

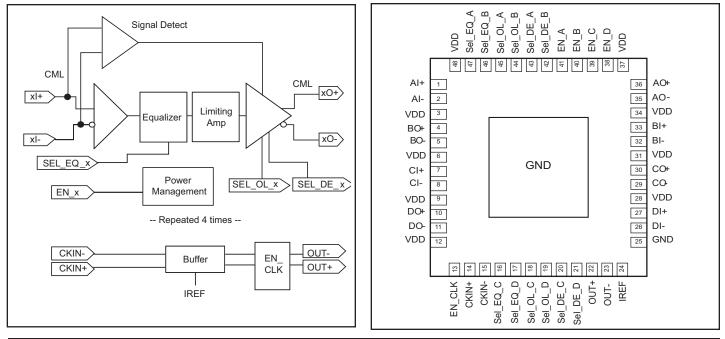
PI2EQX3232B

3.2Gbps, 2-Port, SATAi/m, Serial Re-Driver

Features

- Supports data rates up to 3.2Gbps on each lane
- Adjustable Transmiter De-Emphasis & Amplitude
- Adjustable Receiver Equalization
- Spectrum Reference Clock Buffer Output
- Optimized for SATA*i/m* applications
- Input signal level detection & output squelch on all channels
- 100-Ohm Differential CML I/O's
- Low Power (100mW per Channel)
- Standby Mode Power Down State
- V_{DD} Operating Range: 1.8V +/-0.1V
- Packaging (Pb-free & Green):48-contact TQFN

Description


Pericom Semiconductor's PI2EQX3232B is a low power, signal Re-Driver. The device provides programmable equalization, amplification, and de-emphasis, to optimize performance over a variety of physical mediums by reducing Inter-Symbol Interference (ISI). PI2EQX3232B supports four 100-Ohm Differential CML data I/O's between the Protocol ASIC to a switch fabric, across a backplane, or to extend the signals across other distant data pathways on the user's platform.

The integrated equalization circuitry provides flexibility with signal integrity of the signal before the Re-Driver. Whereas the integrated de-emphasis circuitry provides flexibility with signal integrity of the signal after the Re-Driver.

A low-level input signal detection and output squelch function is provided for all four channels. Each channel operates fully independantly. When a channel is enabled ($EN_x=1$) and operating, that channels input signal level (on xI+/-) determines whether the output is enabled. If the input level of the channel falls below the active threshold level (Vth-) then the output driver switches off, and the pin is pulled to VDD via a high impedance resistor. If the input level of the channel falls below the active threshold level (Vth-) then the outputs are driven to the common mode voltage.

In addition to providing signal re-conditioning, Pericom's PI2EQX3232B also provides power management Stand-by mode operated by an Enable pin.

Pin Description

Block Diagram

Pin Description

Pin #	Pin Name	I/O	Description		
1	AI+	Ι	Positive CML Input Channel A with internal 50Ω pull down		
2	AI-	Ι	Negative CML Input Channel A with internal 50 Ω pull down		
36	AO+	0	Positive CML Output Channel A internal 50 Ω pull up to VDD during normal operation and 2k Ω when EN_A=0. Drives to output common mode voltage when input is $.$		
35	AO-	0	Negative CML Output Channel A with internal 50 Ω pull up to VDD during normal operation and 2k Ω when EN_A=0. Drives to output common mode voltage when input is $.$		
33	BI+	Ι	Positive CML Input Channel B with internal 50 Ω pull down		
32	BI-	Ι	Negative CML Input Channel B with internal 50Ω pull down		
4	BO+	0	Positive CML Output Channel B with internal 50 Ω pull up to VDD during normal operation and 2k Ω when EN_B=0. Drives to output common mode voltage when input is $.$		
5	BO-	0	Negative CML Output Channel B with internal 50 Ω pull up to VDD during normal operation and 2k Ω when EN_B=0. Drives to output common mode voltage when input is $.$		
7	CI+	Ι	Positive CML Input Channel C with internal 50 Ω pull down		
8	CI-	Ι	Negative CML Input Channel C with internal 50Ω pull down		
14 15	CKIN+ CKIN-	I I	Differential Input Reference Clock		
30	CO+	0	Positive CML Output Channel C with internal 50 Ω pull up to VDD during norm operation and 2k Ω when EN_C=0. Drives to output common mode voltage when input is $.$		
29	CO-	0	Negative CML Output Channel C with internal 50 Ω pull up to VDD during norm operation and 2k Ω when EN_C=0. Drives to output common mode voltage when input is $.$		
27	DI+	Ι	Positive CML Input Channel D with internal 50Ω pull down		
26	DI-	Ι	Negative CML Input Channel D with internal 50 Ω pull down		
10	DO+	0	Positive CML Output Channel D with internal 50 Ω pull up to VDD during normal operation and 2k Ω when EN_D=0. Drives to output common mode voltage when input is $.$		
11	DO-	0	Negative CML Output Channel C with internal 50 Ω pull up to VDD during normal operation and 2k Ω when EN_D=0. Drives to output common mode voltage when input is $.$		
41, 40, 39, 38	EN_ [A,B,C,D]	Ι	Active HIGH LVCMOS signal input pins, when HIGH, it enables the CML output. When LOW, it disables the CML output (x0+, x0-) to HI-z state. Both x0+ & x0- outputs will be pulled up to V_{DD} by internal $2k\Omega$ resistor.		
13	EN_CLK	Ι	Active HIGH LVCMOS signal input pin. When HIGH, it enables the OUTx+/OUTx outputs. When LOW, it disables these outputs, with 50Ω to ground termination.		
25, Center Pad	GND	PWR	Supply Ground		
24	IREF	0	External 475Ω resistor connection to set the differential output current		
22 23	OUT0+ OUT1-	0 0	Differential Reference Clock Output		
47	SEL_EQ_A	Ι			
46	SEL_EQ_B	Ι	Selection pins for equalizer (see Amplifier Configuration Table)		
16	SEL_EQ_C I w/ 50kΩ internal pull up				
17	SEL EQ D	I			

Pin Description	n (Continued)			
Pin # Pin Name I/O		I/O	Description	
45	SEL_OL_A	Ι		
44	SEL_OL_B	Ι	Selection pins for amplifier (see Amplifier Configuration Table)	
18	SEL_OL_C	Ι	w/ 50k Ω internal pull up	
19	SEL_OL_D	Ι		
43	SEL_DE_A	Ι		
42	SEL_DE_B	Ι	Selection pins for De-Emphasis (See De-Emphasis Configuration Table)	
20	SEL_DE_C	Ι	w/ 50k Ω internal pull up	
21	SEL_DE_D	Ι		
3,6,9,12,28, 31,34,37,38	V _{DD}	PWR	1.8V Supply Voltage	

Output Swing Control

o ang at a ming o on the or						
SEL3_[A:D]	Swing					
0	1x					
1	1.2x					

Output De-emphasis Adjustment

SEL5_[A:D]	De-emphasis
0	0dB
1	-3.5dB

Equalizer Selection

SEL0_[A:D]	Compliance Channel
0	[0:3.5dB] @ 1.6 GHz
1	[0:7.5dB] @ 1.6 GHz

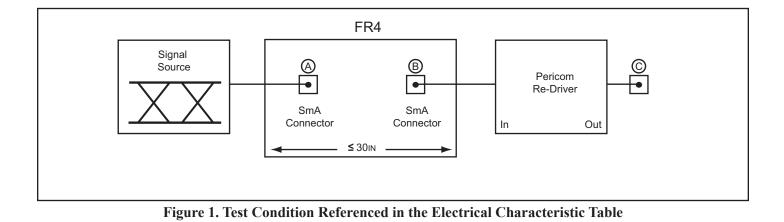
Maximum Ratings

(Above which useful life may be impaired. For user guidelines, not tested.)

Storage Temperature	65°C to +150°C
Supply Voltage to Ground Potential	0.5V to +2.5V
DC SIG Voltage	$0.5V$ to V_{DD} +0.5V
Current Output	25mA to +25mA
Power Dissipation Continous	
Operating Temperature	0 to +70°C

Note:

Stresses greater than those listed under MAXIMUM RAT-INGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.



AC/DC Electrical Characteristics (V_{DD} = 1.8 ±0.1V)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units	
D		EN = LVCMOS Low			0.1	W	
Ps	Supply Power	EN = LVCMOS High			0.6		
	Latency	From input to output		2.0		ns	
CML Receive	r Input						
RL _{RX}	Return Loss	50 MHz to 1.25 GHz		12		dB	
V _{RX-DIFFP-P}	Differential Input Peak-to- peak Voltage		0.200			V	
V _{RX} -CM-ACP	AC Peak Common Mode Input Voltage				150	mV	
V _{TH} -	Signal Detect Threshold	$E_{N_X} = High$	50		200	mVp-p	
Z _{RX-DIFF-DC}	DC Differential Input Impedance		80	100	120	Ω	
Z _{RX-DC}	DC Input Impedance		40	50	60]	
Equalization							
J _{RS}	Residual Jitter ^(1,2)	Total Jitter			0.3	Ulnn	
		Deterministic jitter			0.2	Ulp-p	
J _{RM}	Random Jitter ^(1,2)			1.5		psrms	

Notes

2. Total jitter does not include the signal source jitter. Total jitter (TJ) = (14.1 × RJ + DJ) where RJ is random RMS jitter and DJ is maximum deterministic jitter. Signal source is a K28.5 ± pattern (00 1111 1010 11 0000 0101) for the deterministic jitter test and K28.7 (0011111000) or equivalent for random jitter test. Residual jitter is that which remains after equalizing media-induced losses of the environment of Figure 1 or its equivalent. The deterministic jitter at point B must be from media-induced loss, and not from clock source modulation. Jitter is measured at 0V at point C of Figure 1.

^{1.} K28.7 pattern is applied differentially at point A as shown in Figure 1.

AC/DC Electrical Characteristics (TA = 0 to $70^{\circ}C$)

Symbol	Parameter	Conc	litions	Min.	Тур.	Max.	Units	
CML Transmitte	er Output (100 Ω differential)							
V	Output Voltage Swing; V _{TX-D+}	Differential	Swing = 1.0x	200		375		
V _{DIFFP}	- V _{TX-D-}	Swing	Swing = $1.2x$	250		450	mVp-p	
	Differential Peak-to-peak Ouput	Swing = $1.0x$		400		750		
V _{TX} -DIFFP-P	Voltage; $V_{TX-DIFFP-P} = 2 * $ $V_{TX-D+} - V_{TX-D-} $	Swing = 1.2x		500		900	mV	
t _F , t _R	Transition Time	20% to 80% ⁽¹⁾				150	ps	
Z _{OUT}	Output resistance	Single ended		40	50	60	Ω	
Z _{TX-DIFF-DC}	DC Differential TX Impedance			80	100	120	Ω	
C _{TX}	AC Coupling Capacitor			75		200	nF	
LVCMOS Contr	ol Pins							
V _{IH}	Input High Voltage			$0.65 \times V_{DD}$		V _{DD}	V	
V _{IL}	Input Low Voltage					$0.35 \times V_{DD}$	Ň	
I _{IH}	Input High Current					250		
I _{IL}	Input Low Current					500	μA	

Note:

1. Using K28.7 (0011111000) pattern)

2. When 1.0x swing selected

3. When 1.2x swing selected

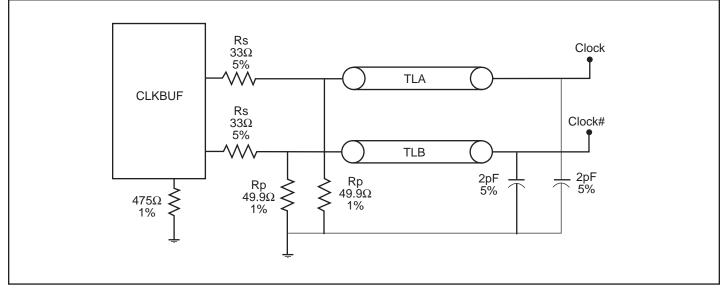
AC Switching Characteristics for Clock Buffer $(V_{DD} = 1.8 \pm 0.1 V)^{(3)}$

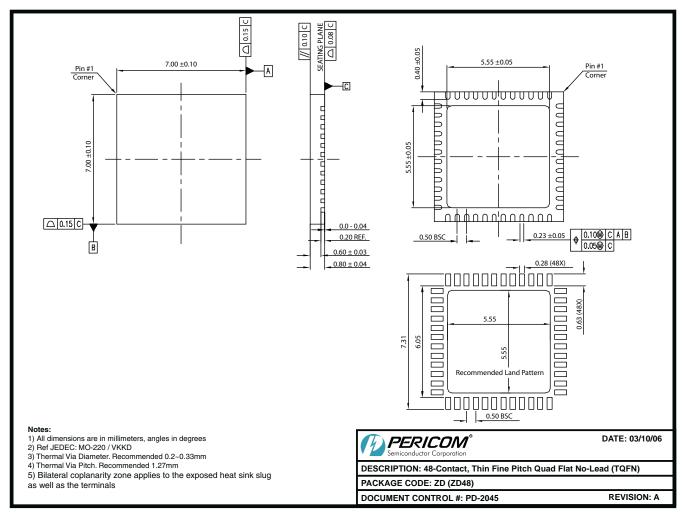
Symbol	Parameters	Min	Max.	Units	Notes
T _{rise} / T _{fall}	Rise and Fall Time (measured between $0.175V$ to $0.525V$) ⁽¹⁾	125	525		1
$\Delta T_{rise} / \Delta T_{fall}$	Rise and Fall Time Variation		75	ps	1
V _{HIGH}	Voltage High including overshoot	660	900		1
V _{LOW}	Voltage Low including undershoot	-150			1
V _{CROSS}	Absolute crossing point voltages	-200	550	mV	1
ΔV_{CROSS}	Total Variation of Vcross over all edges	200	250		1
T _{DC}	Duty Cycle (input duty cycle = 50%) ⁽²⁾	45	55	%	2

Notes:

- 1. Measurement taken from Single Ended waveform.
- 2. Measurement taken from Differential waveform.
- 3. Test configuration is $R_S = 33.2\Omega$, $Rp = 49.9\Omega$, and 2pF.

Configuration Test Load Board Termination




Figure 2. Configuration test load board termination

Note:

• TLA and TLB are 3" transmission lines.

Packaging Mechanical: 48-Contact TQFN (ZD48)

06-0252

Ordering Information

Ordering Number	Package Code	Package Description		
PI2EQX3232BZDE	ZD	Pb-free & Green 48-Contact TQFN		

Notes:

• Thermal characteristics can be found on the company web site at www.pericom.com/packaging/

• E = Pb-free and Green

• X suffix = Tape/Reel