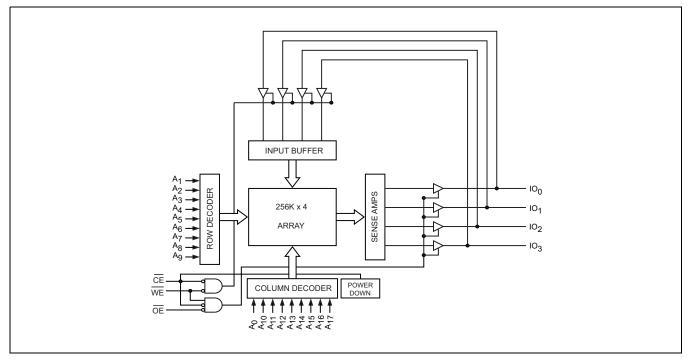


# 1-Mbit (256K x 4) Static RAM

#### **Features**

- Pin- and function-compatible with CY7C106B/CY7C1006B
- · High speed
  - $t_{AA} = 10 \text{ ns}$
- · Low active power
  - $I_{CC} = 80 \text{ mA} @ 10 \text{ ns}$
- · Low CMOS standby power
  - $I_{SB2} = 3.0 \text{ mA}$
- · 2.0V Data Retention
- · Automatic power-down when deselected
- · CMOS for optimum speed/power
- · TTL-compatible inputs and outputs
- CY7C106D available in Pb-free 28-pin 400-Mil wide Molded SOJ package. CY7C1006D available in Pb-free 28-pin 300-Mil wide Molded SOJ package

## Functional Description [1]

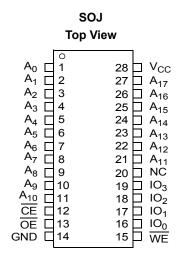

The CY7C106D and CY7C1006D are high-performance CMOS static RAMs organized as 262,144 words by 4 bits. Easy memory expansion is provided by an active LOW Chip Enable ( $\overline{\text{CE}}$ ), an active LOW Output Enable ( $\overline{\text{OE}}$ ), and tri-state drivers. These devices have an automatic power-down feature that reduces power consumption by more than 65% when the devices are deselected. The four input and output pins (IO<sub>0</sub> through IO<sub>3</sub>) are placed in a high-impedance state when:

- Deselected (CE HIGH)
- Outputs are disabled (OE HIGH)
- When the write operation is active (CE and WE LOW)

Write to the device by taking Chip Enable ( $\overline{\text{CE}}$ ) and Write Enable ( $\overline{\text{WE}}$ ) inputs LOW. Data on the four IO pins (IO<sub>0</sub> through IO<sub>3</sub>) is then written into the location specified on the address pins (A<sub>0</sub> through A<sub>17</sub>).

Read from the device by taking Chip Enable  $(\overline{CE})$  and Output Enable  $(\overline{OE})$  LOW while forcing Write Enable  $(\overline{WE})$  HIGH. Under these conditions, the contents of the memory location specified by the address pins appears on the four IO pins.

### **Logic Block Diagram**




#### Note

1. For guidelines on SRAM system design, please refer to the 'System Design Guidelines' Cypress application note, available on the internet at www.cypress.com.



## Pin Configuration [2]



### **Selection Guide**

|                           | CY7C106D-10<br>CY7C1006D-10 | Unit |
|---------------------------|-----------------------------|------|
| Maximum Access Time       | 10                          | ns   |
| Maximum Operating Current | 80                          | mA   |
| Maximum Standby Current   | 3                           | mA   |

### Note

<sup>2.</sup> NC pins are not connected on the die.



### **Maximum Ratings**

| DC Input Voltage [3]                                   | 0.5V to V <sub>CC</sub> + 0.5V |
|--------------------------------------------------------|--------------------------------|
| Current into Outputs (LOW)                             | 20 mA                          |
| Static Discharge Voltage(per MIL-STD-883, Method 3015) | > 2001V                        |
| Latch-up Current                                       | > 200 mA                       |

## **Operating Range**

| Range      | Ambient<br>Temperature | V <sub>CC</sub> | Speed |
|------------|------------------------|-----------------|-------|
| Industrial | –40°C to +85°C         | $5V \pm 0.5V$   | 10 ns |

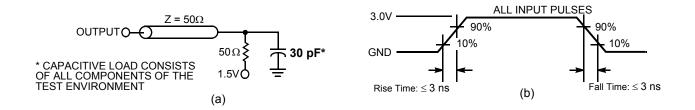
### **Electrical Characteristics** (Over the Operating Range)

| Parameter        | Description                                    | Test Conditions                                                                                                                                                                                                              | Test Conditions |            | 06D-10<br>06D-10      | Unit |
|------------------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------|-----------------------|------|
|                  |                                                |                                                                                                                                                                                                                              |                 | Min        | Max                   |      |
| V <sub>OH</sub>  | Output HIGH Voltage                            | I <sub>OH</sub> = -4.0 mA                                                                                                                                                                                                    |                 | 2.4        |                       | V    |
| V <sub>OL</sub>  | Output LOW Voltage                             | I <sub>OL</sub> = 8.0 mA                                                                                                                                                                                                     |                 |            | 0.4                   | V    |
| V <sub>IH</sub>  | Input HIGH Voltage                             |                                                                                                                                                                                                                              |                 | 2.2        | V <sub>CC</sub> + 0.5 | V    |
| V <sub>IL</sub>  | Input LOW Voltage [3]                          |                                                                                                                                                                                                                              |                 | -0.5       | 0.8                   | V    |
| I <sub>IX</sub>  | Input Leakage Current                          | $GND \le V_1 \le V_{CC}$                                                                                                                                                                                                     |                 | <b>–</b> 1 | +1                    | μΑ   |
| I <sub>OZ</sub>  | Output Leakage Current                         | $GND \le V_1 \le V_{CC}$ , Output Disable                                                                                                                                                                                    | ed              | <b>–</b> 1 | +1                    | μΑ   |
| I <sub>CC</sub>  | V <sub>CC</sub> Operating Supply Current       | V <sub>CC</sub> = Max,                                                                                                                                                                                                       | 100 MHz         |            | 80                    | mA   |
|                  |                                                | $I_{OUT} = 0 \text{ mA},$<br>$f = f_{max} = 1/t_{RC}$                                                                                                                                                                        | 83 MHz          |            | 72                    | mA   |
|                  |                                                |                                                                                                                                                                                                                              | 66 MHz          |            | 58                    | mA   |
|                  |                                                |                                                                                                                                                                                                                              | 40 MHz          |            | 37                    | mA   |
| I <sub>SB1</sub> | Automatic CE Power-Down<br>Current—TTL Inputs  | $\begin{aligned} &\text{Max V}_{CC}, \overline{CE} \geq V_{IH}, \\ &V_{IN} \geq V_{IH} \text{ or } V_{IN} \leq V_{IL},  f = f_{max} \end{aligned}$                                                                           |                 |            | 10                    | mA   |
| I <sub>SB2</sub> | Automatic CE Power-Down<br>Current—CMOS Inputs | $\begin{aligned} &\text{Max V}_{\text{CC}}, \overline{\text{CE}} \geq \text{V}_{\text{CC}} - 0.3\text{V}, \\ &\text{V}_{\text{IN}} \geq \text{V}_{\text{CC}} - 0.3\text{V or V}_{\text{IN}} \leq 0.3\text{V}. \end{aligned}$ | /, f=0          |            | 3                     | mA   |

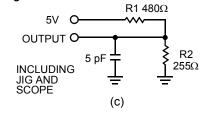
Note

<sup>3.</sup>  $V_{IL}$  (min) = -2.0V and  $V_{IH}$ (max) =  $V_{CC}$  + 1V for pulse durations of less than 5 ns.




### Capacitance [4]

| Parameter                   | Description        | Test Conditions                                    | Max | Unit |
|-----------------------------|--------------------|----------------------------------------------------|-----|------|
| C <sub>IN</sub> : Addresses | Input Capacitance  | $T_A = 25^{\circ}C$ , $f = 1$ MHz, $V_{CC} = 5.0V$ | 7   | pF   |
| C <sub>IN</sub> : Controls  |                    |                                                    | 10  | pF   |
| C <sub>OUT</sub>            | Output Capacitance |                                                    | 10  | pF   |


### Thermal Resistance [4]

| Parameter         | Description                              | Test Conditions                                                         | 300-Mil<br>Wide SOJ | 400-Mil<br>Wide SOJ | Unit |
|-------------------|------------------------------------------|-------------------------------------------------------------------------|---------------------|---------------------|------|
| $\Theta_{JA}$     | Thermal Resistance (Junction to Ambient) | Still Air, soldered on a 3 × 4.5 inch, four-layer printed circuit board | 59.16               | 58.76               | °C/W |
| $\Theta_{\sf JC}$ | Thermal Resistance (Junction to Case)    |                                                                         | 40.84               | 40.54               | °C/W |

### AC Test Loads and Waveforms [5]



#### **High-Z characteristics:**



#### Notes

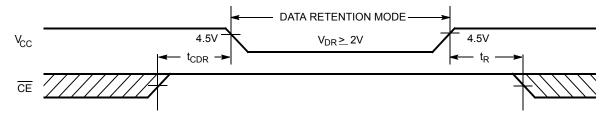
- 4. Tested initially and after any design or process changes that may affect these parameters.
- 5. AC characteristics (except High-Z) are tested using the load conditions shown in Figure (a). High-Z characteristics are tested for all speeds using the test load shown in Figure (c).



### Switching Characteristics (Over the Operating Range) [6]

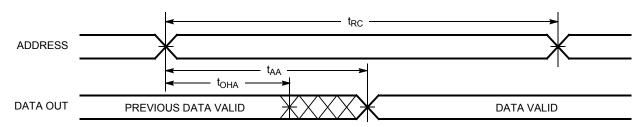
| Parameter                         | Description                                   |          | 6D-10<br>06D-10 | Unit |
|-----------------------------------|-----------------------------------------------|----------|-----------------|------|
|                                   | ·                                             | Min      | Max             |      |
| Read Cycle                        |                                               | <u>.</u> |                 | •    |
| t <sub>power</sub> <sup>[7]</sup> | V <sub>CC</sub> (typical) to the first access | 100      |                 | μS   |
| t <sub>RC</sub>                   | Read Cycle Time                               | 10       |                 | ns   |
| t <sub>AA</sub>                   | Address to Data Valid                         |          | 10              | ns   |
| t <sub>OHA</sub>                  | Data Hold from Address Change                 | 3        |                 | ns   |
| t <sub>ACE</sub>                  | CE LOW to Data Valid                          |          | 10              | ns   |
| t <sub>DOE</sub>                  | OE LOW to Data Valid                          |          | 5               | ns   |
| t <sub>LZOE</sub>                 | OE LOW to Low Z                               | 0        |                 | ns   |
| t <sub>HZOE</sub>                 | OE HIGH to High Z [8, 9]                      |          | 5               | ns   |
| t <sub>LZCE</sub>                 | CE LOW to Low Z [9]                           | 3        |                 | ns   |
| t <sub>HZCE</sub>                 | CE HIGH to High Z [8, 9]                      |          | 5               | ns   |
| t <sub>PU</sub> <sup>[10]</sup>   | CE LOW to Power-Up                            | 0        |                 | ns   |
| t <sub>PD</sub> <sup>[10]</sup>   | CE HIGH to Power-Down                         |          | 10              | ns   |
| Write Cycle [1                    | 1, 12]                                        | ·        |                 | •    |
| t <sub>WC</sub> Write Cycle Time  |                                               | 10       |                 | ns   |
| t <sub>SCE</sub>                  | CE LOW to Write End                           | 7        |                 | ns   |
| t <sub>AW</sub>                   | Address Set-Up to Write End                   | 7        |                 | ns   |
| t <sub>HA</sub>                   | Address Hold from Write End                   | 0        |                 | ns   |
| t <sub>SA</sub>                   | Address Set-Up to Write Start                 | 0        |                 | ns   |
| t <sub>PWE</sub>                  | WE Pulse Width                                | 7        |                 | ns   |
| t <sub>SD</sub>                   | Data Set-Up to Write End                      | 6        |                 | ns   |
| t <sub>HD</sub>                   | Data Hold from Write End                      | 0        |                 | ns   |
| t <sub>LZWE</sub>                 | WE HIGH to Low Z [9]                          | 3        |                 | ns   |
| t <sub>HZWE</sub>                 | WE LOW to High Z [8, 9]                       |          | 5               | ns   |

#### Notes

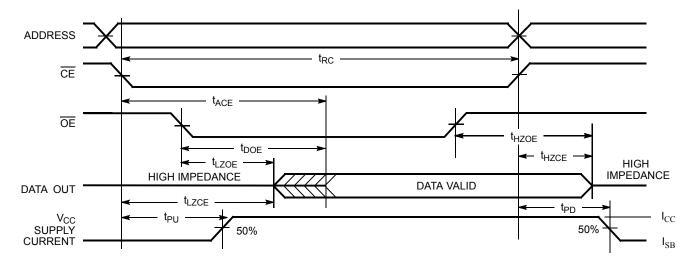

- 6. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified I<sub>OL</sub>/I<sub>OH</sub> and 30-pF load capacitance.
- 7. t<sub>POWER</sub> gives the minimum amount of time that the power supply should be at typical V<sub>CC</sub> values until the first memory access can be performed.
- 8. t<sub>HZOE</sub>, t<sub>HZOE</sub>, and t<sub>HZWE</sub> are specified with a load capacitance of 5 pF as in part (c) of "AC Test Loads and Waveforms <sup>[5]</sup>" on page 4. Transition is measured when the outputs enter a high impedance state.
- 9. At any given temperature and voltage condition,  $t_{HZCE}$  is less than  $t_{LZCE}$ ,  $t_{HZCE}$  is less than  $t_{LZOE}$ , and  $t_{HZWE}$  is less than  $t_{LZWE}$  for any given device.
- 10. This parameter is guaranteed by design and is not tested.
- 11. The internal write time of the memory is defined by the overlap of  $\overline{CE}$  and  $\overline{WE}$  LOW.  $\overline{CE}$  and  $\overline{WE}$  must be LOW to initiate a write, and the transition of either of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write.



### Data Retention Characteristics (Over the Operating Range)


| Parameter                          | Description                          | Conditions                                                                                                           | Min             | Max | Unit |
|------------------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------|-----|------|
| $V_{DR}$                           | V <sub>CC</sub> for Data Retention   |                                                                                                                      | 2.0             |     | V    |
| I <sub>CCDR</sub>                  | Data Retention Current               | $V_{CC} = V_{DR} = 2.0V, \overline{CE} \ge V_{CC} - 0.3V,$<br>$V_{IN} \ge V_{CC} - 0.3V \text{ or } V_{IN} \le 0.3V$ |                 | 3   | mA   |
| t <sub>CDR</sub> [4]               | Chip Deselect to Data Retention Time |                                                                                                                      | 0               |     | ns   |
| t <sub>R</sub> <sup>[13, 14]</sup> | Operation Recovery Time              |                                                                                                                      | t <sub>RC</sub> |     | ns   |

### **Data Retention Waveform**



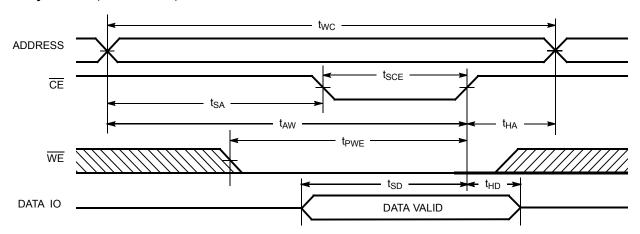

### **Switching Waveforms**

Read Cycle No.1 (Address Transition Controlled) [15, 16]

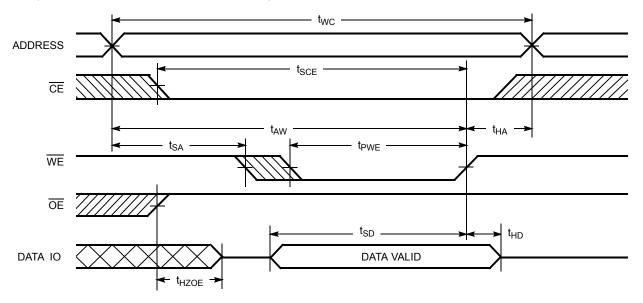


Read Cycle No. 2 (OE Controlled) [16, 17]




#### Notes

- 13. Full device operation requires linear  $V_{CC}$  ramp from  $V_{DR}$  to  $V_{CC(min)} \ge 50 \,\mu s$  or stable at  $V_{CC(min)} \ge 50 \,\mu s$ .
- 14.  $t_r \le 3$  ns for all speeds.
- 15. Device is continuously selected,  $\overline{OE}$  and  $\overline{CE} = V_{IL}$ .
- 16. WE is HIGH for read cycle.

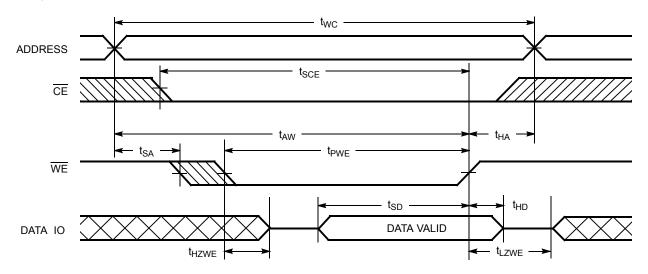



### **Switching Waveforms** (continued)

Write Cycle No. 1 (CE Controlled) [18, 19]



Write Cycle No. 2 (WE Controlled, OE HIGH During Write) [18, 19]




<sup>19.</sup> Data IO is high impedance if  $\overrightarrow{OE} = V_{IH}$ .



## Switching Waveforms (continued)

Write Cycle No. 3 ( $\overline{\text{WE}}$  Controlled,  $\overline{\text{OE}}$  LOW) [12, 19]



### **Truth Table**

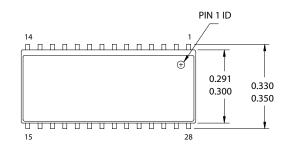
| CE | OE | WE | Input/Output | Mode                       | Power                      |
|----|----|----|--------------|----------------------------|----------------------------|
| Н  | Х  | Х  | High Z       | Power-Down                 | Standby (I <sub>SB</sub> ) |
| L  | L  | Н  | Data Out     | Read                       | Active (I <sub>CC</sub> )  |
| L  | Х  | L  | Data In      | Write                      | Active (I <sub>CC</sub> )  |
| L  | Н  | Н  | High Z       | Selected, Outputs Disabled | Active (I <sub>CC</sub> )  |

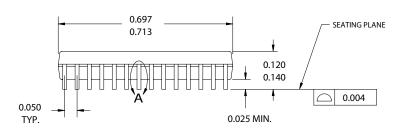
## **Ordering Information**

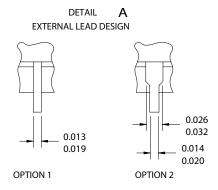
| Speed<br>(ns) | Ordering Code   | Package<br>Diagram | Package Type                          | Operating<br>Range |
|---------------|-----------------|--------------------|---------------------------------------|--------------------|
| 10            | CY7C106D-10VXI  | 51-85032           | 28-pin (400-Mil) Molded SOJ (Pb-free) | Industrial         |
|               | CY7C1006D-10VXI | 51-85031           | 28-pin (300-Mil) Molded SOJ (Pb-free) |                    |

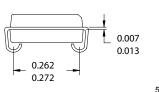
Please contact your local Cypress sales representative for availability of these parts.




### **Package Diagrams**


Figure 1. 28-pin (300-Mil) Molded SOJ, 51-85031


#### NOTE:

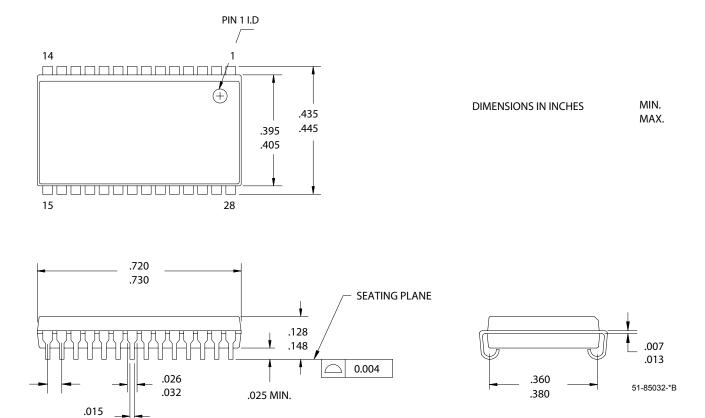

- 1. JEDEC STD REF MO088
- 2. BODY LENGTH DIMENSION DOES NOT INCLUDE MOLD PROTRUSION/END FLASH MOLD PROTRUSION/END FLASH SHALL NOT EXCEED 0.006 in (0.152 mm) PER SIDE
- 3. DIMENSIONS IN INCHES

MIN. MAX.










51-85031-\*C



### **Package Diagrams**

Figure 2. 28-pin (400-Mil) Molded SOJ, 51-85032



All product and company names mentioned in this document may be the trademarks of their respective holders.



## **Document History Page**

| REV. | ECN NO. | Issue Date | Orig. of<br>Change | Description of Change                                                                                                                                                                                                                                                                                                            |
|------|---------|------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| **   | 201560  | See ECN    | SWI                | Advance information data sheet for C9 IPP                                                                                                                                                                                                                                                                                        |
| *A   | 233693  | See ECN    | RKF                | I <sub>CC</sub> ,I <sub>SB1</sub> ,I <sub>SB2</sub> Specs are modified as per EROS (Spec # 01-2165)<br>Pb-free offering in the 'ordering information'                                                                                                                                                                            |
| *B   | 262950  | See ECN    | RKF                | Added T <sub>power</sub> Spec in Switching Characteristics table Shaded 'Ordering Information'                                                                                                                                                                                                                                   |
| *C   | See ECN | See ECN    | RKF                | Reduced Speed bins to -10 and -12 ns                                                                                                                                                                                                                                                                                             |
| *D   | 560995  | See ECN    | VKN                | Converted from Preliminary to Final Removed Commercial Operating range Removed 12 ns speed bin Added I <sub>CC</sub> values for the frequencies 83MHz, 66MHz and 40MHz Updated Thermal Resistance table Updated Ordering Information table Changed Overshoot spec from V <sub>CC</sub> +2V to V <sub>CC</sub> +1V in footnote #3 |
| *E   | 802877  | See ECN    | VKN                | Changed $I_{CC}$ spec from 60 mA to 80 mA for 100MHz, 55 mA to 72 mA f 83MHz, 45 mA to 58 mA for 66MHz, 30 mA to 37 mA for 40MHz                                                                                                                                                                                                 |