

2-Mbit (128K x 16) Pseudo Static RAM

Features

• Wide voltage range: 2.70V-3.30V

 Access Time: 55 ns, 70 ns · Ultra-low active power

Typical active current: 1mA @ f = 1 MHz

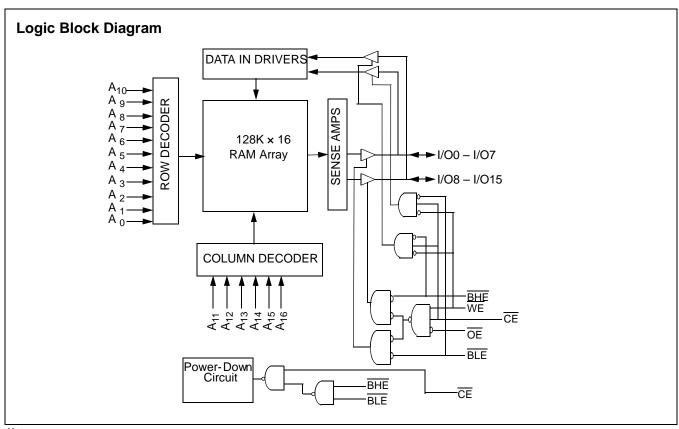
— Typical active current: 14 mA @ f = f_{max} (For 55-ns)

— Typical active current: 8 mA @ f = f_{max} (For 70-ns)

Ultra low standby power

· Automatic power-down when deselected

CMOS for optimum speed/power

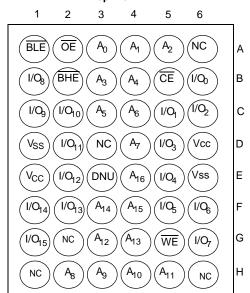

Offered in a 48-ball BGA Package

Functional Description^[1]

The CYK128K16MCCB is a high-performance CMOS Pseudo Static RAM organized as 128K words by 16 bits that supports an asynchronous memory interface. This device features advanced circuit design to provide ultra-low active current. This is ideal for providing More Battery Life™ (MoBL®) in portable applications such as cellular telephones. The device can be put into standby mode when deselected (CE HIGH or both BHE and BLE are HIGH). The input/output pins (I/O₀ through I/O₁₅) are placed in a high-impedance state when the chip is deselected (CE HIGH), or when the outputs are disabled (OE HIGH), or when both Byte High Enable and Byte Low Enable are disabled (BHE, BLE HIGH), or during a write operation (CE LOW and WE LOW).

Writing to the device is accomplished by asserting Chip Enable (CE LOW) and Write Enable (WE) input LOW. If Byte Low Enable (BLE) is LOW, then data from I/O pins (I/On through I/O7), is written into the location specified on the address pins (A₀ through A₁₇). If Byte High Enable (BHE) is LOW, then data from I/O pins (I/O₈ through I/O₁₅) is written into the location specified on the address pins (A₀ through

Reading from the device is accomplished by asserting Chip Enable (CE LOW) and Output Enable (OE) LOW while forcing the Write Enable (WE) HIGH. If Byte Low Enable (BLE) is LOW, then data from the memory location specified by the address pins will appear on I/O₀ to I/O₇. If Byte High Enable (BHE) is LOW, then data from memory will appear on I/O₈ to I/O₁₅. Refer to the truth table for a complete description of read and write modes.


^{1.} For best practice recommendations, please refer to the Cypress application note "System Design Guidelines" on http://www.cypress.com.

Pin Configuration^[2, 3, 4]

Top View

Product Portfolio

					Power Dissipation				n	
					(Operating I _{CC} (mA)				
	V	V _{CC} Range (V)		Speed	f = 1	f = 1MHz			Standby	I _{SB2} (μ A)
Product	Min.	T yp. ^[5]	Max.	(ns)	Typ. ^[5]	Max.	Typ. ^[5]	Max.	Typ. ^[5]	Max.
CYK128K16MCCB	2.70	3.0	3.30	55	1	5	14	22	9	40
				70	1		8	15		

- Notes:

 2. Ball D3, H1, G2 and ball H6 for the FBGA package can be used to upgrade to a 4-Mbit, 8-Mbit, 16-Mbit and a 32-Mbit density, respectively.

 3. NC "no connect"—not connected internally to the die.

 4. DNU (Do Not Use) pins have to be left floating or tied to Vss to ensure proper application.

 5. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ.)}, T_A = 25°C.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to + 150°C Ambient Temperature with Power Applied......–55°C to + 125°C Supply Voltage to Ground Potential -0.4V to 4.6V DC Voltage Applied to Outputs in High-Z State $^{[6,\ 7,\ 8]}$-0.4V to 3.7V DC Input Voltage^[6, 7, 8]-0.4V to 3.7V

Output Current into Outputs (LOW)	20 mA
Static Discharge Voltage(per MIL-STD-883, Method 3015)	. > 2001V
Latch-up Current	> 200 mA

Operating Range

Device	Range	Ambient Temperature	V _{CC}
CYK128K16MCCB	Industrial	–25°C to +85°C	2.70V to 3.30V

Electrical Characteristics (Over the Operating Range)

				CYK12	8K16M	CCB-55	CYK12	28K16M	CCB-70	
Parameter	Description	Test Condition	Min.	Typ. ^[5]	Max.	Min.	Typ . ^[5]	Max.	Unit	
V _{CC}	Supply Voltage			2.7	3.0	3.3	2.7	3.0	3.3	V
V _{OH}	Output HIGH Voltage	$I_{OH} = -0.1 \text{ mA}$	$V_{CC} = 2.70V$	V _{CC} - 0.4			V _{CC} - 0.4			V
V _{OL}	Output LOW Voltage	I _{OL} = 0.1 mA	$V_{CC} = 2.70V$			0.4			0.4	V
V _{IH}	Input HIGH Voltage	V _{CC} = 2.7V to 3.3V		0.8 * V _{CC}		V _{CC} + 0.4V	0.8 * V _{CC}		V _{CC} + 0.4V	V
V _{IL}	Input LOW Voltage			-0.4		0.4	-0.4		0.4	V
I _{IX}	Input Leakage Current	$GND \le V_{IN} \le V_{CC}$	$SND \le V_{IN} \le V_{CC}$			+1	-1		+1	μА
I _{OZ}	Output Leakage Current	$GND \le V_{OUT} \le V_{CC}$, Outp	GND ≤ V _{OUT} ≤ V _{CC} , Output Disabled			+1	-1		+1	μА
I _{CC}	V _{CC} Operating Supply	$f = f_{MAX} = 1/t_{RC}$	$V_{CC} = V_{CC_{max}}$		14	22		8	15	mA
	Current	f = 1 MHz	I _{OUT} = 0 mA CMOS levels		1	5		1	5	mA
I _{SB1}	Power-Down Current	$\begin{array}{l} \textbf{CE} \geq \textbf{V}_{CC} - 0.2 \textbf{V} \\ \textbf{V}_{\text{IN}} \geq \textbf{V}_{CC} - 0.2 \textbf{V}, \textbf{V}_{\text{IN}} \leq \\ 0.2 \textbf{V}) \textbf{f} = \textbf{f}_{\text{MAX}} (\text{Address} \\ \underline{\text{and}} \underline{\text{Data}} \underline{\text{Only}}), \textbf{f} = \underline{\textbf{0}} \\ (\overline{\text{OE}}, \overline{\text{WE}}, \overline{\text{BHE}} \text{and} \overline{\text{BLE}}), \\ \textbf{V}_{CC} = 3.30 \textbf{V} \end{array}$	V _{CC} = 3.3V		40	250		40	250	μА
I _{SB2}	Power-Down Current	$\overline{\text{CE}} \ge V_{\text{CC}} - 0.2V$ $V_{\text{IN}} \ge V_{\text{CC}} - 0.2V \text{ or } V_{\text{IN}} \le 0.2V, f = 0, V_{\text{CC}} = 3.30V$	V _{CC} = 3.3V		9	40		9	40	μА

Capacitance^[9]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	8	pF
C _{OUT}	Output Capacitance	$V_{CC} = V_{CC(typ)}$	8	pF

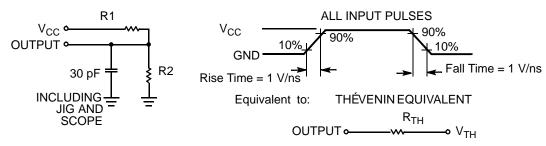
Thermal Resistance^[9]

Parameter	Description	Test Conditions	BGA	Unit
Θ_{JA}	Thermal Resistance (Junction to Ambient)	Test conditions follow standard test methods and procedures for measuring thermal impedance, per EIA	55	°C/W
$\Theta_{\sf JC}$	Thermal Resistance (Junction to Case)	1/ JESD51.	17	°C/W

Notes:

- Notes:

 (a) V_{IL(MIN)} = -0.5V for pulse durations less than 20 ns.


 V_{IH(Max)} = V_{CC} + 0.5V for pulse durations less than 20 ns.

 Overshoot and undershoot specifications are characterized and are not 100% tested.

 Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

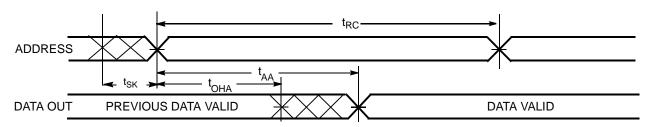
Parameters	3.0V V _{CC}	Unit
R1	22000	Ω
R2	22000	Ω
R _{TH}	11000	Ω
V _{TH}	1.50	V

Switching Characteristics Over the Operating Range [10]

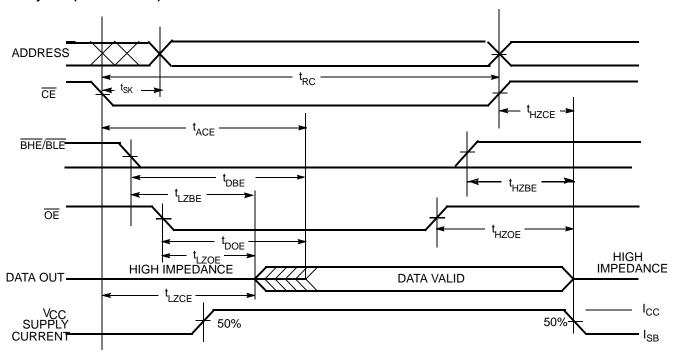
		55 r	าร ^[14]	70	0 ns	
Parameter	Description	Min.	Max.	Min.	Max.	Unit
Read Cycle				+		•
t _{RC}	Read Cycle Time	55 ^[14]		70		ns
t _{AA}	Address to Data Valid		55		70	ns
t _{OHA}	Data Hold from Address Change	5		10		ns
t _{ACE}	CE LOW to Data Valid		55		70	ns
t _{DOE}	OE LOW to Data Valid		25		35	ns
t _{LZOE}	OE LOW to LOW Z ^[11, 13]	5		5		ns
t _{HZOE}	OE HIGH to High Z ^[11, 13]		25		25	ns
t _{LZCE}	CE LOW to Low Z ^[11, 13]	2		5		ns
t _{HZCE}	CE HIGH to High Z ^[11, 13]		25		25	ns
t _{DBE}	BLE/BHE LOW to Data Valid		55		70	ns
t _{LZBE}	BLE/BHE LOW to Low Z ^[11, 13]	5		5		ns
t _{HZBE}	BLE/BHE HIGH to HIGH Z ^[11, 13]		10		25	ns
t _{SK} ^[14]	Address Skew		0		10	ns
Write Cycle ^[12]				•	•	
t _{WC}	Write Cycle Time	55		70		ns
t _{SCE}	CE LOW to Write End	45		60		ns
t _{AW}	Address Set-Up to Write End	45		60		ns
t _{HA}	Address Hold from Write End	0		0		ns
t _{SA}	Address Set-Up to Write Start	0		0		ns
t _{PWE}	WE Pulse Width	40		45		ns

^{10.} Test conditions for all parameters other than tri-state parameters assume signal transition time of 1 ns/V, timing reference levels of V_{CC(typ)}/2, input pulse levels of 0V to V_{CC(typ,)}, and output loading of the specified I_{OL}/I_{OH} as shown in the "AC Test Loads and Waveforms" section.
11. t_{HZOE}, t_{HZEE}, and t_{HZWE} transitions are measured when the <u>outputs</u> enter <u>a high</u> impedance state.
12. The internal Write time of the memory is defined by the overlap of WE, CE = V_{IL}, BHE and/or BLE = V_{IL}. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input set-up and hold timing should be referenced to the edge of the signal that terminates

High-Z and Low-Z parameters are characterized and are not 100% tested.
 To achieve 55-ns performance, the read access should be CE controlled. In this case t_{ACE} is the critical parameter and t_{SK} is satisfied when the addresses are stable prior to chip enable going active. For the 70-ns cycle, the addresses must be stable within 10 ns after the start of the read cycle.



Switching Characteristics Over the Operating Range (continued)^[10]


		55	ns ^[14]	70	70 ns		
Parameter	Description	Min.	Max.	Min.	Max.	Unit	
t _{BW}	BLE/BHE LOW to Write End	50		60		ns	
t _{SD}	Data Set-Up to Write End	25		45		ns	
t _{HD}	Data Hold from Write End	0		0		ns	
t _{HZWE}	WE LOW to High-Z ^[11, 13]		25		25	ns	
t _{LZWE}	WE HIGH to Low-Z ^[11, 13]	5		5		ns	

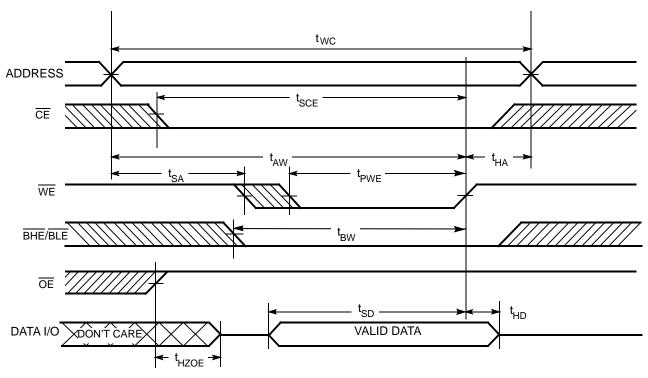
Switching Waveforms

Read Cycle 1 (Address Transition Controlled)^[15, 16, 17]

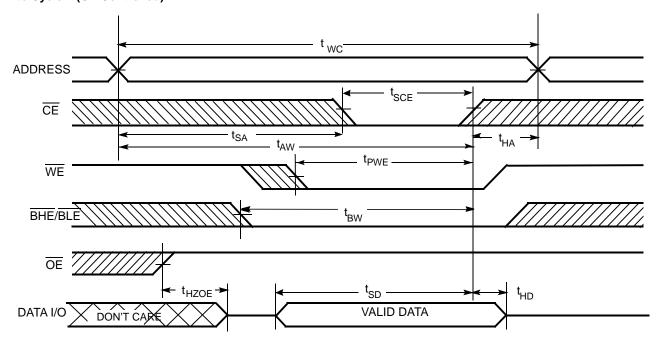
Read Cycle 2 (OE Controlled)[16, 17]

Notes:

- 15. Device is continuously selected. \overline{OE} , $\overline{CE} = V_{|L}$.


 16. WE is HIGH for Read Cycle.

 17. For the 55-ns Cycle, the addresses must not toggle once the read is started on the device. For the 70-ns Cycle, the addresses must be stable within 10 ns after the start of the read cycle.

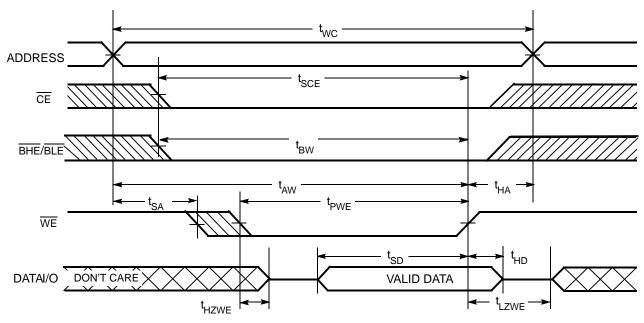


Switching Waveforms (continued)

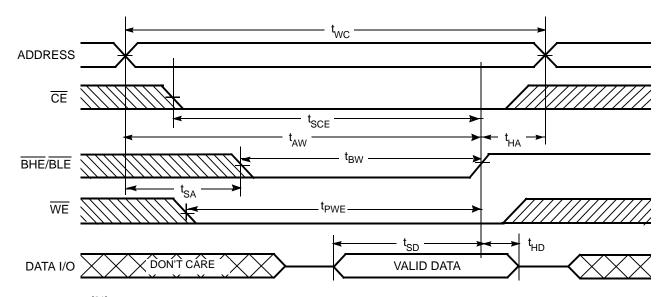
Write Cycle 1 (WE Controlled)[12, 13, 18, 19, 20]

Write Cycle 2 (CE Controlled)[12, 13, 18, 19, 20]

18. Data I/O is high impedance if $\overline{OE} \ge V_{IH}$.


19. If Chip Enable goes INACTIVE with $\overline{WE} = V_{IH}$, the output remains in a high-impedance state.

20. During the DON'T CARE period in the DATA I/O waveform, the I/Os are in output state and input signals should not be applied.



Switching Waveforms (continued)

Write Cycle 3 (WE Controlled, OE LOW)[19, 20]

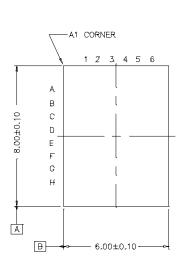
Write Cycle 4 (BHE/BLE Controlled, OE LOW)[19, 20]

Truth Table [21]

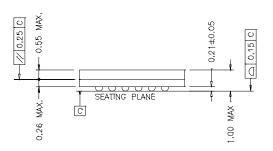
CE	WE	OE	BHE	BLE	Inputs/Outputs	Mode	Power
Н	Х	Х	X	X	High Z	Deselect/Power-Down	Standby (I _{SB})
Х	Х	Х	Ι	Η	High Z	Deselect/Power-Down	Standby (I _{SB})
L	Н	L	L	L	Data Out (I/O ₀ –I/O ₁₅)	Read	Active (I _{CC})
L	Н	L	Н	L	Data Out (I/O ₀ –I/O ₇); High Z (I/O ₈ –I/O ₁₅)	Read	Active (I _{CC})

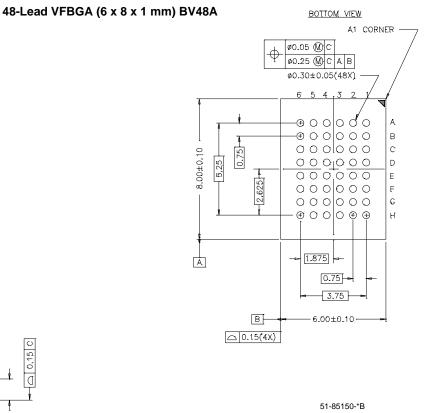
Note:

^{21.} H = Logic HIGH, L = Logic LOW, X = Don't Care.


Truth Table (continued)[21]

CE	WE	OE	BHE	BLE	Inputs/Outputs	Mode	Power
L	Н	L	L	Н	High Z (I/O ₀ –I/O ₇); Data Out (I/O ₈ –I/O ₁₅)	Read	Active (I _{CC})
L	Н	Н	L	Н	High Z	Output Disabled	Active (I _{CC})
L	Н	Н	Н	L	High Z	Output Disabled	Active (I _{CC})
L	Н	Н	L	L	High Z	Output Disabled	Active (I _{CC})
L	L	Х	L	L	Data In (I/O ₀ -I/O ₁₅)	Write	Active (I _{CC})
L	L	Х	Н	L	Data In (I/O ₀ –I/O ₇); High Z (I/O ₈ –I/O ₁₅)	Write	Active (I _{CC})
L	L	Х	L	Н	High Z (I/O ₀ –I/O ₇); Data In (I/O ₈ –I/O ₁₅)	Write	Active (I _{CC})


Ordering Information


Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
55	CYK128K16MCCBU-55BVI	BV48A	48-ball Very Fine Pitch BGA (6 mm x 8mm x 1.0 mm)	Industrial
70	CYK128K16MCCBU-70BVI	BV48A	48-ball Very Fine Pitch BGA (6 mm × 8mm × 1.0 mm)	Industrial
55	CYK128K16MCBU-55BVXI	BV48A	48-ball Very Fine Pitch BGA (6 mm × 8mm × 1.0 mm) (Pb-Free)	Industrial
70	CYK128K16MCBU-70BVXI	BV48A	48-ball Very Fine Pitch BGA (6 mm × 8mm × 1.0 mm) (Pb-Free)	Industrial

Package Diagram

TOP VIEW

MoBL is a registered trademark and More Battery Life is a trademark of Cypress Semiconductor Corporation. All product and company names mentioned in this document may be the trademarks of their respective holders.

Document #: 38-05584 Rev. *C

Page 8 of 9

Document History Page

Document Title: CYK128K16MCCB 2-Mbit (128K x 16) Pseudo Static RAM Document Number: 38-05584				
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	229571	See ECN	REF	New data sheet
*A	224474	See ECN	SYT	Changed ball E3 on the package pinout from NC to DNU
*B	263150	See ECN	PCI	Changed from preliminary to final
*C	314013	See ECN	RKF	Added Pb-Free parts to the Ordering information

Document #: 38-05584 Rev. *C