

0.5-μm 2MI Process Cross Section

General Description

The 0.5-µm Heterostructure FET (HFET) process is a depletion-mode 2MI (2-metal-interconnect) process for applications through 20 GHz. The HFET I-V characteristics provide for high power, high linearity, extraordinary transconductance uniformity and high breakdown voltages. Passives include 2 thick-metal interconnect layers, precision TaN resistors, GaAs resistors, MIM capacitors and through-substrate vias. The capacitor-over-via process aides in size compaction and offers excellent grounds at higher frequencies.

Features

- 0.5-µm amplifier transistors
- 0.5-µm switch transistors
- 0.5-µm diodes
- Device passivation
- High-Q passives
- MIM capacitors
- TaN resistors
- GaAs resistors
- 2 metal layers
- Air bridges
- Substrate vias
- Operation up to V_d = 10 V

Applications

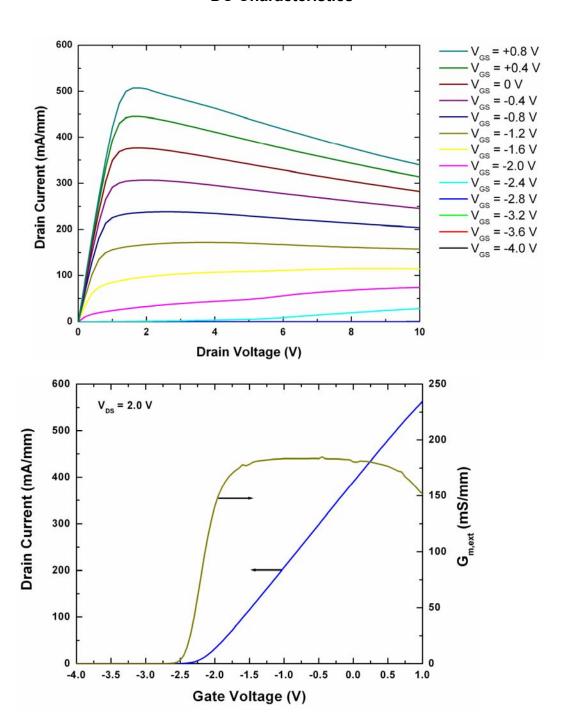
- Up to 20 GHz
- Communications
- Space
- Military
- Power amplifiers
- Driver amplifiers
- AGC amplifiers
- Limiting amplifiers
- Transimpedance amplifiers

Phone: 972-994-8200

Foundry: 972-994-4545

Email: info@triquint.com

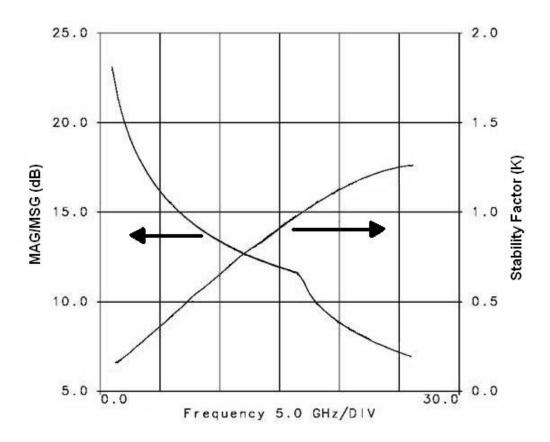
Differential amplifiers



0.5-µm HFET Process Details				
Element	Parameter	Typical Value	Units	
FETs	I _{dss}	225	mA/mm	
	G _m	165	mS/mm	
	V_{bd}	-22	V	
	V _p	-1.85	V	
MIM capacitors	density	300	pF/mm ²	
Capacitors over vias		yes		
TaN resistors	sheet resistance	50	Ω/sq	
GaAs resistors	sheet resistance	110	Ω/sq	
Vias		yes		
Substrate	thickness	100	μm	

FET Models Available (Noise)				
Gate Pitch (µm)	Gate Fingers	FET Sizes (µm)		
25 40	12	1200		
26 26	4	300		
38 38	10	600		

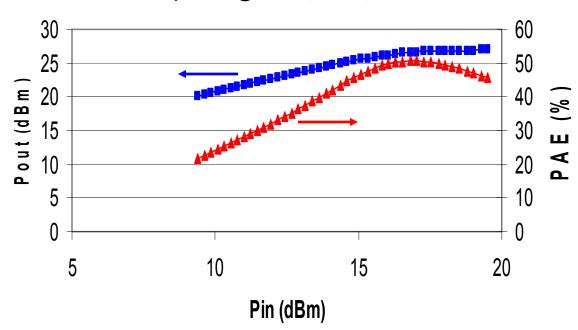
0.5-µm HFET 2MI DC Characteristics


Foundry: 972-994-4545 Email: info@triquint.com

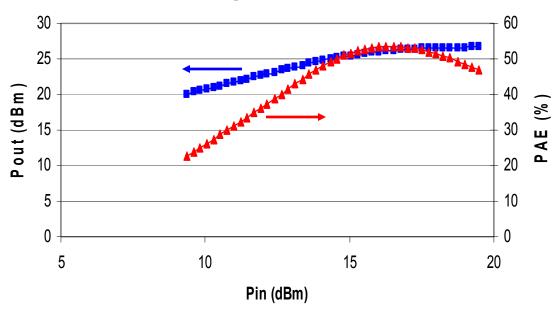
Phone: 972-994-8200

Page 3 of 6; 1/30/06 Specifications are subject to change.

0.5-μm HFET 2MI Maximum Available Gain/Stable Gain (MAG/MSG) 10 x 60 μm FET @ 8 Volts, 75 mA/mm


Application Examples

Ultra-Linear Power Amplifier TGA2801D-SG:


This amplifier provides a flat gain along with ultra-low distortion. It also provides a high output power with a low DC power consumption. This amplifier is ideally suited for use in CATV distribution systems or other applications requiring high output powers and extremely low distortion.

0.5-μm HFET 2MI Power Tuned Load 600 μm FET @ 8 Volts, 45 mA, 10 GHz

0.5-μm HFET 2MI Efficiency Tuned Load 600 μm FET @ 8 Volts, 45 mA, 10 GHz

Prototyping and Development

- Prototype Wafer Option (PWO)
 - Customer-specific masks
 - Customer schedule
 - 2 wafers delivered
 - Backside vias included
 - PCM (process control monitor) qualified wafers

Design Tools

- Device libraries of circuit elements:
 - FETs
 - Thin-film and implanted resistors
 - Capacitors
 - Inductors
- Agilent ADS design kit
- MASC Library
- AWR Microwave Office library

Training

- GaAs design classes:
 - Half-day introduction upon request
 - 3 day technical training upon request at the TriQuint Texas facility

Process Status

 0.5-µm Heterostructure FET (HFET) is fully released and qualified

Contact TriQuint or visit

http://www.triquint.com/company/quality/

for more information on quality and reliability.

Applications Services

- Tiling of GDSII stream files including PCM (process control monitor)
- Design rule checking
- Layout versus schematic checking
- Engineering:
 - On-wafer DC test
 - On-wafer RF test
 - Thermal analysis
 - Yield enhancement
- Part qualification
- Failure analysis

Manufacturing Services

- Mask making
- Wafer thinning
- Wafer dicing
- Substrate vias
- DC die-sort testing
- RF on-wafer testing
- Final visual testing