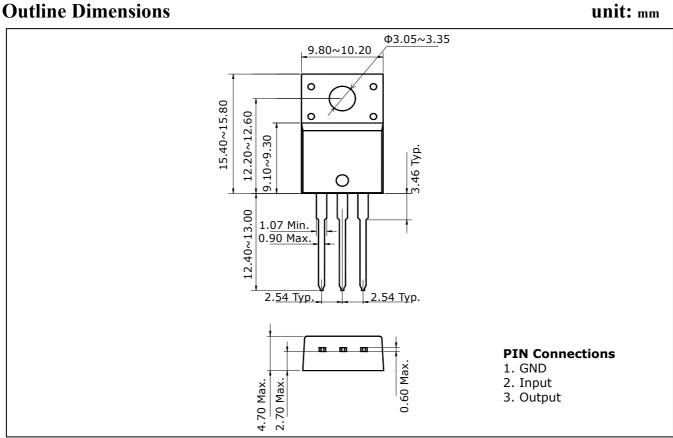


Fixed-Negative-Voltage Regulator

Descriptions

This series of fixed-negative-voltage monolithic integrated-circuit voltage regulators is designed to complement series S7800 in a wide range of applications. These applications include on-card regulator for elimination of noise and distribution problems associated with single point regulations. Each of these regulators can deliver up to 1.0 amperes of output current. The internal current Limiting and thermal shutdown features of these regulators make them essentially immune to overload. In addition to use as fixed-voltage regulators, these devices can be used with external components to obtain adjustable output voltages and also as the power pass element in precision regulators.


Features

- Output Current of 1A
- Thermal Shutdown Protection
- Short-Circuit Current Limit Protection
- No External Components
- Output Transistor Safe Operating Area Protection

Ordering Information

Type NO.	Marking	Package Code
S79xxPI	S79□□PI	TO-220F-3L

□: Voltage Code (05: -5V, 08: -8V, 09: -9V, 12: -12V, 15: -15V)

KSD-I0O004-001

Absolute Maximum Ratings

Ta=25°C

Characteristic	Symbol	Ratings	Unit
Operating Input Voltage	V_{IN}	-35	V
Power Dissipation (Tc=25℃)	P_D	20.8	W
Power Dissipation (without Heatsink)	P_{D}	2.0	W
Operating Temperature Range	T_{opr}	-40 ~ 85	°C
Junction Temperature	T _J	150	°C
Storage Temperature Range	T_{STG}	-55 ~ 150	°C

Electrical Characteristics

 $(T_J = 0 \text{ to } 125 \,^{\circ}\text{C}, \text{ Vin} = -10 \text{V}, \text{ Iout} = 500 \text{mA}, \text{ unless otherwise specified.})$

Chanastovistia	Crymh al	Test Condition	S7905PI			Unit	
Characteristic	Symbol	Test Condition -		Min.	Тур.	Max.	Omt
**			T _j =25℃	-5.20	-5.0	-4.80	V
Output Voltage**	V _{OUT}	I_{OUT} =5mA ~ 1A, V_{IN} =-20	V ~ -7.0V	-5.25	-5.0	-4.75	V
Line Degulation	۸۱/	V _{IN} =-25V ~ -7.0V	т _25°	-	12.5	50	mV
Line Regulation	$\triangle V_{OUT}$	V _{IN} =-12V ~ -8.0V	T _j =25℃	-	4	15	
Load Regulation	۸۱/	I_{OUT} =5mA ~ 1.0A	T _j =25℃	-	15	100	· mV
	$\triangle V_{OUT}$	I _{OUT} =250mA ~ 750mA		-	5	50	
Quiescent Current	I_{B}		T _j =25℃	-	1.5	2.0	mA
Quiescent Current Change	Δ.Τ.	V _{IN} = -25V ~ -7.0V		1	0.15	0.5	- mA
Quiescent Current Change	$\triangle I_{B}$	I _{OUT} = 5mA ~ 1A		-	0.08	0.5	IIIA
Output Noise Voltage	V_N	f=10Hz ~ 100KHz	T _j =25℃	-	125	-	uV_{rms}
Ripple Rejection Ratio	RR	f=120Hz, V _{IN} =-18V ~ -8.0V		54	60	-	dB
Dropout Voltage	V _D	I _{OUT} =1A	T _j =25℃	-	2.0	-	V
Temperature Coefficient of Output Voltage Drift	T _{CVO}	I _{OUT} =5mA		-	-0.4	-	mV/°C
Peak Output Current	I_{PK}		T _j =25℃	-	2.1	-	Α

^{*} Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into separately.

^{**} This specification applies only for dc power dissipation permitted by absolute maximum ratings.

 $(T_J = 0 \text{ to } 125 \,^{\circ}\text{C}, \text{ Vin= -14V, Iout=500mA, unless otherwise specified.})$

Ch and sharing	C	Test Condition*		;	Unit		
Characteristic	Symbol			Min.	Тур.	Max.	
Output Voltage**	V _{out}		T _j =25℃	-8.30	-8.0	-7.70	V
Output Voltage	VOUT	I_{OUT} =5mA ~ 1A, V_{IN} =-23V	~ -10.5V	-8.40	-8.0	-7.60	V
Line Degulation	0.1/	V_{IN} =-25V \sim -10.5V	T _i =25℃	-	12.5	160	mV
Line Regulation	$\triangle V_{OUT}$	V_{IN} =-17 $V \sim -11V$	1 _j -23 C	-	4	80	
Load Dogulation	0.1/	I_{OUT} =5mA ~ 1.0A	T _j =25℃ -	-	15	160	mV
Load Regulation	$\triangle V_{OUT}$	I _{OUT} =250mA ~ 750mA		-	5	80	
Quiescent Current	I_{B}		T _j =25℃	-	1.5	2.0	mA
Quiescent Current Change	$\triangle I_{B}$	V _{IN} = -25V ~ -10.5V		ı	0.15	1.0	· mA
Quiescent Current Change		I _{OUT} = 5mA ~ 1A		1	0.08	0.5	
Output Noise Voltage	V _N	f=10Hz ~ 100KHz	T _j =25℃	1	200	-	uV_{rms}
Ripple Rejection Ratio	RR	f=120Hz, V _{IN} =-21.5V ~ -	11.5V	54	60	-	dB
Dropout Voltage	V _D	I _{OUT} =1A	T _j =25℃	-	2.0	-	V
Temperature Coefficient of Output Voltage Drift	T _{CVO}	I _{OUT} =5mA	T _j =25℃	-	-0.6	-	mV/°C
Peak Output Current	I_{PK}		T _j =25℃	-	2.1	-	Α

^{*} Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into separately.

^{**} This specification applies only for dc power dissipation permitted by absolute maximum ratings.

 $(T_J = 0 \text{ to } 125\,^{\circ}\text{C}$, Vin= -15V, Iout=500mA, unless otherwise specified.)

Chanastanistia	Crumb al	Test Condition*		;	1124		
Characteristic	Symbol			Min.	Тур.	Max.	Unit
Output Voltage**	V		T _j =25℃	-9.30	-9.0	-8.70	V
Output voitage	V _{OUT}	I_{OUT} =5mA ~ 1A, V_{IN} =-23V	~ -11.5V	-9.40	-9.0	-8.60	V
Line Degulation	0.1/	V _{IN} =-25V ~ -10.5V	т _25%	-	10	180	mV
Line Regulation	$\triangle V_{OUT}$	V_{IN} =-17 $V \sim -11V$	T _j =25℃	-	5	90	
Load Regulation	0)/	I_{OUT} =5mA ~ 1.0A	T _j =25℃ -	12	180	>/	
	$\triangle V_{OUT}$	I _{OUT} =250mA ~ 750mA		-	4	90	mV
Quiescent Current	I _B		T _j =25℃	-	3	6	mA
Outcome Cumant Change	$\triangle I_{B}$	V _{IN} = -25V ~ -11.5V		-	0.1	1.0	· mA
Quiescent Current Change		$I_{OUT} = 5mA \sim 1A$		-	0.08	0.5	
Output Noise Voltage	V _N	f=10Hz ~ 100KHz	T _j =25℃	-	175	-	uV_{rms}
Ripple Rejection Ratio	RR	f=120Hz, V _{IN} =-21.5V ~ -11.5V		54	60	-	dB
Dropout Voltage	V _D	I _{OUT} =1A	T _j =25℃	-	2.0	-	V
Temperature Coefficient of Output Voltage Drift	T _{CVO}	I _{OUT} =5mA	T _j =25℃	ı	-0.4	-	mV/°C
Peak Output Current	I_{PK}		T _j =25℃	-	2.1	-	Α

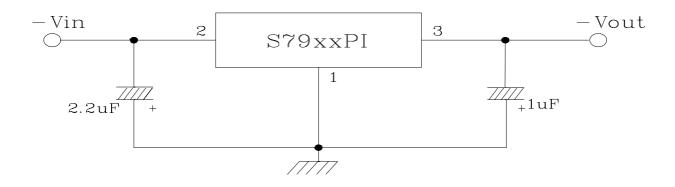
^{*} Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into separately.

^{**} This specification applies only for dc power dissipation permitted by absolute maximum ratings.

(T_J = 0 to 125 $^{\circ}$ C, Vin= -19V, Iout=500mA, unless otherwise specified.)

Chanastanistia	Cross had	Test Condition*		1	Unit		
Characteristic	Symbol			Min.	Тур.	Max.	Unit
Output Voltage**	V		T _j =25℃	-12.5	-12.0	-11.5	V
Output Voltage	V _{OUT}	I_{OUT} =5mA ~ 1A, V_{IN} =-27V	~ -14.5V	-12.6	-12.0	-11.4	V
Line Degulation	0.1/	V_{IN} =-30V \sim -14.5V	T _i =25℃	-	5	80	
Line Regulation	$\triangle V_{OUT}$	V_{IN} =-22V \sim -16V	1 _j -23 C	-	3	30	mV
Load Regulation	ΔV _{out}	I_{OUT} =5mA ~ 1.0A	T _j =25℃	-	15	200	mV
		I _{OUT} =250mA ~ 750mA		-	5	75	
Quiescent Current	I_{B}		T _j =25℃	-	2.0	3.0	mA
Quiescent Current Change	Α.Τ.	$V_{IN} = -30V \sim -14.5V$		-	0.04	0.5	· mA
Quiescent Current Change	$\triangle I_{B}$	$I_{OUT} = 5mA \sim 1A$		-	0.08	0.5	
Output Noise Voltage	V _N	f=10Hz ~ 100KHz,	T _j =25℃	-	300	-	uV_{rms}
Ripple Rejection Ratio	RR	f=120Hz, V _{IN} =-25V ~ -15V		54	60	-	dB
Dropout Voltage	V _D	I _{OUT} =1A	T _j =25℃	-	2.0	-	V
Temperature Coefficient of Output Voltage Drift	T _{CVO}	I _{OUT} =5mA	T _j =25℃	-	-0.8	-	mV/°C
Peak Output Current	I_{PK}		T _j =25℃	-	2.1	-	А

^{*} Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into separately.


^{**} This specification applies only for dc power dissipation permitted by absolute maximum ratings.

 $(T_J = 0 \text{ to } 125\,^{\circ}\text{C}$, Vin= -23V, Iout=500mA, unless otherwise specified.)

Characteristic	C	Test Condition*		;	Unit		
Characteristic	Symbol			Min.	Тур.	Max.	Unit
Output Voltage**	V _{out}		T _j =25℃	-15.6	-15.0	-14.4	V
Output Voltage	VOUT	I_{OUT} =5mA ~ 1A, V_{IN} =-30V	~ -17.5V	-15.75	-15.0	-14.25	V
Line Deculation	27/	V _{IN} =-30V ~ -17.5V	т _эғъ	-	5	100	
Line Regulation	$\triangle V_{OUT}$	V _{IN} =-26V ~ -20V	T _j =25℃	-	3	50	mV
Land Damilation	23/	I_{OUT} =5mA ~ 1.0A	T _j =25℃	-	15	200	mV
Load Regulation	$\triangle V_{OUT}$	I _{OUT} =250mA ~ 750mA		-	5	75	
Quiescent Current	I_{B}		T _j =25℃	-	2.0	3.0	mA
Quiescent Current Change	$\triangle I_{B}$	V _{IN} = -30V ~ -17.5V		-	0.04	0.5	mA
Quiescent Current Change		$I_{OUT} = 5mA \sim 1A$		-	0.08	0.5	
Output Noise Voltage	V _N	f=10Hz ~ 100KHz,	T _j =25℃	-	375	-	uV_{rms}
Ripple Rejection Ratio	RR	f=120Hz, V _{IN} =-28.5V ~ -18.5V		54	60	-	dB
Dropout Voltage	V _D	I _{OUT} =1A	T _j =25℃	-	2.0	-	V
Temperature Coefficient of Output Voltage Drift	T _{CVO}	I _{OUT} =5mA	T _j =25℃	-	-1.0	-	mV/°C
Peak Output Current	I_{PK}		T _j =25℃	-	2.1	-	А

^{*} Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into separately.

■ Test circuit

^{**} This specification applies only for dc power dissipation permitted by absolute maximum ratings.

Electrical Characteristic Curves

Fig. 1 V_{OUT} - V_{IN}

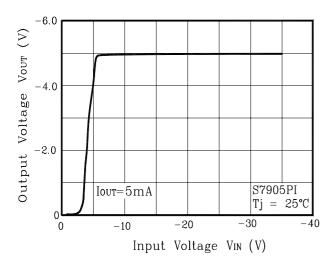


Fig. 3 I_B - T_j

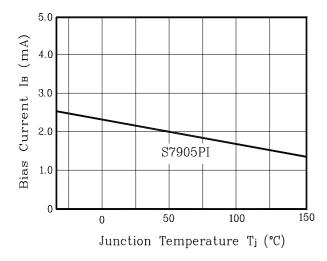


Fig. 5 I_{SC} - V_{IN}

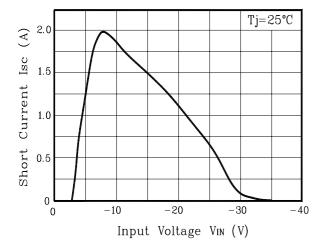


Fig. 2 V_{DROP} - Ta

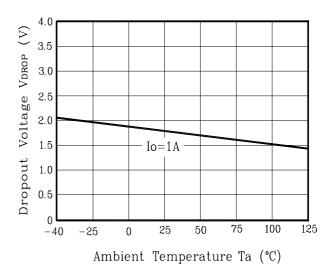
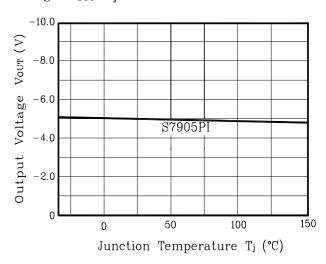



Fig. 4 V_{OUT} - T_j

The AUK Corp. products are intended for the use as components in general electronic equipment (Office and communication equipment, measuring equipment, home appliance, etc.).

Please make sure that you consult with us before you use these AUK Corp. products in equipments which require high quality and / or reliability, and in equipments which could have major impact to the welfare of human life(atomic energy control, airplane, spaceship, transportation, combustion control, all types of safety device, etc.). AUK Corp. cannot accept liability to any damage which may occur in case these AUK Corp. products were used in the mentioned equipments without prior consultation with AUK Corp..

Specifications mentioned in this publication are subject to change without notice.