

C29014-bit Microprocessor Slice Megafunction

General Description

The C2901 four-bit microprocessor slice megafunction is a cascadable ALU intended for use in CPUs, peripheral controllers, and programmable microprocessors. The megafunction includes a dual port RAM, ALU, shifter, register and multiplexer. The microinstructions of the C2901 allow for easy modeling of various microcontrollers.

Features

- Independent and simultaneous access to two registers save machine cycles
- Eight function ALU
- Expandable Any number of devices can be connected for wider bus structures
- Four status flags for Carry, Overflow, Zero and Negative
- Microprogrammable
- The C2901 was developed in HDL and synthesizes to approximately 1,300 gates depending on the technology used.
- Functionality based on the Advanced Micro Devices AM2901

Symbol

Pin Description

Name	Туре	Description
СР	Input	Clock
I[8:0]	Input	Instruction/Microcode
D[3:0]	Input	Data Input
A[3:0]	Input	A-port Address
B[3:0]	Input	B-port Address
CN	Input	Carry In
Q0IN	Input	Shift Line – Q Register
RAM0IN	Input	Shift Line – RAM Stack
Q3IN	Input	Shift Line – Q Register
RAM3IN	Input	Shift Line – RAM Stack
Y[3:0]	Output	Data Output
GN	Output	Carry Generate
PN	Output	Carry Propagate
OVR	Output	Overflow
F0	Output	ALU outputs are zero
F3	Output	ALU MSB
CNP4	Output	Carry out
Q0OUT	Output	Shift Line – Q Register
RAM0OUT	Output	Shift Line – RAM Stack
Q3OUT	Output	Shift Line – Q Register
RAM3OUT	Output	Shift Line – RAM Stack
FEQEN	Output	ALU outputs are zero (control for Open Collector Output)
Q0EN	Output	Enable for Q0 Tristate Output
Q3EN	Output	Enable for Q3 Tristate Output
RAM0EN	Output	Enable for RAM0 Tristate Output
RAM3EN	Output	Enable for RAM3 Tristate Output

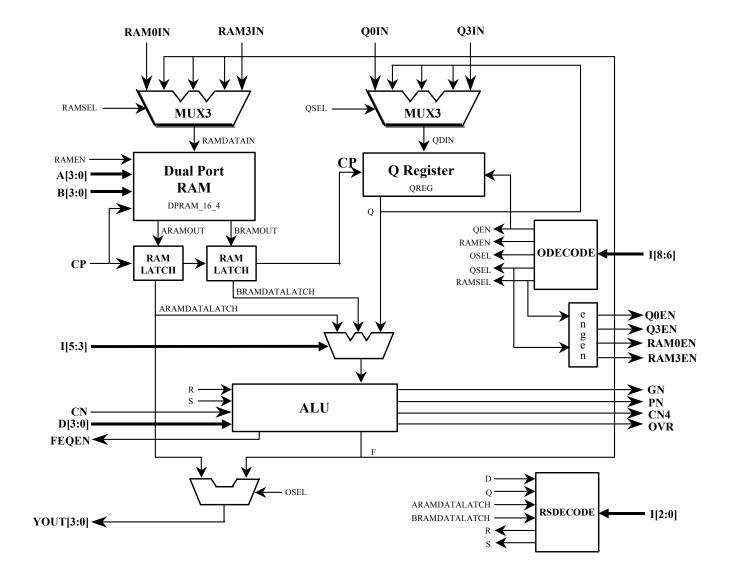
Functional Description

This section describes the Block Diagram below. A description of each of the blocks in the diagram is given here.

Dual Port RAM

The internal memory is a 4 bit by 16 Dual Port RAM. It is addressed for writing by the B Port and for reading by both the A and B Ports. The input data is defined by a microinstruction decoded from 3 bits of the 9-bit I Port.

RAM Latch


These latches store the outputs of the Dual Port RAM. They are clocked using the CP input.

Q Register

This section describes the internal register. It is selected using the Instruction input (I) and clocked with the CP input.

CAST, Inc. Page 2

Block Diagram

MicroInstructions

The I Port is internally decoded to define the flow of data to the above sections.

ALU

The ALU accepts input from either RAM Port, the Q Register and cascaded inputs from previous stages. It has basic functions including most logic and arithmetic operations including such functions as shifting, adding and subtracting.

ODecode

The ODecode block takes bits 6 – 8 of the MicroInstruction Bus and uses them to control the internal output enables and selects of the other blocks.

CAST, Inc. Page 3

RSDecode

The RSDecode block takes bits 0 - 2 of the MicroInstruction Bus and uses them to control the 4bit R and S buses. These buses get loaded with the outputs of the other blocks, routing various results back through the ALU block

ENGEN

This block takes the select bits for the ram and q register and decodes the enable pins for the bidirectional RAM and Q bits.

MicroInstructions

The I Port is internally decoded to define the flow of data to the above sections.

Device Utilization & Performance

Supported	Device	Utilization			Performance
Family	Tested	LEs	Memory	Memory bits	F _{max}
Cyclone	EP1C20-6	273	0	0	28 MHz
Stratix	EP1S20-5	273	0	0	30 MHz
Stratix-II	EP2S60-3	206	0	0	41 MHz

Deliverables

Encrypted Netlist License

- Post synthesis EDIF netlist
- Assignment & Configuration
- Symbol & Include files
- Testbench
- Vectors for testing the functionality of the megafunction
- Place & Route Scripts
- Documentation

VHDL or Verilog RTL source code

HDL Source License

- Testbenches
- Vectors for testing functionality
- Expected results
- Synthesis scripts
- Simulation scripts
- Documentation

Contact Information

CAST, Inc.

11 Stonewall Court

Woodcliff Lake, New Jersey 07677 USA

Phone: +1 201-391-8300 Fax: +1 201-391-8694 E-Mail: info@cast-inc.com URL: www.cast-inc.com