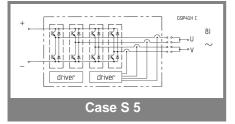

SKiiP 642GH120-4D

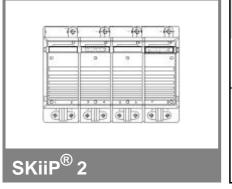
4-pack - integrated intelligent Power System

Power section


SKiiP 642GH120-4D

Power section features

- SKiiP technology inside
- CAL diode technology
- · Integrated current sensor
- Integrated teperature sensor
- Integrated heat sink
- IEC 60721-3-3 (humidity) class 3K3/IE32 (SKiiP® 2 System)
- IEC 60068-1 (climate) 40/125/56
- UL recognized file no. E63532
- 1) with assembly of suitable MKP capacitor per terminal
- 8) AC connection busbars must be connected by the user; copper busbars available on request


Absolute	Maximum Ratings	s = 25 °C unless otherwise specified				
Symbol	Conditions	Values	Units			
IGBT						
V_{CES}		1200	V			
V _{CES} V _{CC} 1)	Operating DC link voltage	900	V			
V_{GES}		± 20	V			
I _C	T _s = 25 (70) °C	600 (450)	Α			
Inverse diode						
$I_F = -I_C$	T _s = 25 (70) °C	600 (450)	Α			
I _{FSM}	$T_j = 150 ^{\circ}\text{C}, t_p = 10 \text{ms}; \text{sin}.$	4320	Α			
I ² t (Diode)	Diode, T _j = 150 °C, 10 ms	93	kA²s			
T _j , (T _{stg})		- 40 (- 25) + 150 (125)	°C			
V _{isol}	AC, 1 min. (mainterminals to heat sink)	3000	V			

Characteristics T				T _s = 25 °C unless otherwise specified					
Symbol	ol Conditions			min.	typ.	max.	Units		
IGBT									
V_{CEsat}	$I_{\rm C} = 500 A$	A, T _i = 25 (1	25) °C			2,6 (3,1)	3,1	V	
V _{CEO}	$T_i = 25 (1)$	25) °C				1,2 (1,3)	1,5 (1,6)	V	
r_{CE}	$T_{j} = 25 (1)$	25) °C				2,6 (3,5)	3,2 (4)	mΩ	
I _{CES}	$V_{GE} = 0 V$	', V _{CE} = V _{CE}	ES,			(30)	0,8	mA	
	$T_j = 25 (1)$	25) °C							
E _{on} + E _{off}	$I_{\rm C} = 500 A$	A, V _{CC} = 600	V 0				150	mJ	
		$C, V_{CC} = 90$					265	mJ	
R _{CC' + EE'}	terminal o	hip, T _j = 12	5 °C			0,25		mΩ	
L _{CE}	top, botto	m				7,5		nH	
C _{CHC}	per phase	e, AC-side				2,8		nF	
Inverse o	Inverse diode								
$V_F = V_{EC}$	$I_F = 500 A$	A, T _i = 25 (1	25) °C			2,1 (2)	2,6	V	
V_{TO}	$T_j = 25 (1)$					1,3 (1)	,	V	
r _T	$T_j = 25 (1)$					1,7 (2)	2,3 (2,6)	mΩ	
E _{rr}	_	$V_{CC} = 600$					19	mJ	
	,	$C, V_{CC} = 90$	00 V				25	mJ	
Mechani	cal data								
M _{dc}		nals, SI Unit			6		8	Nm	
M _{ac}		nals, SI Unit			13	0.5	15	Nm	
W	SKiiP® 2 System w/o heat sink					3,5		kg	
W	heat sink					8,5		kg	
			P16 hea	nt sink; 27	75 m³/h)	;	rence to		
temperat		sor			ı		0.045	14044	
R _{th(j-s)I}	per IGBT						0,045	K/W K/W	
R _{th(j-s)D}	per diode						0,125		
R _{th(s-a)}	per modu						0,033	K/W	
Z_{th}	R _i (mK/W) (max. values) tau _i (s)							4	
7	1 5	2 35	3 5	4 0	1 1	2 0,13	3 0,001	4 1	
Z _{th(j-r)I}	14	96	5 15	0	1	0,13	0,001	1	
Z _{th(j-r)D}	1,6	22	7	2,4	494	165	20		
$Z_{th(r-a)}$	1,0	22	1	2,4	494	100	20	0,03	

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

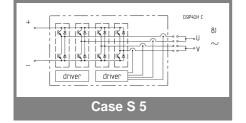
SKiiP 642GH120-4D

Absolute	Maximum Ratings T _a	_a = 25 °C unless otherwise specified		
Symbol	Conditions	Values	Units	
V_{S1}	stabilized 15 V power supply	18	V	
V_{S2}	unstabilized 24 V power supply	30	V	
V_{iH}	input signal voltage (high)	15 + 0,3	V	
dv/dt	secondary to primary side	75	kV/μs	
V_{isollO}	input / output (AC, r.m.s., 2s)	3000	Vac	
V _{isol12}	output 1 / output 2 (AC, r.m.s., 2s)	1500	Vac	
f _{sw}	switching frequency	20	kHz	
f _{out}	output frequency for I=I _C ;sin.	1	kHz	
$T_{op} (T_{stg})$	operating / storage temperature	- 40 + 85	°C	

4-pack - integrated intelligent Power System

4-pack integrated gate driver

SKiiP 642GH120-4D


Gate driver features

- Two separate and independent "GB"-type driver
- CMOS compatible inputs
- · Wide range power supply
- Integrated circuitry to sense phase current, heat sink temperature and DC-bus voltage (option)
- U-option is integrated on left driver, (DC terminals at bottom; refer to case drawing)
- Short circuit protection
- Over current protection
- Over voltage protection (option)
- Power supply protected against under voltage
- Interlock of top/bottom switch
- Isolation by transformers
- Fibre optic interface (option)
- IEC 60068-1 (climate) 25/85/56

Characte	(T _a = 25 °C)				
Symbol	Conditions	min.	typ.	max.	Units
V_{S1}	supply voltage stabilized	14,4	15	15,6	V
V_{S2}	supply voltage non stabilized	20	24	30	V
I _{S1}	V _{S1} = 15 V	210+430	210+430*f/f _{max} +1,2*(I _{AC} /A)		
I _{S2}	V _{S2} = 24 V	160+290	160+290*f/f _{max} +0,85*(I _{AC} /A)		
V _{iT+}	input threshold voltage (High)			12,3	V
V_{iT-}	input threshold voltage (Low)	4,6			V
R _{IN}	input resistance		10		kΩ
$t_{d(on)IO}$	input-output turn-on propagation time			1,5	μs
t _{d(off)IO}	input-output turn-off propagation time			1,4	μs
tpERRRESET	error memory reset time	9			μs
t _{TD}	top / bottom switch : interlock time		3,3		μs
I _{analogOUT}	8 V corresponds to max. current of 15 V supply voltage		600		Α
I _{Vs1outmax}	(available when supplied with 24 V)			50	mA
I _{A0max}	output current at pin 12/14			5	mA
V _{0I}	logic low output voltage			0,6	V
V _{0H}	logic high output voltage			30	V
I _{TRIPSC}	over current trip level (I _{analog OUT} = 10 V)		750		Α
I _{TRIPLG}	ground fault protection				Α
T_tp	over temperature protection	110		120	°C
U _{DCTRIP}	trip level of U _{DC} -protection	900			V
	(U _{analog OUT} = 9 V); (option)				

For electrical and thermal design support please use SEMISEL. Access to SEMISEL is via SEMIKRON website http://www.semikron.com.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

