			
volt	PB3, PB5, PB6, P9)	VIIII	Vcc < 2.7 V		0.8 Vcc			
igh	RESET , PB3, PB5, PB6, P9	VIH2	$Vcc \ge 2.7 V$		0.75 Vcc		Vcc + 0.3	
Input high voltage		VIIIZ	Vcc < 2.7 V		0.85 Vcc	_		
dul	AM0 to AM1	VIH3	$Vcc \ge 2.7 V$		Vcc - 0.3			
		VILIS	Vcc < 2.7 V		Vcc - 0.3	-		
	X1	VIH4	$Vcc \geq 2.7 \ V$		0.8 Vcc			
		VIN4	Vcc < 2.7 V		0.9 Vcc			
O U+		VOL1	IOL = 1.6 mA	$Vcc \geq 2.7 \ V$			0.45	
Out	put low voltage	VULI	IOL = 0.4 mA	Vcc < 2.7 V		-	0.15 Vcc	v
			IOH = -400 μA	$Vcc \ge 2.7 V$	Vcc - 0.3			
Out	put high voltage	VOH2	IOH = 200 μA	Vcc < 2.7 V	0.8 Vcc	-	-	

Note: Typical values are for when $Ta = 25^{\circ}C$ and Vcc = 3.3 V uncles otherwise noted.

Parameter	Symbol	Condit	ion	Min	Typ.(Note 1)	Max	Unit
Internal resistor (ON)	IMan	VOL = 0.2V	$Vcc \geq 2.7 \ V$			30	
MX, MY pins	IMon	VOL = 0.07 Vcc	Vcc < 2.7 V			25	0
Internal resistor (ON)	IN As a	VOH = Vcc - 0.2V	$Vcc \ge 2.7 V$			30	Ω
PX, PY pins	IMon	VOH = 0.94 Vcc	Vcc < 2.7 V			25	
Input leak current	ILI	$0.0 \leq VIN \leq Vcc$		-	0.02	±5	^
Output leak current	ILO	$0.2 \leq VIN \leq Vcc -$	0.2	-	0.05	±10	μA
RESET pull-up resistor	RRST	$3.6~V \geq Vcc \geq 2.7$	V	80		400	kΩ
Pin capacitance	CIO	fc = 1 MHz		-	-	10	pF
Schmitt width RESET, INT0, KI0 to KI7,	VTH	$Vcc \geq 2.7 \ V$		0.4	1.0	-	V
INT2, INT3	VIII	Vcc < 2.7 V		0.3	0.8		v
Programmable pull-up resistor	RKH	$3.6~V \geq Vcc \geq 2.7$	V	80	-	400	kΩ
NORMAL (Note 2)			\/	_	16	21	
IDLE2		3.6 V ≥ Vcc ≥ 3.0 fc = 36 MHz	v	-	5.0	7	mA
IDLE1				-	1.5	3.2	
SLOW (Note 2)	Icc			_	12	30	
IDLE2		$3.6 \text{ V} \ge \text{Vcc} \ge 2.7$	v	_	8	25	
IDLE1		fs = 32.768 kHz		_	4	20	μA
STOP		$3.6~V \geq Vcc \geq 2.7$	V	_	0.2	15	

DC Characteristics (2/2)

Note 1: Typical values are for when $Ta = 25^{\circ}C$ and Vcc = 3.3 V unless otherwise noted.

Note 2: Icc measurement conditions (NORMAL, SLOW):

All functions are operational; output pins are open and input pins are fixed. Data and address bus CL = 30 pF loaded.

4.3 AC Characteristics

(1)	Vcc = 2.7 V to 3.6 V	
(1)	100 = 2.1	

Vcc = 2.7 to 3.6 V case of fFPH =	$27 \mathrm{~MHz}$
Vcc = 3.0 to 3.6 V case of fFPH =	36 MHz

Nia		Deveneder	Var	iable	27	MHz	36 MHz		1.1
No.	Symbol	Parameter	Min	Max	Min	Max	Min	Max	Unit
1	t _{FPH}	f _{FPH} period (= x)	27.7	31250	37.0		27.7		ns
2	t _{AC}	A0 to 23 valid $\rightarrow \overline{RD} / \overline{WR}$ fall	x – 23		14		4		ns
3	t _{CAR}	\overline{RD} rise \rightarrow A0 to A23 hold	0.5x – 13		5		0		ns
4	tCAW	$\overline{\text{WR}}~\text{rise} \rightarrow \text{A0}~\text{to}~\text{A23}~\text{hold}$	x – 13		24		14		ns
5	t _{AD}	A0 to A23 valid \rightarrow D0 to D15 input		3.5x – 24		105		73	ns
6	t _{RD}	$\overline{\text{RD}}$ fall \rightarrow D0 to D15 input		2.5x – 24		68		45	ns
7	t _{RR}	RD low width	2.5x – 15		77		54		ns
8	t _{HR}	$\overline{\text{RD}}$ rise \rightarrow D0 to A15 hold	0		0		0		ns
9	tww	WR low width	2.0x – 15		59		40		ns
10	t _{DW}	D0 to D15 valid $\rightarrow \overline{WR}$ rise	1.5x – 35		20		6		ns
11	t _{WD}	$\overline{\text{WR}}$ rise \rightarrow D0 to D15 hold	x – 25		12		2		ns
12	t _{SBA}	Data byte control access time for SRAM		3x – 24		87		59	ns
13	tSWP	Write pulse width for SRAM	2x – 15		59		40		ns
14	t _{SBW}	Data byte control to end of write for SRAM	3x – 15		96		68		ns
15	tSAS	Address setup time for SRAM	1.5x – 35		20		6		ns
16	tSWR	Write recovery time for SRAM	0.5x – 13		5		0		ns
17	tSDS	Data setup time for SRAM	2x - 35		39		20		ns
18	^t SDH	Data hold time for SRAM	0.5x – 13		3		0		ns
19	t _{AW}	A0 to A23 valid $\rightarrow \overline{\text{WAIT}}$ input (1 + N) waits mode		3.5x - 60		69		37	ns
20	t _{CW}	$\overline{RD} / \overline{WR} \text{ fall} \rightarrow \overline{WAIT} \text{ hold} (1 + N) \text{ waits mode}$	2.5x + 0		92		69		ns
21	t _{APH}	A0 to A23 valid \rightarrow Port input		3.5x - 89		40		8	ns
22	t _{APH2}	A0 to A23 valid \rightarrow Port hold	3.5x		129		96		ns
23	t _{APO}	A0 to A23 valid \rightarrow Port valid		3.5x + 80		209		176	ns

AC measuring conditions

- Output level: High = 0.7 Vcc, Low = 0.3 Vcc, CL = 50 pF
- Input level: High = 0.9 Vcc, Low = 0.1 Vcc
- Note: Symbol "x" in the above table means the period of clock "f_{FPH}", it's half period of the system clock "f_{SYS}" for CPU core. The period of f_{FPH} depends on the clock gear setting or selection of high/low oscillator frequency.

No		Deremeter	Var	iable	16	MHz	Linit
No.	Symbol	Parameter	Min	Max	Min	Max	Unit
1	t _{FPH}	f _{FPH} period (= x)	62.5	31250	62.5		ns
2	t _{AC}	A0 to 23 valid $\rightarrow \overline{RD} / \overline{WR}$ fall	x – 23		39		ns
3	t _{CAR}	\overline{RD} rise \rightarrow A0 to A23 hold	0.5x – 23		8		ns
4	tCAW	$\overline{\rm WR}~{\rm rise} \rightarrow {\rm A0}~{\rm to}~{\rm A23}~{\rm hold}$	x – 13		49		ns
5	t _{AD}	A0 to A23 valid \rightarrow D0 to D15 input		3.5x – 38		180	ns
6	t _{RD}	$\overline{\text{RD}}$ fall \rightarrow D0 to D15 input		2.5x - 30		126	ns
7	t _{RR}	RD low width	2.5x – 15		141		ns
8	tHR	$\overline{\text{RD}}$ rise \rightarrow D0 to A15 hold	0		0		ns
9	tww	WR low width	2.0x – 15		110		ns
10	t _{DW}	D0 to D15 valid $\rightarrow \overline{\text{WR}}$ rise	1.5x – 35		58		ns
11	t _{WD}	$\overline{\text{WR}}\xspace$ rise \rightarrow D0 to D15 hold	x – 25		37		ns
12	t _{SBA}	Data byte control access time for SRAM		3x - 39		148	ns
13	tSWP	Write pulse width for SRAM	2x – 15		110		ns
14	t _{SBW}	Data byte control to end of write for SRAM	3x - 25		162		ns
15	tSAS	Address setup time for SRAM	1.5x – 35		58		ns
16	tSWR	Write recovery time for SRAM	0.5x – 22		9		ns
17	tSDS	Data setup time for SRAM	2x - 35		90		ns
18	t _{SDH}	Data hold time for SRAM	0.5x – 18		13		ns
19	t _{AW}	A0 to A23 valid $\rightarrow ~\overline{\text{WAIT}}~$ input ~(1 $_+$ N) waits mode		3.5x - 60		158	ns
20	t _{CW}	$\overline{\text{RD}} \ / \ \overline{\text{WR}} \ \ \text{fall} \rightarrow \ \overline{\text{WAIT}} \ \ \text{hold} \qquad (1 + N) \ \text{waits mode}$	2.5x + 0		156		ns
21	t _{APH}	A0 to A23 valid \rightarrow Port input		3.5x – 89		129	ns
22	t _{APH2}	A0 to A23 valid \rightarrow Port hold	3.5x		218		ns
23	t _{APO}	A0 to A23 valid \rightarrow Port valid		3.5x + 80		298	ns

(2) Vcc = 2.4 V to 3.6 V

AC measuring conditions

- Output level: High = 0.7 Vcc, Low = 0.3 Vcc, CL = 50 pF
- Input level: High = 0.9 Vcc, Low = 0.1 Vcc
- Note: Symbol "x" in the above table means the period of clock "f_{FPH}", it's half period of the system clock "f_{SYS}" for CPU core. The period of f_{FPH} depends on the clock gear setting or selection of high/low oscillator frequency.

Note: Since the CPU accesses the internal area to read data from a port, the control signals of external pins such as \overline{RD} and \overline{CS} are not enabled. Therefore, the above waveform diagram should be regarded as depicting internal operation. Please also note that the timing and AC characteristics of port input/output shown above are typical representation. For details, contact your local Toshiba sales representative.

(4) Write cycle SRLB SRUB fFPH EA24 to EA25, A23 to A0 CSn R/\overline{W} WAIT t_{APO} Port output (Note) tCAW WR, HWR tswR tww t_{DW} twD D0 to D15 D0 to D15 t_{SDH} t_{SBW} SRLB **SRUB** t_{SDS} t_{SAS} t_{SWP} SRWR

Note: Since the CPU accesses the internal area to write data to a port, the control signals of external pins such as \overline{WR} and \overline{CS} are not enabled. Therefore, the above waveform diagram should be regarded as depicting internal operation. Please also note that the timing and AC characteristics of port input/output shown above are typical representation. For details, contact your local Toshiba sales representative.

4.4 AD Conversion Characteristics

Symbol	Parameter	Condition	Min	Тур.	Max	Unit
VREFH		$3.6~\text{V} \geq \text{Vcc} \geq 2.7~\text{V}$	Vcc - 0.2 V	Vcc	Vcc	
VREFH	Analog reference voltage (+)	$2.7~\text{V} \geq \text{Vcc} \geq 2.4~\text{V}$	Vcc	Vcc	Vcc	
VREFL	Analog reference voltage (-)	$3.6~\text{V} \geq \text{Vcc} \geq 2.7~\text{V}$	Vss	Vss	Vss + 0.2 V	V
		$2.7~V \geq Vcc \geq 2.4~V$	Vss	Vss	Vss	
VAIN	Analog input voltage range		VREFL		VREFH	
IDEE	Analog current for analog reference	$3.6 \text{ V} \geq \text{Vcc} \geq 2.7 \text{ V}$		1.04	1.2	~ ^
IREF (VREFL = 0 V)	voltage <vrefon> = 1</vrefon>	$2.7~V \geq Vcc \geq 2.4~V$		0.75	0.90	mA
(VKEFL = 0 V)	<vrefon> = 0</vrefon>	$3.6~\text{V} \geq \text{Vcc} \geq 2.4~\text{V}$		0.03	10.0	μA
	Error (Not including quantizing errors)	$3.6~\text{V} \geq \text{Vcc} \geq 2.4~\text{V}$		±1.0	±4.0	LSB

Note 1: 1 LSB = (VREFH – VREFL)/1024 [V]

Note 2: The operation above is guaranteed for $f_{FPH} \geq 4 \mbox{ MHz}.$

Note 3: The value of I_{CC} includes the current which flows through the AV_{CC} pin.

4.5 Serial Channel Timing (I/O internal mode)

Vcc = 2.7 to 3.6 V case of $f_{FPH} = 27$ MHz Vcc = 3.0 to 3.6 V case of $f_{FPH} = 36$ MHz

(1)	SCLK input mode
-----	-----------------

Symbol	Parameter	Variable		27 MHz		36 MHz		Lloit
Symbol	Farameter	Min	Max	Min	Max	Min	Max	Unit μs ns ns ns
tSCY	SCLK period	16X		0.59		0.44		μS
toss	Output data → SCLK rising /Falling edge*	$t_{SCY}\!/2-4X-110$		38		0		ns
tons	SCLK rising /Falling edge*→ Output data hold	$t_{SCY}/2 + 2X + 0$		370		277		ns
^t HSR	SCLK rising /Falling edge*→ Input data hold	3X + 10		121		93		ns
t _{SRD}	SCLK rising /Falling edge*→ Valid data input		$t_{\text{SCY}} - 0$		592		443	ns
t _{RDS}	SCLK rising /Falling edge*→ Valid data input	0		0		0		ns

(2) SCLK output mode

Symbol	Parameter	Variable		27 MHz		36 MHz		Unit	
Symbol		Min	Max	Min	Max	Min	Max	Onit	
tSCY	SCLK period	16X	8192X	0.59	303	0.44	227	μs	
toss	Output data → SCLK rising /Falling edge*	t _{SCY} /2 - 40		256		181		ns	
tOHS	SCLK rising /Falling edge* \rightarrow Output data hold	t _{SCY} /2 - 40		256		181		ns	
^t HSR	SCLK rising /Falling edge* \rightarrow Input data Hold	0		0		0		ns	
^t SRD	SCLK rising /Falling edge*→ Valid data input		t _{SCY} – 1X – 180		375		235	ns	
^t RDS	SCLK rising /Falling edge* \rightarrow Valid data input	1X + 180		217		207		ns	

*) SCLK rising/Falling edge: The rising edge is used in SCLK Rising mode. The Falling edge is used in SCLK Falling mode.

Note: Above table's data values at 27 MHz and 36 MHz, are caliculated from t_{SCY} = 16x base.

4.6 Event Counter (TA0IN)

Symbol	Parameter	Variable		27 MHz (Vcc = 2.7 to 3.6 V)		36 MHz (Vcc = 3.0 to 3.6 V)		Unit
		Min	Max	Min	Max	Min	Max	
t _{VCK}	Clock period	8X + 100		396		321		ns
t _{VCKL}	Clock low level width	4X + 40		188		151		ns
t _{VCKH}	Clock high level width	4X + 40		188		151		ns

4.7 Interrupt, Capture

(1) $\overline{\text{NMI}}$, INT0 to INT3 interrupts

Symbol	Parameter	Variable		27 MHz (Vcc = 2.7 to 3.6 V)		36 MHz (Vcc = 3.0 to 3.6 V)		Unit
		Min	Max	Min	Max	Min	Max	
t _{INTAL}	MI , INT0 to INT3 low level width	4X + 40		188		151		ns
^t INTAH	\overline{NMI} , INT0 to INT3 high level width	4X + 40		188		151		ns

4.8 SCOUT pin AC Characteristics

Symbol	Parameter	Variable		27 MHz		36 MHz		Unit
		Min	Max	Min	Max	Min	Max	Unit
^t SCH	Clock low level width	0.5T – 10		8		3		ns
tSCL	Clock high level width	0.5T – 10		8		3		ns

Note: T = Period of SCOUT

Measuring condition

• Output level: High 0.7Vcc/Low 0.3 Vcc, CL = 10 pF

4.9 LCD Controller (SR mode)

Read Bus Width	TYPE	Write Mode	Setup Time (t _{DSU})	Hold Time (t _{DHD})	Clock High Width (t _{CWH})	Cycle (tc)	State/ Cycle
Byte	А	Byte	0.5x – α	1.0x – β	1.5x – γ	4.0x	4.0x
		Nibble	0.5x – α	1.0x – β	1.0x – γ	2.0x	6.0x
	В	Byte	1.0x – α	0.5x – β	2.0x – γ	4.0x	4.0x
		Nibble	1.0x – α	0.5x – β	1.0x – γ	2.0x	6.0x
	С	Byte	1.0x – α	2.5x – β	1.5x – γ	6.0x	6.0x
		Nibble	1.0x – α	1.5x – β	2.5x – γ	5.0x	10.0x
Word	А	Byte	0.5x – α	1.0x – β	1.0x – γ	2.0x	6.0x
		Nibble	0.5x – α	1.0x – β	1.0x – γ	2.0x	10.0x
	В	Byte	1.0x – α	0.5x – β	1.0x – γ	2.0x	6.0x
		Nibble	1.0x – α	0.5x – β	1.0x – γ	2.0x	10.0x
	С	Byte	1.0x – α	1.5x – β	1.5x – γ	3.0x	8.0x
		Nibble	1.0x – α	1.5x – β	2.5x – γ	5.0x	20.0x

Note: Value of alpha, beta and gamma are showed next page.

No	Symbol	Parameter	Variat	ole	27 N	ИНz	36 I	MHz	Condition	Unit
INU.	Symbol	Falameter	Min	Max	Min	Max	Min	Max	Condition	Onit
1	^t DSU	D1BSCP rising	0.5x - 8		10		5			
		→ Data setup time	1.0x – 8		29		19			
2	^t DHD	D1BSCP falling	0.5x – 8		10		5			
		\rightarrow Data hold time	1.0x – 8		29		19			
			1.5x – 8		47		33			
			2.5x – 8		84		61			
3	^t CWH	D1BSCP	1.0x – 12		25		15			
		high width	1.5x – 12		43		29		3.6 V \geq Vcc \geq 2.7 V	ns
			2.0x - 12		62		43			
			2.5x – 12		80		57			
4	^t C	D1BSCP	2.0x		74		55			
		clock cycle	3.0x		111		83			
			4.0x		148		110			
			5.0x		185		138			
			6.0x		222		166			

Note: The reading characteristics of display data from the memory which does not define above table, is same as 4.3 AC electrical

4.10 Recommended Crystal Oscillation Circuit

 $\rm TMP91C025$ is evaluated by below oscillator vender. When selecting external parts, make use of this information.

- Note: Total loads value of oscillator is sum of external loads (C1 and C2) and floating loads of actual assemble board. There is a possibility of miss-operating using C1 and C2 value in below table. When designing board, it should design minimum length pattern around oscillator. And we recommend that oscillator evaluation try on your actual using board.
- (1) Connection example

High-Frequency Oscillator Low-Frequency Oscillator

(2) TMP91C025 recommended ceramic oscillator: Murata Manufacturing Co., LTD; JAPAN

MCU			Para	ameter c	of Elem	ents	Running (Condition
MCU	Frequency [MHz]	item of Oscillator	C1 [pF]	C2 [pF]	Rf [Ω]	Rd [Ω]	Voltage of Power [V]	T _C [°C]
TMP91C025FG	9.0	CSTLS9M00G56-B0	(47)	(47)	Open	0	2.7~3.6	-20~80

- The values enclosed in blackest in the C1 and C2 columns apply to the condenser built-in type.
- The product numbers and specifications of the resonators by Murata Manufacturing Co., Ltd. are subject to change. For up-to-date information, please refer to the following URL: http://www.murata.co.jp/search/index.html

5. Table of SFR

The SFRs (Special function registers) include the I/O ports and peripheral control registers allocated to the 4-Kbyte address space from 000000H to 000FFFH.

- (1) I/O port
- (2) I/O port control
- (3) Interrupt control
- (4) Chip select/wait control
- (5) Clock gear
- (6) DFM (Clock doubler)
- (7) 8-bit timer
- (8) UART/serial channel
- (9) AD converter
- (10) Watchdog timer
- (11) Real-time clock
- (12) Melody/alarm generator
- (13) MMU
- (14) LCD control
- (15) Touch screen interface

Table layout

Symbol	Name	Address	7	6	\mathcal{T}	1	0	
					7,			Bit symbol
					17			→ Read/Write
					7/			→ Initial value after reset
					7[→ Remarks

Example: When setting bit0 only of the register PxCR, the instruction SET 0, (PxCR) cannot be used. The LD (transfer) instruction must be used to write all eight bits.

Read/Write

 $\ensuremath{\text{R/W}}\xspace$ Both read and write are possible.

- R: Only read is possible.
- W: Only write is possible.
- W*: Both read and write are possible (when this bit is read as1)

Prohibit RMW: Read-modify-write instructions are prohibited. (The EX, ADD, ADC, BUS, SBC, INC, DEC, AND, OR, XOR, STCF, RES, SET, CHG, TSET, RLC, RRC, RL, RR, SLA, SRA, SLL, SRL, RLD and RRD instruction are read-modify-write instructions.)

R/W*: Read-modify-write instructions are prohibited when controlling the pull-up resistor.

[1], [2] Port		Tab	le 5.1 Addre	ess Map SFRs			
Address	Name	Address	Name	Address	Name	Address	Name
0000H		0010H	P5CR	0020H	PAFC2	0070H	
	P1	1H		1H	PAFC	1H	
2H		2H	P6	2H	PB	2H	
3H		3Н		3Н	PC	3Н	
4H	P1CR	4H		4H	PBCR	4H	
5H		5H	P6FC	5H	PBFC	5H	
	P2	6H			PCCR	6H	
7H		7H			PCFC	7H	
8H	5450		P8		PCODE	8H	
	P2FC		P9		PD	9H	
AH		AH			PDFC	AH	
BH CH		СН	P6FC2		TSICR0 TSICR1	BH CH	
DH	P5		P9FC	DH	ISICKI		PZ
EH	13		PA	EH			PZCR
FH		FH		FH			PZFC
					n		
[3] INTC Address	Name	Address	Name	[4] CS/WAI Address	Name	[5], [6] CGE Address	AR, DFM Name
	DMA0V		INTE0AD	00C0H			SYSCR0
	DMA1V		INTE12		B1CS		SYSCR1
	DMA2V DMA3V		INTE3ALM4		B2CS		SYSCR2
3H 4H	DIVIASV		INTEALM01 INTEALM23	3H 4H	B3CS		EMCCR0 EMCCR1
4H 5H			INTEALW23	4H 5H			EMCCR1 EMCCR2
6H			INTETA01	6H			EMCCR3
7H			INTERTCKEY		BEXCS	7H	
	INTCLR		INTES0		MSAR0		DFMCR0
	DMAR		INTES1		MAMR0		DFMCR1
	DMAB		INTELCD		MSAR1	AH	DIMORT
BH	Billi (B		INTETC01		MAMR1	ВН	
	IIMC		INTETC23		MSAR2	СН	
DH			INTEP01		MAMR2	DH	
EH		EH			MSAR3	EH	
FH		FH			MAMR3	FH	
[7] TMRA Address	Name	[8] UART/se Address	Name	1 [9] 10-bit AI Address	Name	Address	Name
	TA01RUN		SC0BUF		ADREG04L		ADMOD0
1H 2H	TAOPEO		SCOCR		ADREG04H		ADMOD1
	TA0REG		SCOMODO		ADREG15L ADREG15H	2H 2H	
	TA1REG TA01MOD		BR0CR BR0ADD		ADREG15H	3H 4H	
	TA01MOD TA1FFCR		SCMOD1		ADREG26L ADREG26H	4H 5H	
5H 6H	IT IT OK	5H 6H			ADREG26H	5H 6H	
7H			SIRCR		ADREG37L ADREG37H	7H	
	TA23RUN		SC1BUF	8H	ADICE03/11	8H	
он 9Н			SC1BUF SC1CR	9H		8H 9H	
	TA2REG		SC1MOD0	AH		AH	
	TA2REG		BR1CR	BH		BH	
	TA3REG TA23MOD		BR1ADD	СН		CH	
	TA3FFCR		SC1MOD1	DH		DH	
EH		EH	00111001	EH		EH	
FH		FH		FH		FH	
				addresses to		B	

Note: Do not access to the unnamed addresses, e.g., addresses to which no register has been allocated.

[10] WDT		[11] RTC		[12] MLD		[13] MMU	
Address	Name	Address	Name	Address	Name	Address	Name
0300H	WDMOD	0320	H SECR	0330H	ALM	0350H	LOCAL0
1H	WDCR	1	H MINR	1H	MELALMC	1H	LOCAL1
2H		2	HOURR	2H	MELFL	2H	LOCAL2
3H		31	H DAYR	3H	MELFH	3H	LOCAL3
4H		4	H DATER	4H	ALMINT	4H	
5H		51	H MONTHR	5H		5H	
6H		6	H YEARR	6H		6H	
7H		7	H PAGER	7H		7H	
8H		8	H RESTR	8H		8H	
9H		91	4	9H		9H	
AH		A	4	AH		AH	
BH		BI	4	BH		BH	
СН		CI	4	CH		СН	
DH		DI	4	DH		DH	
EH		EI	4	EH		EH	
FH		FI	1	FH		FH	

[14] LCD controller

Address	Name
0360H	LCDSAL
1H	LCDSAH
2H	LCDSIZE
3H	LCDCTL
4H	LCDFFP
5H	
6H	LCDCTL2
7H	
8H	
9H	
AH	
BH	
CH	
DH	
EH	
FH	

Note: Do not access to the unnamed addresses, e.g., addresses to which no register has been allocated.

(1) I/O ports

Symbol	Name	Address	7	6	5	4	3	2	1	0
e jiiizei	Hanto	7100000	P17	P16	P15	P14	P13	_ P12	P11	P10
P1	Port 1	01H		110	110		/W	112		110
	i on i	0111		Data	from externa			ter is cleared t	to 0).	
			P27	P26	P25	P24	P23	P22	, P21	P20
P2	Port 2	06H		-	-		/W			
			1	1	1	1	1	1	1	1
				P56		/				
			\sim	R/W	\sim		\sim	\sim	\sim	\sim
P5	Port 5	0DH		Data from external port (Output latch register is set to 1).						
	T OR O			0 (Output latch register) : Pull-up resistor OFF 1(Output latch register) : Pull-up resistor ON						
					P65	P64	P63	P62	P61	P60
P6	Port 6	12H					R	/W	r	T
					1	1	1	0	1	1
							P83	P82	P81	P80
P8	Port 8	18H						R		
								Data from ex	ternal port.	
			P97	P96	P95	P94	P93	P92	P91	P90
P9	Port 9	19H					R			
						Data from e	external port			
			/		/	/	PA3	PA2	PA1	PA0
PA	Port A	1EH						R/V	V	
							1	1	1	1
			/	PB6	PB5	PB4	PB3		/	
					R/	Ŵ				
PB	Port B	22H		1	1	1	1			
					Data from e	external port				
				(Ou	tput latch rec	gister is set t	<i>i</i> . <i></i>			
					PC5	PC4	PC3	PC2	PC1	PC0
PC	Port C	23H						/W		
					Dat			tput latch regis		
			PD7			PD4	PD3	PD2	PD1	PD0
PD	Port D	29H	R/W				i	R/W	i	i
			1			1	1	1	1	1
							PZ3	PZ2		
							F	R/W		
PZ	Port Z	7DH					(Output lat	external port ch register is to 1"		
							: Pull-up re	atch register) esistor OFF atch register) esistor ON		

(2)	I/O ports control (1/2)	
-----	-------------------------	--

	_	control (1		0	<i>_</i>	A	0	0	4	0
Symbol	Name	Address	7	6	5	4	3	2	1	0
	D 11	04H	P17C	P16C	P15C	P14C	P13C	P12C	P11C	P10C
P1CR	Port 1	(Prohibit	a.//			1	W			
	control	RMW)	0/1	0/1	0/1	0/1	0/1	0/1	0/1	0/1
							1: Output			
	D 10	09H	P27F	P26F	P25F	P24F	P23F	P22F	P21F	P20F
P2FC	Port 2	(Prohibit					W			
	function	RMW)	1	1	1	1	1	1	1	1
			<u> </u>		0: Po	rt, 1:Addres	s bus (A23 t	r í		
	D / 7	7EH					PZ3C	PZ2C		
PZCR	Port Z	(Prohibit						N		
	control	RMW)					0	0		
						<		1: Output		
							PZ3F	PZ2F		
		7FH						N		
PZFC	Port Z	(Prohibit					0	0		
	function	RMW)					0: Port	0: Port		
							1: <u>R/W</u> ,	1: HWR		
			<				SRWR			
			\geq	P56C						
	Port 5	10H		W						
P5CR	control	(Prohibit		0						
		RMW)		0: Input						
			_	1: Output						
			\geq		P65F	P64F	P63F	P62F	P61F	P60F
	Port 6	15H	$ \ge $				١	N	1	
P6FC	function	(Prohibit			0	0	0	0	0	0
		RMW)			0: Port	0: Port	0: Port	0: Port	0: Port	0: Port
					1: EA25	1: EA24	1: CS3	1: CS2	1: CS1	1: CS0
			\geq		P65F2	P64F2	-	P62F2	-	-
	Port 6	1BH			١	V	W	W	W	W
P6FC2	function2	(Prohibit			0	0	0	0	0	0
	Turiotionz	RMW)			0: <p65f></p65f>	0: <p64f></p64f>	Always	0: <p62f></p62f>	Alwovo	write 0.
					1: CS2C	1: CS2B	write 0.	1: CS2A	Always	white 0.
			P97F	P96F	P95F	P94F	P93F	P92F	P91F	P90F
P9FC	Port 9	1DH (Prohibit				١	W			
PALC	function	(Prohibit RMW)	0	0	0	0	0	0	0	0
					0: KEY-I	N DISABLE	, 1: KEY-IN	ENABLE		
							PA3F	PA2F	PA1F	PA0F
	Port A	21H (Drahihit						١	N	
PAFC	function	(Prohibit					0	0	0	0
		RMW)					0: CM0	DS output,1	: Open-drair	n output
			\sim				PA3F2	PA2F2	PA1F2	PA0F2
			\sim	\sim	\sim	\sim	1		N	·
			\sim	\sim	\sim	\sim	0	0	0	0
D 4 C 6 4	Port A	20H					0: Port	0: Port	0: Port	0: Port
PAFC2	function 2	(Prohibit					1: SCOUT		1: TA1OUT	
		RMW)								at <pa0>=1</pa0>
										1: MLDALM
										at <pa0>=0</pa0>
	1					1				ai >i /10/-0

-	-	20111101(2	1	1	r	r	T	r	r	1
Symbol	Name	Address	7	6	5	4	3	2	1	0
		24H				PB4C	PB3C			
PBCR	Port B					١	N			
PDCK	control	(Prohibit RMW)				0	0	/		
		NIVIV)				0: Input	1: Output			
				PB6F	PB5F	PB4F	PB3F	/	/	
		25H				N				
PBFC	Port B	(Prohibit		0	0	0	0	\sim	/	
	function	RMW)		0: Port	0: Port	0: Port	0: Port			
				1: INT3	1: INT2	1: INT1	1: INT0			
				/	PC5C	PC4C	PC3C	PC2C	PC1C	PC0C
	Port C	26H		/		•		N	•	
PCCR	control	(Prohibit		/	0	0	0	0	0	0
		RMW)				•	0: Input	1: Output	•	•
				/	PC5F		PC3F	PC2F		PC0F
		27H			W	\sim	W	W	/	W
PCFC	Port C	(Prohibit		\sim	0	\backslash	0	0	\sim	0
	function	RMW)			0: Port		0: Port	0: Port		0: Port
					1: SCLK1		1: TXD1	1: SCLK0		1: TXD0
					/	/	ODEPC3	/	/	ODEPC0
				/			W		/	W
	Port C	28H	\backslash	\sim	\sim	\sim	0	\sim	\sim	0
PCODE	open-drain	(Prohibit					0: CMOS			0: CMOS
		RMW)					1: Open-			1: Open-
							drain			drain
			PD7F	/		PD4F	PD3F	PD2F	PD1F	PD0F
		2AH	W	\sim	\sim	W	W	W	W	W
PDFC	Port D	(Prohibit	0	\sim	\sim	0	0	0	0	0
	function	RMW)	0: Port			0: Port	0: Port	0: Port	0: Port	0: Port
			1: MLDALM				1: DLEBCD		1: D2BLP	1: D1BSCP

I/O ports control (2/2)

(3) Interrupt control (1/2)

Symbol	Name	Address	7	6	5	4	3	2	1	0
Symbol	Name	Address	1		TAD 5	4	5			0
	INT0 and		IADC	IADM2	IADM1	IADM0	10C			IOMO
INTE0AD	INTAD	90H		IADIVIZ	R/W	IADIVIO		101012		IUIVIU
INTLOAD	enable	3011	R	0		0	R		1	0
	chable		0	0	0	0	0	-		0
			1: INTAD		nterrupt leve		1: INT0			
	INIT4 and		100		IT2	10140	14.0		R/W 0 0 Interrupt level INTALM2 v2M2 IA2M1 v2M2 IA2M1 v2M2 IA2M1 v2M2 IA2M1 v2M2 IA2M1 v2M2 IA2M1 v2M2 ITA0M1 NTTA0 ITA0M1 A0M2 ITA0M1 NTTA2 ITA2M1 NTTA2 ITA2M1 NTTA2 ITA2M1 NTTA2 ITA2M1 NTTA2 ITA2M1 R/W 0 0 0 Interrupt level INTRTC RM2 IRM1 R/W 0 0 0 Interrupt level INTRTC INTRX0 INTRX0	14140
INTE12	INT1 and INT2	91H	I2C R	12M2	I2M1 R/W	I2M0	I1C R	TTIVIZ		I1M0
	enable	3111	<u>к</u> 0	0	R/W	0	<u>к</u> 0	0	1	0
	chabic		0 1: INT2				1: INT1			
			1. 11112		Interrupt leve	1	1. IINT I	-		71
	INT3 and		1440		ALM4 IA4M1	14 4 14 0	120			12140
	INT3 and INTALM4	92H	IA4C R	IA4M2	R/W	IA4M0	I3C R	131712		13M0
INTE3ALM4	enable	920	 0	0	R/W	0	<u>к</u> 0	0		0
	enable		-						-	
			1: INTALM4		Interrupt leve	1	1: INT3			71
	INTALM0		IA1C	IA1M2	ALM1 IA1M1	IA1M0	IA0C			IA0M0
INTEALM01	and	93H		IATIVIZ		IATIMU		TAUMZ		IAUIVIU
INTEALW01	INTALM1	920	R 0	0	R/W 0	0	R 0	0		0
	enable		0 1: INTALM1				0 1: INTALM0	-	-	
					Interrupt leve		T. INTALIVIU			*1
	INTALM2		1420		ALM3	14.0140	14.00			14.0140
	and	94H	IA3C	IA3M2	IA3M1	IA3M0	IA2C	IAZIVIZ		IA2M0
INTEALM23	INTALM3	940	R		R/W	0	R			0
	enable			0	0	0		-		0
			1: INTALM3		Interrupt leve		1: INTALM2			<u>}</u>
	INTTA0		17440		(TMRA1)	17.4.4.40	17400			1740140
	and		ITA1C	ITA1M2	ITA1M1	ITA1M0	ITA0C	TTA0M2		ITA0M0
INTETA01	INTTA1	95H	R		R/W		R			
	enable		0	0	0	0	0		-	0
			1: INTTA1		Interrupt leve	el .	1: INTTA0			el
	INTTA2				(TMRA3)					
	and		ITA3C	ITA3M2	ITA3M1	ITA3M0	ITA2C	ITA2M2		ITA2M0
INTETA23	INTTA3	96H	R		R/W		R			
	enable		0	0	0	0	0			0
			1: INTTA3		Interrupt leve	el .	1: INTTA2			el
	INTRTC0				KEY					
	and		IKC	IKM2	IKM1	IKM0	IRC	IRM2		IRM0
INTERTCKEY	INTKEY	97H	R		R/W		R			
	enable		0	0	0	0	0			0
			1: INTKEY		Interrupt leve		1: INTRTC))
	INTRX0				TX0				1	
	and	0011	ITX0C	ITX0M2	ITX0M1	ITX0M0	IRX0C	IRX0M2		IRX0M0
INTES0	INTTX0	98H	R		R/W	<u> </u>	R			
	enable			0	0	0		0	0	0
			1: INTTX0		nterrupt leve		1: INTRX0		nterrupt leve	
	INTRX1				TX1				RX1	
	and	0011	ITX1C	ITX1M2	ITX1M1	ITX1M0	IRX1C	IRX1M2	IRX1M1	IRX1M0
INTES1	INTTX1	99H	R	0	R/W	0	R		R/W	
	enable		0	0	0	0	0	0	0	0
			1: INTTX1		nterrupt leve		1: INTRX1		nterrupt leve	

Interrupt control (2/2)

Symbol	Name	Address	7	6	5	4	3	2	1	0
2,					LCD		~	. – .	- ·	, č
			ILCD2C	ILCDM2	ILCDM1	ILCDM0	_	_	_	_
INTLCD	INTLCD	9AH	R		R/W	ILCDIVIO		_		_
INTLOD	enable	5411		0		0	-		_	
			0	0	0	0	_	-	-	-
			1: INTLCD		nterrupt leve	el			write 0	
	INTTC0		17010		TC1		17000		TC0	
INTETC01	and	9BH	ITC1C	ITC1M2	ITC1M1	ITC1M0	ITC0C	ITC0M2	ITC0M1	ITC0M0
	INTTC1		R		R/W	_	R	_	R/W	_
	enable		0	0	0	0	0	0	0	0
	INTTC2				TC3				TC0	
INTETC23	and	9CH	ITC3C	ITC3M2	ITC3M1	ITC3M0	ITC2C	ITC2M2	ITC2M1	ITC2M0
	INTTC3		R		R/W		R		R/W	
	enable		0	0	0	0	0	0	0	0
	INTP0 and			IN		1			ГРО	1
	INTP1	9DH	IP1C	IP1M2	IP1M1	IP1M0	IP0C	IP0M2	IP0M1	IP0M0
	enable		R		R/W		R		R/W	
			0	0	0	0	0	0	0	0
	DMA 0				DMA0V5	DMA0V4	DMA0V3	DMA0V2	DMA0V1	DMA0V0
DMA0V	request	80H					R	W		
2	vector	0011			0	0	0	0	0	0
			~			ī	DMA0 St	art vector.	1	1
	DMA 1				DMA1V5	DMA1V4	DMA1V3	DMA1V2	DMA1V1	DMA1V0
DMA1V	request	81H				T	R	W	1	1
Biuitt	vector	onn			0	0	0	0	0	0
			_	-			DMA1 St	art vector.		
	DMA 2				DMA2V5	DMA2V4	DMA2V3	DMA2V2	DMA2V1	DMA2V0
DMA2V	request	82H					R	W		1
DIVIAZV	vector	0211			0	0	0	0	0	0
	VOOLOI						DMA2 St	art vector.		
	DMA 3				DMA3V5	DMA3V4	DMA3V3	DMA3V2	DMA3V1	DMA3V0
DMA3V	request	83H					R	W		
DIVIASV	vector	0311			0	0	0	0	0	0
	VCOLOI						DMA3 St	art vector.		
	late un un t	0011			CLRV5	CLRV4	CLRV3	CLRV2	CLRV1	CLRV0
INTCLR	Interrupt clear	88H (Prohibit					N	V		
INTOLK	control	(FIOHIDIC RMW)			0	0	0	0	0	0
	CONTO				Clea	rs interrupt r	equest flag b	by writing to	DMA start v	ector.
	DMA	0011					DMAR3	DMAR2	DMAR1	DMAR0
DMAR	software	89H (Prohibit					R/W	R/W	R/W	R/W
DIVIAR	request	(Prohibit RMW)					0	0	0	0
	register	1.11117)					1	: DMA reque	est in softwa	re
	DMA						DMAB3	DMAB2	DMAB1	DMAB0
	burst	0.411					R/W	R/W	R/W	R/W
DMAB	request	8AH					0	0	0	0
	register						1:	: DMA request on Burst Mode		
	_		_	_	I3EDGE	12EDGE	I1EDGE	IOEDGE	IOLE	_
	Interrupt	8CH	W	W	W	W	W	W	W	W
	input		0	0	0	0	0	0	0	0
IIMC	-	(Prohibit	Always		INT3 edge	INT2 edge	-	INT0 edge		Always
IIIVIC	mode	(1.10111010								
IIIVIC	mode control	RMW)	write 0.	write 0.	0: Rising	-	0: Rising	0: Rising	0: edge	write 0.

(4) Chip select/wait control (1/2)

Symbol	Name		ntrol (1/2)	6	5	4	3	2	1	0
Symbol	Name	Address		~ 		-			-	-
			B0E		B0OM1	B0OM0	BOBUS	B0W2	B0W1	B0W0
	Block 0	COH	W		W	W	W	W	W	W
Dooo	CS/WAIT		0		0	0	0	0	0	0
B0CS	control	(Prohibit	0: Disable		00: ROM/S	RAM	Data bus	000: 2 waits	s 100:	(0 + N) waits
	register	RMW)	1: Enable		01:]		width.	001: 1 wait		3 waits
					10: Rese	erved	0: 16 bits	010: (1 + N)		
					11: ^J		1:8 bits	011: 0 waits		8 waits
			B1E		B1OM1	B1OM0	B1BUS	B1W2	B1W1	B1W0
	Block 1	C1H	W		W	W	W	W	W	W
	CS/WAIT		0		0	0	0	0	0	0
B1CS	control	(Prohibit	0: Disable		00: ROM/S	RAM	Data bus	000: 2 waits	s 100:	(0 + N) waits
	register	RMW)	1: Enable		01:]		width.	001: 1 wait	101:	3 waits
	-				10: CRese	erved	0: 16 bits	010: (1 + N)) waits 110:	4 waits
					11: ^J	1	1: 8 bits	011: 0 waits	s 111:	8 waits
			B2E	B2M	B2OM1	B2OM0	B2BUS	B2W2	B2W1	B2W0
	Block 2	C2H	W	W	W	W	W	W	W	W
	CS/WAIT	0211	1	0	0	0	0	0	0	0
B2CS	control	(Prohibit	0: Disable	0.16 M	00: ROM/S	RAM	Data bus	000: 2 waits	s 100:	(0 + N) waits
	register	RMW)	1: Enable	0: 16 M	ן :01		width.	001: 1 wait	101:	3 waits
		,		area 1: Area set	10:	erved	0: 16 bits	010: (1 + N)) waits 110:	4 waits
				T. Alea Set	11: ^J		1:8 bits	011: 0 waits	s 111:	8 waits
			B3E		B3OM1	B3OM0	B3BUS	B3W2	B3W1	B3W0
	Block 3	СЗН	W		W	W	W	W	W	W
	CS/WAIT	0311	0		0	0	0	0	0	0
B3CS	control	(Prohibit	0: Disable		00: ROM/S	RAM	Data bus	000: 2 waits	s 100:	(0 + N) waits
	register	`	1: Enable		01:]		width.	001: 1 wait	101:	3 waits
	regioter				10: Reserved		0: 16 bits	010: (1 + N)) waits 110:	4 waits
					11: ^J		1: 8 bits	011: 0 waits	s 111:	8 waits
							BEXBUS	BEXW2	BEXW1	BEXW0
	External	C7H					W	W	W	W
	CS/WAIT	C/II					0	0	0	0
BEXCS	control	(Prohibit					Data bus	000: 2 waits	s 100:	(0 + N) waits
	register	RMW)					width.	001: 1 wait	101:	3 waits
	- 5	,					0: 16 bits	010: (1 + N)		4 waits
							1:8 bits	011: 0 waits		8 waits
	Memory		S23	S22	S21	S20	S19	S18	S17	S16
MSAR0	start	C8H				R	/W			
	address	0.011	1	1	1	1	1	1	1	1
	register 0				ę	Start addres	s A23 to A16	<u>.</u>		
	Memory		V20	V19	V18	V17	V16	V15	V14 to 9	V8
MAMR0	address	C9H				R	/W	1		
	mask	0311	1	1	1	1	1	1	1	1
	register 0			C	S0 area size	0: Ena	able to addre	ess comparis	on	
	Memory		S23	S22	S21	S20	S19	S18	S17	S16
MSAR1	start	САН				R	/W	1		
IN SAR I	address		1	1	1	1	1	1	1	1
	register 1					Start addres	s A23 to A16	δ.		
	Memory		V21	V20	V19	V18	V17	V16	V15 to 9	V8
	address					R	/W			
MAMR1	mask	СВН	1	1	1	1	1	1	1	
	register 1				S1 area size			ess comparis		

Symbol	Name	Address	7	6	5	4	3	2	1	0			
	Memory		S23	S22	S21	S20	S19	S18	S17	S16			
	start	0011	R/W										
MSAR2	address	ССН	1	1	1	1	1	1	1	1			
	register 2		Start address A23 to A16.										
	Memory		V22	V21	V20	V19	V18	V17	V16	V15			
MAMR2	address	СДН				R	/W						
WAWKZ	mask	CDH	1	1	1	1	1	1	1	1			
	register 2			CS2 area size 0: Enable to address comparison									
	Memory		S23	S22	S21	S20	S19	S18	S17	S16			
MSAR3	start	СЕН		R/W									
MSAR3	address	CER	1	1	1	1	1	1	1	1			
	register 3		Start address A23 to A16.										
	Memory		V22	V21	V20	V19	V18	V17	V16	V15			
MAMR3	address	CFH				R	/W						
IVIAIVIR3	mask		1	1	1	1	1	1	1	1			
	register 3			CS	S3 area size	0: Ena	able to addre	ss comparis	on				

Interrupt control (2/2)

Symbol	Name	Address	7	6	5	4	3	2	1	0	
			XEN	XTEN	RXEN	RXTEN	RSYSCK	WUEF	PRCK1	PRCK0	
						R	/W				
			1	1	1	0	0	0	0	0	
			High-	Low-	High-	Low-	Select	Warm-up	Select prese	caler clock.	
			frequency	frequency	frequency	frequency	clock after	timer	00: f _{FPH}		
	System		oscillator.	oscillator.	oscillator	oscillator	release of	0 write:	01: reserved	b	
SYSCR0	clock	E0H	(fc)	(fs)	(fc) after	(fs) after	STOP	Don't care	10: fc/16		
	control				release	release of	Mode.	1 write:	11: Reserve	ed	
	register 0		1: Oscillation	1: Oscillation		STOP	0: fc	start timer			
					Mode.	Mode.	1: fs	0 read: end			
					0: Stopped	0: Stopped		warm-up			
					1: Oscillation	1: Oscillation		1 read:			
								not end			
							0)(00)(warm up	05454	05400	
					/		SYSCK	GEAR2 GEAR1 GEA			
								R/W			
							0	1	0	0	
							System		ncy gear val	ue	
	System						clock	selection. (f 000: fc	C)		
SYSCR1	clock	E1H					selection 0: fc	000: fc 001: fc/2			
	control						1: fs	001.1C/2 010: fc/4			
	register 1						1.13	010.1c/4 011: fc/8			
								100: fc/16			
								101: (Reser	ved)		
								110: (Reser	,		
								111: (Reser	ved)		
			PSENV	/	WUPTM1	WUPTM0	HALTM1	HALTM0	SELDRV	DRVE	
			R/W		R/W	R/W	R/W	R/W	R/W	R/W	
	System		0		1	0	1	1	0	0	
SYSCR2	SYSCR2 clock control E2H		0: Power		Warm-up ti	me	00: Reserv	ed	<drive></drive>	1: Drive the	
01001/2			save mode		00: Reserve		01: STOP r	node	mode	pin in	
	register 2		enable		01: 2 ⁸ /input	frequency	10: IDLE1 1	mode	select	STOP/	
			1: Disable		10: 2 ¹⁴	-	11: IDLE2 1	mode	0: IDLE1	IDLE1mode	
					11: 2 ¹⁶				1: STOP		

(5) Clock gear (1/2)

Symbol	Name	Address	7	6	5	4	3	2	1	0			
			PROTECT	TA3LCDE	AHOLD	TA3MLDE	-	EXTIN	DRVOSCH	DRVOSCL			
			R	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
	EMC		0	0	0	0	0	0	1	1			
EMCCR0		E3H	Protection	LCDC	Address	MLD	Always	1: fc is	fc oscillator	fs oscillator			
Emoorto	register 0	LOIT	flag	Source	hold	source	write 0.	external	drivability	drivebility			
	regiotor e		0: Off	clock	0: Normal	clock		clock.	1: Normal	1: Normal			
			1: On	0: 32 kHz	1: Hold	0: 32 kHz			0: Weak	0: Weak			
				1: TA3OUT		1: TA3OUT							
EMCCR1	EMC control register 1	E4H		0		,		0	Y, 2nd-KEY				
EMCCR2	EMC control	E5H		1st-KEY: EMCCR1 = 5AH, EMCCR2 = A5H in succession write 2nd-KEY: EMCCR1 = A5H, EMCCR2 = 5AH in succession write									
	register 2												
				ENFROM	ENDROM	ENPROM	/	FFLAG	DFLAG	PFLAG			
				R/W	R/W	R/W		R/W	R/W	R/W			
				0	0	0		0	0	0			
	EMC			CS1A	CS2B-2C	CS2A		CS1A	CS2B-2C	CS2A			
EMCCR3	-	E6H		area detect	area detect	area detect		write	write	write			
	register 3			enable	enable	enable		operation	operation	operation			
	0			0: Disable	0: Disable	0: Disable		flag	flag	flag			
				1: Enable	1: Enable	1: Enable		When read	ling Wh	en writing			
								0: Not writt	ien 0: 0	Clear flag			
								1: Written					

Clock gear (1/2)

(6) DFM (clock doubler)

Symbol	Name	Address	7	6	5	4	3	2	1	0
			ACT1	ACT0	DLUPFG	DLUPTM				
			R/W	R/W	R	R/W		/		
	5514		0	0	0	0				
DFMCR0	DFM	E8H	DFM	LUP f _{FPH}	Lockup	Lockup				
	control register 0	EOH	00 STOP	STOP f _{OSCH}	falg	time				
	register o		01 RUN	RUN fOSCH	0: End LUP	0: 2 ¹² /f _{OSCH}				
				STOP fdfm	1: Not end	1: 2 ¹⁰ /f _{OSCH}				
			11 RUN	STOP f _{OSCH}						
			D7	D6	D5	D4	D3	D2	D1	D0
	DFM		R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
DFMCR1	control	E9H	0	0	0	1	0	0	1	1
	register 1	2011				DFM co	orrection			
	logictor i		Input frequency 4 to 9 MHz (at 3.0 to 3.6 V): Write 0BH							
				Inpu	t frequency	4 to 6.75 MH	z (at 2.7 to	3.6 V): Write	0BH	

(7) 8-bit timer

Symbol	Name	Address	7	6	5	4	3	2	1	0				
			TA0RDE	/		/	I2TA01	TA01PRUN	TA1RUN	TAORUN				
	8-bit		R/W	/			R/W	R/W	R/W	R/W				
	timer		0	/			0	0	0	0				
TA01RUN	RUN	100H	Double				IDLE2		un/stop cont	rol				
	register		Buffer				0: Stop	0: Stop and						
			0: Disable 1: Enable				1: Operate	1: Run (Col	: Run (Count up)					
 	8-bit	102H	T. Enable	_										
TAOREG		(Prohibit		W										
	register 0	RMW)		Undefined										
	8-bit	, 103H												
TA1REG		(Prohibit					N							
	register 1	RMW)					efined							
	- 5	,	TA01M1	TA01M0	PWM01	PWM00	TA1CLK1	TA1CLK0	TA0CLK1	TA0CLK0				
	0.64	-			-	ŀ	TAUTIVIT	TAUTIVIO	TWWW		/W	TATOLIN	TAUCENT	TAUCENU
	8-bit timer source		0	0	0	0	0	0	0	0				
TA01MOD	CLK and	104H	00: 8-bit tim	Ţ	00: Reserve	-	00: TA0TR	-	00: TA0IN p	-				
	MODE		01: 16-bit ti		01: 2 ⁶ PW		01: φT1		01: φT1					
	NODE			10: 8-bit PP	-	10: 2 ⁷		10:		10:				
			11: 8-bit PV	VM	11: 2 ⁸		11:	1	11: φT16	1				
							TA1FFC1	TA1FFC0	TA1FFIE	TA1FFIS				
	8-bit	105H					R	/W	R	/W				
TA1FFCR	timer	(Prohibit					1	1	0	0				
TATEFOR	IA1FFCR flip-flop						00: Invert T		1: TA1FF	0: TMRA0				
	control	RMW)					01: Set TA1 10: Clear T		invert enable	1: TMRA1 inversion				
							11: Don't ca		enable	1117612101				

(7–2) TMRA23

Symbol	Name	Address	7	6	5	4	3	2	1	0				
			TA2RDE				I2TA23	TA23PRUN	TA3RUN	TA2RUN				
	8-bit		R/W	/		/	R/W	R/W	R/W	R/W				
	timer		0				0	0	0	0				
TA23RUN	RUN register	108H	Double buffer 0: Disable 1: Enable				IDLE2 0: Stop 1: Operate	8-bit timer r 0: Stop and 1: Run (Cou		rol				
	8-bit	10AH		-										
TA2REG	timer	(Prohibit		W										
	register 0	RMW)		Undefined										
	8-bit	10BH												
TA3REG	timer	(Prohibit				١	Ν							
	register 1	RMW)		Undefined										
			TA23M1	TA23M0	PWM21	PWM20	TA3CLK1	TA3CLK0	TA2CLK1	TA2CLK0				
	8-bit					R	R/W							
TAGAMOD	timer	10CH	0	0	0	0	0	0	0	0				
TA23MOD	source CLK and MODE	IUCH	00: 8-bit tim 01: 16-bit ti 10: 8-bit PF 11: 8-bit PV	mer PG	00: Reserve 01: 2 ⁶ PW 10: 2 ⁷ 11: 2 ⁸		00: TA2TR 01: φT1 10: φT16 11: φT256	G	00: Reserve 01:	ed				
			/	/		/	TA3FFC1	TA3FFC0	TA3FFIE	TA3FFIS				
	8-bit	10DH					R	/W	R	/W				
	timer	-					1	1	0	0				
TA3FFCR	flip-flop control	(Prohibit RMW)					00: Invert T 01: Set TA3 10: Clear T 11: Don't ca	BFF A3FF	1: TA3FF invert enable	0: TMRA2 1: TMRA3 inversion				

(8) UART/serial channel (1/2)

(8-1) UART/SIO channel 0

Symbol	Name	Address	7	6	5	4	3	2	1	0
	Serial	200H	RB7/TB7	RB6/TB6	RB5/TB5	RB4/TB4	RB3/TB3	RB2/TB2	RB1/TB1	RB0/TB0
SC0BUF	channel 0	(Prohibit			R (Receiving)/V	V (Transmiss	sion)		
	buffer	RMW)				Unde	efined			
			RB8	EVEN	PE	OERR	PERR	FERR	SCLKS	IOC
	Serial		R	R	/W	R (Clea	ared to 0 by r	eading.)	R	/W
SC0CR	channel 0	201H	Undefined	0	0	0	0	0	0	0
	control		Receiving data bit8.	Parity 0: Odd	Parity enable.		1: Error	1	0:SCLK0↑	1: Input
				1: Even	chable.	Over Run	Parity	Framing	1:SCLK0↓	SCLK0 pin
			TB8	CTSE	RXE	WU	SM1	SM0	SC1	SC0
						R	/W			
	Serial		0	0	0	0	0	0	0	0
SC0MOD0	COMODo channel 0 202H mode0		Transfer data bit8.	1: CTS enable	1: Receive enable		00: I/O Inter 01: UART 7 10: UART 8 11: UART 9	bits bits	00: TA0TR0 01: Baud ra 10: Internal 11: Externa SCLK0	te generator clock f _{SYS}
			_	BR0ADDE	BR0CK1	BR0CK0	BR0S3	BR0S2	BR0S1	BR0S0
				R/W						
	Baud rate		0	0	0	0	0	0	0	0
BR0CR	control	203H	Always write 0.	1: (16-K)/16 divided enable	00:		Sett	-	led frequenc to F)	y "N"
	Serial						BR0K3	BR0K2	BR0K1	BR0K0
	channel0							R	/W	
BR0ADD	K setting	204H					0	0	0	0
	register								ncy divisor "h N+(16-K)/16	
			12S0	FDPX0						
	Serial		R/W	R/W				/		
SCONODA		205H	0	0					\square	
SCUIVIODT	channel 0 mode1	20011	IDLE2 0: Stop	Duplex 0: Half						
			1: Operate	1: Full						

(8-2) IrDA

Symbol	Name	Address	7	6	5	4	3	2	1	0
			PLSEL	RXSEL	TXEN	RXEN	SIRWD3	SIRWD2	SIRWD1	SIRWD0
			R/W	R/W	R/W	R/W		R	/W	
	IrDA		0	0	0	0	0	0	0	0
		r	Transmission	Receiving	Transmission	Receiving	Set the effe	ctive SIRRxI	D pulse width	า
OIICOIC	register		pulse width.	data.	0: Disable	0: Disable	Pulse width more than $2x \times$ (set value -			
	register		0: 3/16	0: H pulse	1: Enable	1: Enable	100ns			
			1: 1/16	1: L pulse			Possible: 1 to 14			
							Not possible	e: 0, 15		

Clock gear (2/2)

(8-3) UAR	T/SIO chann	el O	ī	ī	1	ī	ī		ī	
Symbol	Name	Address	7	6	5	4	3	2	1	0
	Serial	208H	RB7/TB7	RB6/TB6	RB5/TB5	RB4/TB4	RB3/TB3	RB2/TB2	RB1/TB1	RB0/TB0
SC1BUF	channel 1	(Prohibit			R (F	Receiving)/W	/ (Transmiss	ion)		
	buffer	RMW)				Unde	efined			
			RB8	EVEN	PE	OERR	PERR	FERR	SCLKS	IOC
	Serial		R	R	/W	R (Clea	red to 0 by r	eading.)	R/	W
SC1CR	channel 1	209H	Undefined	0	0	0	0	0	0	0
COTOR	control	20011	Receiving	Parity	1:Parity		1: Error		0: SCLK1↑	1: Input
	Control		data bit8.	0: Odd	enable	Over run	Parity	Framing	1: SCLK1↓	SCLK1 pin
				1: Even						
			TB8	CTSE	RXE	WU	SM1	SM0	SC1	SC0
						R/	/W			
			0	0	0	0	0	0	0	0
	Serial		Trans-	1: CTS	1: Receive	1: Wakeup	00: I/O inter	face	00: TA0TRO	3
SC1MOD0	channel 1	20AH	mission	enable	enable	enable	01: UART 7 bits		01: Baud rate	
	mode		data bit8.				10: UART 8	bits	generater	
							11: UART 9 bits		10: Internal clock f _{SY}	
									11: External clock	
									SCLK1	
			-	BR1ADDE	BR1CK1	BR1CK0	BR1S3	BR1S2	BR1S1	BR1S0
				i	i	R/	Ŵ		i	
	Baud rate		0	0	0	0	0	0	0	0
BR1CR	control	20BH	Always	1: (16 – K)/16			Sett	•	ed frequency	/ "N"
			write 0.	divided	01:			(0 t	o F)	
				enable	10: φT8					
					11:					
	Serial						BR1K3	BR1K2	BR1K1	BR1K0
BR1ADD	channel 1	20CH							W	
BRIADD	K setting	20011					0	0	0 cy divisor "K	0
	register							•	V+(16-K)/16)	
			I2S1	FDPX1						
			R/W	R/W						
	Serial		0	0		\sim				\sim
SC1MOD1	channel 1	20DH	IDLE2	Duplex						
	mode1		0: Stop	0: Half						
			1: Operate							
			1. Operate	T. FUII						

(9) AD converter

Symbol	Name	Address	7	6	5	4	3	2	1	0		
			EOCF	ADBF	-	-	ITM0	REPEAT	SCAN	ADS		
			F	२	R/W	R/W	R/W	R/W	R/W	R/W		
	AD		0	0	0	0	0	0	0	0		
	MODE register 0	2B0H	AD	AD	Always	Always write	Interrupt in	Repeat	Scan mode	AD		
	register o		conversion	conversion	write 0.	0.	Repeat	mode	specification	conversion		
			end flag	end flag			Mode.	specification	1: Scan	start		
			1: End	1: busy			ADTDOF	1: Repeat		1: Start		
			VREFON	I2AD	/		ADTRGE	ADCH2	ADCH1	ADCH0		
			R/W	R/W			R/W		R/W			
			0	0			0	0	0	0		
	AD		VREF	IDLE2			AD control	Input chann				
ADMOD1	MODE	2B1H		0: Abort			1: Enable	000: AN0 AI				
	register 1		1: VREF on	1: Operate			for	001: AN1 AI				
							external start	010: AN2 AI	$NO \rightarrow ANI \rightarrow NO \rightarrow ANI \rightarrow OO$			
							Start	AN3	$NO \rightarrow AINI -$	\rightarrow ANZ \rightarrow		
								100-111: Re	served			
	AD result		ADR01	ADR00	/		/	\sim	\sim	ADR0RF		
ADREG04L		4 2A0H		२		\sim		\sim	\sim	R		
	low		Unde		/		/		/	0		
	AD result		ADR09	ADR08	ADR07	ADR06	ADR05	ADR04	ADR03	ADR02		
ADREG04H	register 0/4	1 2A1H	7.21.000	7.21.00	7.57.07		R	7.21.0	7.27.00	7.21.02		
	high						efined					
	AD result		ADR11	ADR10						ADR1RF		
ADREG15L	register 1/5	2A2H		R	\backslash			\sim	/	R		
	low	2/ 12/ 1		efined	\sim			\sim	\sim	0		
	AD result		ADR19	ADR18	ADR17	ADR16	ADR15	ADR14	ADR13	ADR12		
ADREG15H	register 1/5	2A3H	7.21110	7.21110	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		R	7.27.11	7.2110	7.21.12		
	high			Undefined								
	AD result		ADR21	ADR20						ADR2RF		
	register 2/6	2A4H		R			\sim			R		
ADRE020E	low	2, ())		efined	\sim		\sim	\sim		0		
			ADR29			ADR26	ADR25	ADR24				
	AD result register 2/6	2A5H	ADR29	ADR28	ADR27		•	ADK24	ADR23	ADR22		
ADREGZON	high	24311					R efined					
	•											
	AD result register 3/7	2A6H	ADR31	ADR30			\sim			ADR3RF		
ADREG37L	low			R afire al						R		
				efined						0		
	AD result	o • =: ·	ADR39	ADR38	ADR37	ADR36	ADR35	ADR34	ADR33	ADR32		
ADREG37H	register 3/7	2A7H					R					
	high					Und	efined					

(10) Watchdog timer

Symbol	Name	Address	7	6	5	4	3	2	1	0
			WDTE	WDTP1	WDTP0		/	I2WDT	RESCR	-
			R/W	R/W	R/W	/	/	R/W	R/W	R/W
			1	0	0	/	/	0	0	0
	WDT		1: WDT	00: 2 ¹⁵ /fsys				IDLE2	1: RESET	Always
WDMOD		300H	enable	01: 2 ¹⁷ /fsys				0: Abort	connect	write 0.
	register			10: 2 ¹⁹ /fsys				1: Operate	internally	
				11: 2 ²¹ /fsys					WDT out	
									to reset	
									pin	
		301H				-	-			
WDCR WDT	WDT	/DT				V	V			
WDCK	control	(Prohibit				-	-			
		RMW)			B1H: V	/DT disable	4EH: W[DT clear		

(11) RTC (Real-time clock)

	Nama		7	6	5	4	3	2	1	0
Symbol	Name	Address								
	0			SE6	SE5	SE4	SE3	SE2	SE1	SE0
SECR	Second	320H					R/W			
	register						Undefined		_	
			0 is read.	40 s	20 s	10 s	8 s	4 s	2 s	1 s
				MI6	MI5	MI4	MI3	MI2	MI1	MIO
MINR	Minute	321H		R/W						
	register				1		Undefined			
			0 is read.	40 min	20 min	10 min	8 min	4 min	2 min	1min
					HO5	HO4	HO3	HO2	HO1	HO0
	Hour			R/W						
HOURR	HOURR	322H				1	Unde	efined	r	
			0 is	read.	20 hour (PM/AM)	10 hour	8 hour	4 hour	2 hour	1 hour
								W2	W1	W0
DAYR	Dov rogister	323H							R/W	
DATK	Day register	3230							Undefined	
					0 is read			W2	W1	W0
					DA5	DA4	DA3	DA2	DA1	DA0
DATER	Date	324H					R/	W		
DATER	register	324日					Unde	efined		
			0 is	read.	20 day	10 day	8 day	4 day	2 day	1 day
			/	/		MO4	MO3	MO2	MO1	MO0
		325H						R/W		
								Undefined		
	Month			0 is read.		10 month	8 month	4 month	2 month	1 month
MONTHR	register			0: Indicat						
	Ũ								for 12 hours	
						0 is read.				1: Indicator
										for 24
							2/50) (FO		hours
		22611	YE7	YE6	YE5	YE4	YE3	YE2	YE1	YE0
VEADD	Year	326H				R/				
YEARR	register		00.00	10	00.000		efined	4	0	4
		Page0	80 year	40 year	20 year	10 year	8 year	4 year	2 year	1 year
┣───		Page1		\sim		read.			Leap yea	ar setting.
		0.071	INTRTC			ADJUST	ENATMR	ENAALM		PAGE
	Page	327H	R/W	>		W		W .	>	R/W
PAGER	register	(Prohibit		\vdash		Undefined		efined	\vdash	Undefined
		(FIOIIIDIC RMW)		0:-	rood	0: Don't coro	Clock	Alarm 0: Disable	0 in road	PAGE
			0: Disable 1: Enable	UIS	read.	Don't care 1: Adjust	0: Disable 1: Enable	0: Disable 1: Enable	0 is read.	setting
┣───			DIS1HZ	DIS16HZ	RSTTMR	RSTALM				
		328H		DIGTORIZ			N –			
	Reset	52011					efined			
RESTR	register	(Prohibit	1Hz	16Hz	1: Clock	1: Alarm		Διωρικά	write 0.	
		RMW)	0: Enable	0: Enable	reset	reset		AiwayS	WITLE U.	
		,	1: Disable	1: Disable	10301	10301				
l			1. DISADIE	1. Disable	1	1	I			

	Melody/al	<u> </u>	lator				1			1
Symbol	Name	Address	7	6	5	4	3	2	1	0
	Alarm-		AL8	AL7	AL6	AL5	AL4	AL3	AL2	AL1
ALM	pattern	330H				R	2/W			-
	register	55011	0	0	0	0	0	0	0	0
	register					Alarm-pa	attern set.			
			FC1	FC0	ALMINV	_	_	_	-	MELALM
			R/	W	R/W	R/W	R/W	R/W	R/W	R/W
	Melody/	331H	0	0	0	0	0	0	0	0
			Free-run co	unter	Alarm		Alwavs	write 0.		Output
MELALMC	alarm		Control.		frequency					frequency
	control		00: Hold		invert.					0: Alarm
	register		01: Restart		1: Invert					1: Melody
		10: Clear							,	
			11: Clear an	nd start						
		ML7	ML6	ML5	ML4	ML3	ML2	ML1	ML0	
	Melody	-			•	R	/W	•	•	•
MELFL	frequency		0	0	0	0	0	0	0	0
	L- register				Melo	dy frequenc	y set. (Low 8	bits)	•	
			MELON				ML11	ML10	ML9	ML8
			R/W	\sim	\sim			R	/W	
			0		\sim	\mathbb{N}	0	0	0	0
	Melody		Melody				Melo	dy frequency	v set. (High	4 bits)
MELFH	frequency	333H	counter					-,) (3	,
	H- register		control.							
			0: Stop and							
			clear							
			1: Start							
					_	IALM4E	IALM3E	IALM2E	IALM1E	IALM0E
	Alarm		\sim	\sim	R/W			R/W	•	
ALMINT	interrupt	334H	\sim	\frown	0	0	0	0	0	0
	enable				Always		ALM4 to INT	ALM0 alarm	-	
register					write 0.					

(12) Melody/alarm generator

(13) MMU

Symbol	Name	Address	7	6	5	4	3	2	1	0
			L0E					L0EA22	L0EA21	L0EA20
			R/W	/	/				R/W	
	LOCAL0		0	/	/			0	0	0
LOCAL0		350H	BANK for					LOCA	L0 area BAN	IK set.
	register		LOCAL0					"000" setting	g is prohibite	d because it
			0: Disable					preten	d COMMON	0 area
			1: Enable			<	<			
			L1E					L1EA23	L1EA22	L1EA21
			R/W						R/W	
	LOCAL1	05411	0					0	0	0
LOCAL1	control	351H	BANK for					LOCA	L1 area BAN	IK set.
	register		LOCAL1					"001" setting	g is prohibite	d because it
			0: Disable					preten	d COMMON	0 area
			1: Enable L2E					105100	105100	105104
								L2EA23	L2EA22	L2EA21
	LOCAL2		R/W			\sim			R/W	
LOCAL2		352H	0					0	0	0
LOOALZ	register	55211	BANK for LOCAL2						L2 area BAN	
	register		0: Disable						g is prohibite	
			1: Enable					preten	d COMMON	0 area
			L3E	/	/	_	L3EA25	L3EA24	L3EA23	L3EA22
			R/W			R/W		R/	W	
	LOCAL3		0	/		0	0	0	0	0
LOCAL3	control	353H	BANK for			Always	0000~001	1: CS2B	•	
	register		LOCAL3			write 0.	0100~011	1: CS2C		
			0: Disable				1000~1111	: Set prohib	bition	
			1: Enable					•		

(14) LCD controllers

Symbol	Name	Address	7	6	5	4	3	2	1	0	
			SAL15	SAL14	SAL13	SAL12		_	_	MODE	
				R/		_	\sim	R/W	R/W	R/W	
	LCD start		0	0	0	0	\sim	0	0	0	
LCDSAL	address	360H	SR mo	ode: Start ac	ldress A15 t	o A12.		Always	Always	Mode	
	register low							write 0.	write 0.	select	
	1010									0: RAM	
										1: SR	
	LCD start		SAL23	SAL22	SAL21	SAL20	SAL19	SAL18	SAL17	SAL16	
LCDSAH	address	361H				R	/W				
LODGAII	register	50111	0	0	0	0	0	0	0	0	
	high				SR m	ode: Start A	ddress A23 t	o A16.			
			COM3	COM2	COM1	COM0	SEG3	SEG2	SEG1	SEG0	
						R	/W	1	1		
			0	0	0	0	0	0	0	0	
	LCD size			CD commo	n		SR mode L	.CD Segmen	ıt		
LCDSIZE	register	362H	0000: 64,				0000: 32,				
	-			0001: 68, 0110: 144			0001: 64, 0110: 240				
			0010: 80,				0010: 80,				
			0011: 100,				0011: 120,				
			0100: 120,		Other: R			Other: Rese		07457	
			LCDON	-	_	BUS1	BUS0 W	MMULCD	FP8	START	
			0	0	0			0	0	0	
			0 DOFF pin	0	0	0 SR mode:	0	0 Type	0 Set bit8 for	0 SR mode:	
	LCD		0: Off	Always write 0.	Always write 0.	Data-bus w	idth coloct	selection		Sk mode: Start	
LCDCTL	control	363H	1: On	write 0.	white 0.	00: 8 bits B		LCDD	f _{FP}	address.	
	register		1. 011			01: 4 bits N	•	(build in		1: START	
	U					10: Reserv		RAM)			
						11: Reserv	ed	0:			
								Sequential			
								1: Random			
	LCD		FP7	FP6	FP5	FP4	FP3	FP2	FP1	FP0	
LCDFFP	frame	364H				R	W				
LODFFF	frequency	30411	0	0	0	0	0	0	0	0	
	register					Set bit7 to	bit0 for f _{FP}				
			-	-	_			RAMBUS	AC1	AC0	
			R/W	R/W	R/W			R/W	R/W	R/W	
	LCD		0	0	0			0	0	0	
LCDCTL2	control	366H	Always writ	e to "111".				0: Byte	00: Type A		
	register 2							1: Word	01: Type B		
									10: Type C		
									11: Reserve	ed	

(15) Touch screen interface

Symbol	Name	Address	7	6	5	4	3	2	1	0
			TSI7		PTST	TWIEN	PYEN	PXEN	MYEN	MXEN
			R/W	/	R	R/W	R/W	R/W	R/W	R/W
	Touch-		0		0	0	0	0	0	0
TSICR0	screen	2BH	0: Disable		Detection	INT2	SPY	SPX	SMY	SMX
1010110	control		1: Enable		condition	interrupt	0: OFF	0: OFF	0: OFF	0: OFF
	register				0: No touch	control	1: ON	1: ON	1: ON	1: ON
					1: touch	0: Disable				
						1: Enable				
			DBC7	DB1024	DB256	DB64	DB8	DB4	DB2	DB1
			R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	Debounce-		0	0	0	0	0	0	0	0
TSICR1	circuit	2CH	0: Disable	1024	256	64	8	4	2	1
	control		1: Enable		De-boun	ce time is se	et by "(N × 64	– 16)/f _{SYS} " -	– formula	
	register				"N" is s	sum of numb	per which is s	et to 1 in bite	6 to bit0	

6. Points of Note and Restrictions

(1) Notation

- a. The notation for built-in I/O registers is as follows register symbol <Bit symbol>
 - e.g.) TA01RUN<TA0RUN> denotes bit TA0RUN of register TA01RUN.
- b. Read-modify-write instructions

An instruction in which the CPU reads data from memory and writes the data to the same memory location in one instruction.

Example 1:	SET	3, (TA01RUN) Set bit 3 of TA01RUN.
------------	-----	------------------------------------

Example 2: INC 1, (100H) ... Increment the data at 100H.

• Examples of read-modify-write instructions on the TLCS-900

Exchange instruction

EX (mem), R

Arithmetic operations

ADD	(mem), R/#	ADC	(mem), R/#
SUB	(mem), R/#	SBC	(mem), R/#
INC	#3, (mem)	DEC	#3, (mem)

Logic operations

AND	(mem), R/#	OR	(mem), R/#
XOR	(mem), R/#		

Bit manipulation operations

STCF	#3/A, (mem)	RES	#3, (mem)
SET	#3, (mem)	CHG	#3, (mem)
TSET	#3, (mem)		

Rotate and shift operations

RLC	(mem)	RRC	(mem)
RL	(mem)	\mathbf{RR}	(mem)
SLA	(mem)	SRA	(mem)
SLL	(mem)	SRL	(mem)
RLD	(mem)	RRD	(mem)

c. $\,$ fc, fs, fFPH, fSYS and one state $\,$

The clock frequency input on pins X1 and 2 is called for SCH. The clock selected by DFMCR0<ACT1:0> is called fc.

The clock selected by SYSCR1<SYSCK> is called fFPH. The clock frequency give by fFPH divided by 2 is called fSYS.

One cycle of fSYS is referred to as one state.

- (2) Points to note
 - a. AM0 and AM1 pins

This pin is connected to the VCC or the VSS pin. Do not alter the level when the pin is active.

b. EMU0 and EMU1

Open pins.

c. Warm-up counter

The warm-up counter operates when STOP mode is released, even if the system is using an external oscillator. As a result a time equivalent to the warm-up time elapses between input of the release request and output of the system clock.

d. Programmable pull-up resistance

The programmable pull-up resistor can be turned on/off by a program when the ports are set for use as input ports. When the ports are set for use as output ports, they cannot be turned on/off by a program.

The data registers (e.g., Px) are used to turn the pull-up/pull-down resistors on/off. Consequently Read-Modify-write instructions are prohibited.

e. Watchdog timer

The watchdog timer starts operation immediately after a Reset is released. When the watchdog timer is not to be used, disable it.

f. AD converter

The string resistor between the VREFH and VREFL pins can be cut by a program so as to reduce power consumption. When STOP mode is used, disable the resistor using the program before the HALT instruction is executed.

g. CPU (micro DMA)

Only the LDC cr, r and LDC r, cr instructions can be used to access the control registers in the CPU (e.g., The transfer source address register (DMASn)).

h. Undefined SFR

The value of an undefined bit in an SFR is undefined when read.

i. POP SR instruction

Please execute the POP SR instruction during DI condition.

j. Releasing the HALT mode by requesting an interruption

Usually, interrupts can release all halts status. However, the interrupts (INT0 to INT3, INTKEY, INTRTC, INTALM0 to INTALM4) which can release the HALT mode may not be able to do so if they are input during the period CPU is shifting to the HALT mode (for about 5 clocks of fFPH) with IDLE1 or STOP mode (IDLE2 is not applicable to this case). (In this case, an interrupt request is kept on hold internally)

If another interrupt is generated after it has shifted to HALT mode completely, halt status can be released without difficulty. The priority of this interrupt is compared with that of the interrupt kept on hold internally, and the interrupt with higher priority is handled first followed by the other interrupt.

7. Package Dimensions

P-LQFP100-1414-0.50F

Unit: mm

