Technical Data Sheet High Power LED – 0.5W

EHP-A09/SUG31-PU5/TR

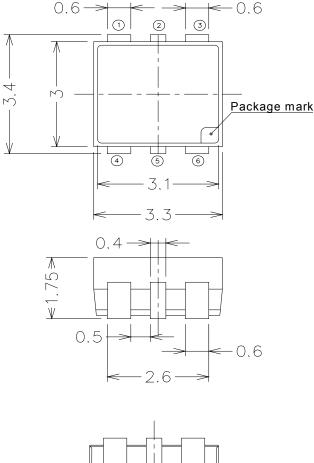
Features

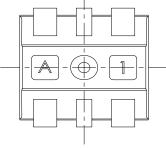
- Feature of the device: small package with high efficiency
- Typical view angle: 120°
- ESD protection.
- Soldering methods: SMT
- Grouping parameter: luminous Intensity, wavelength, forward voltage.
- Typical optical efficiency: 50 lm/W.
- Thermal resistance (junction to sink): 80 K/W
- The product itself will remain within RoHS compliant version.

Applications

- Interior automotive lighting (e.g. dashboard backlighting)
- backlighting (illuminated advertising, general lighting)
- Signal and symbol luminaries
- Marker lights (e.g. steps, exit ways, etc.)
- Scanner

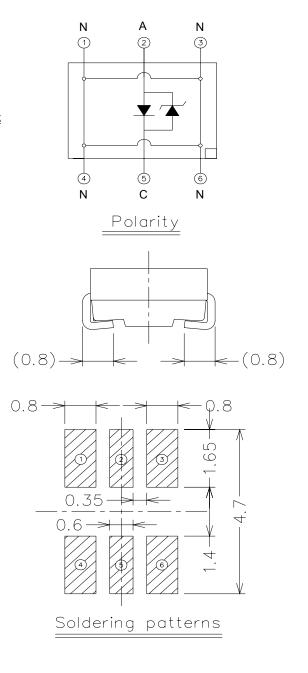
Materials


Items	Description	
Reflector	Heat resistant polymer	
Encapsulating Resin	Colorless clear resin	
Electrodes	Ag plating	
Die attach	Silver paste	
Chip	InGaN	



EHP-A09/SUG31-PU5/TR

Dimensions



2. Tolerances unless dimensions ±0.25mm.

EVERLIGHT

EHP-A09/SUG31-PU5/TR

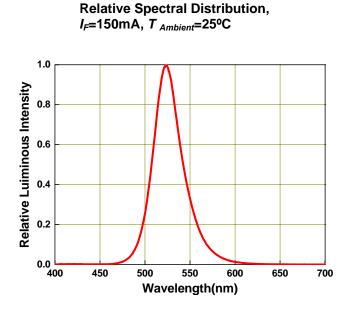
Maximum Ratings (T Ambient=25°C)

Parameter	Symbol	Rating	Unit
DC Operating Current	I _F	150	mA
Pulsed Forward Current	I _F	300	mA
ESD Sensitivity	ESD	2000	v
Junction Temperature	Tj	125	°C
Operating Temperature	T _{opr}	-40 ~ +100	D °
Storage Temperature	T _{stg}	-40 ~ +100	D °
Power Dissipation	P _d	1	W
Junction To Heat-Sink Thermal Resistance	R _{th}	80	K/W

Electro-Optical Characteristics (T_{Ambient}=25°C)

Parameter	Bin	Symbol	Min	Тур.	Мах	Unit	Condition
Luminous Intensity ₍₁₎	C2	l _v	3550		4500	mcd	I _F =150mA
	D1		4500		5600		
	D2		5600		7100		
	E1		7100		9000		
	E2		9000		11200		
Wavelength ₍₂₎	G1	λ _d	520		525	nm	
	G2		525		530		
	G3		530		535		
Forward Voltage ₍₃₎	V2		3.25		3.55		
	V3	V _F	3.55		3.85	v	
	V4		3.85		4.15		
Viewing Angle ₍₄₎		20 _{1/2}		120		deg	

Note. 1. Luminous Intensity measurement tolerance: ±10%

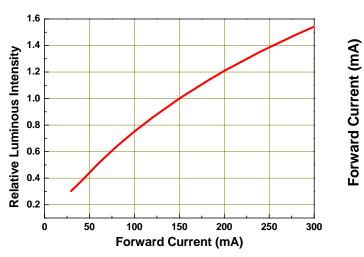

- 2. Wavelength measurement tolerance : ±1nm
- 3. Forward Voltage measurement tolerance: ±0.1V
- 4. $2\theta_{1/2}$ is the off axis angle from lamp centerline where the luminous intensity is 1/2 of the peak value.

Prepared by: Terry Hsu

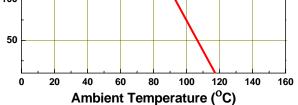
Rev. 1.0

EHP-A09/SUG31-PU5/TR

Typical Electro-Optical Characteristics Curves

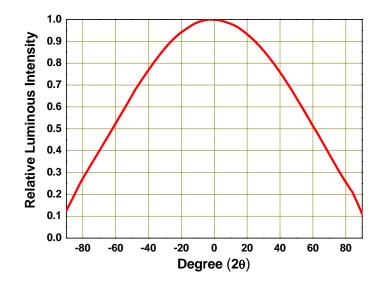


Forward Voltage vs Forward Current, *T*_{Ambient}=25°C



Relative Luminous Intensity vs Forward Current, *T*_{Ambient}=25°C

Ambient Temperature & Operating Current Derating based on T_{JMAX} = 125°C

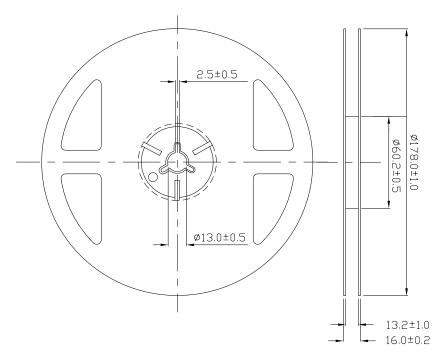


200

EHP-A09/SUG31-PU5/TR

Typical Representative Spatial Radiation Pattern

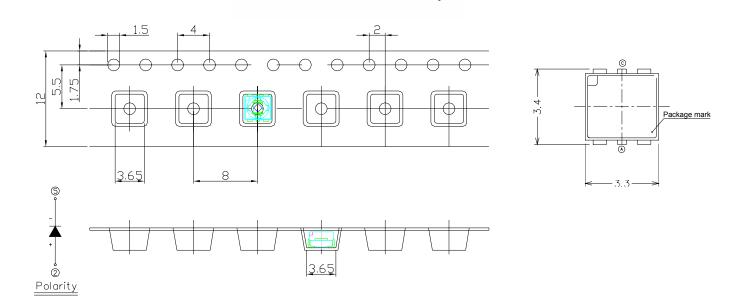
EHP-A09/SUG31-PU5/TR


Label explanation

- **CPN: Customer's Production Number**
- **P/N : Production Number**
- **QTY: Packing Quantity**
- CAT: Ranks
- **HUE: Domain Wavelength**
- **REF: Reference**
- LOT No: Lot Number

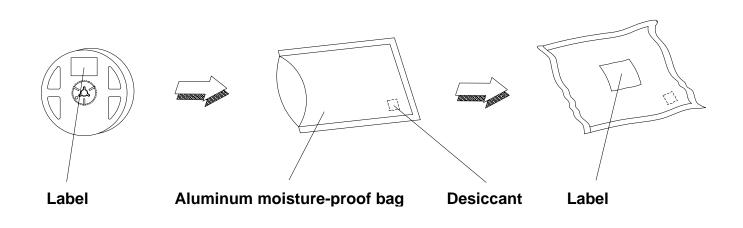
MADE IN TAIWAN: Production Place

Reel Dimensions


Note: 1. Dimensions are in millimeters.

2. The tolerances unless mentioned is ±0.1mm.

EHP-A09/SUG31-PU5/TR


Carrier Tape Dimensions: Loaded quantity 1000 PCS per reel

Progress Direction

- Note: 1. Dimensions are in millimeters.
 - 2. The tolerances unless mentioned is ±0.1mm.

Moisture Resistant Packaging

Everlight Electronics Co., Ltd. Device No. : DSE-A09-003 http://www.everlight.com Prepared date: Sept. 06, 2007 Rev. 1.0 Page: 7/10 Prepared by: Terry Hsu EVERLIGHT

EHP-A09/SUG31-PU5/TR

Reliability Test Items

Stress Test	Stress Condition	Stress Duration	
Reflow	T _{sol} =260°C, 10sec, 6min(total)	2 times	
DC Operating Life	T _a =25°C , <i>I_F</i> =150mA	1000 hours	
High Temperature Storage	T _a =100°C	1000 hours	
High Temperature Operation Life #1	T _a =55°C, <i>I_F</i> =150mA	1000 hours	
High Temperature Operation Life #2	Ta=85℃, IF=120mA	1000hours	
Low Temperature Storage	T _a =-40°C	1000 hours	
High Temperature/ Humidity Reverse Bias	Ta=85℃,RH=85%	1000hours	
High Temperature/ Humidity Operation Life	T _a =85°C , RH=60%, <i>I_F</i> =120mA	1000 hours	
Temperature Cycle	H: + 100°C 15min. '∫ 5min. 'L: −40°C 15min.	300 Cycles	
Power Temperature Cycle	H: + 85°C 15min. '∫ 5min. 'L: -40°C 15min.	1000 Cycles	
Thermal Shock	H: + 110°C 5min. '∫ 10sec. 'L: —40°C 5min.	300 Cycles	
Pulse Test	Ta=25℃, IF=1000mA 30mS on/ 2500mS off	30000 times	
ESD Human Body Model	2000V, Interval:0.5sec	3 times	
ESD Machine Model	200V, Interval:0.5sec	3 times	

*Im: Brightness attenuate difference(1000hrs) < 50%

*V_F: Forward voltage difference < 20%

Notes: All reliability items are tested under superior thermal management with 1.5 x 1.5 cm² MCPCB.

EHP-A09/SUG31-PU5/TR

Precautions For Use

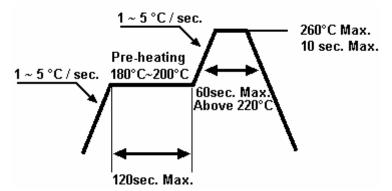
1. Over-current-proof

Though EHP-A09 has conducted ESD protection mechanism, customers must not use the device in reverse and should apply resistors for extra protection. Otherwise, slight voltage difference may cause enormous current shift and burn out failure would happen.

2. Storage

- i. Do not open the moisture proof bag before the devices are ready to use.
- Before the package is opened, LEDs should be stored at temperature less than 30°C and humidity ii. less than 90%.
- LEDs should be used within a year. iii.
- iv. After the package is opened, LEDs should be stored at temperature less than 30°C and humidity less than 70%.
- ٧. LEDs should be used within 168 hours (7 days) after the package is opened.
- If the moisture absorbent material (silicone gel) has faded away or LEDs have exceeded the vi. storage time, baking treatment should be implemented based on the following the conditions: pre-curing at 60±5°C for 24 hours.

3. Thermal Management


- For maintaining the high flux output and achieving reliability, EHP-A09 series LEDs should be i. mounted on a metal core printed circuit board (MCPCB) or other kinds of heat sink with proper thermal connection to dissipate approximate 0.5W of thermal energy at 150mA operation.
- Special thermal designs are also recommended to take in heat dissipation management, such as ii. FR4 PCB on Aluminum with thermal vias or FPC on Aluminum with thermal conductive adhesive, etc.
- iii. Sufficient thermal management must be implemented. Otherwise, the junction temperature of dies might be over the limit at high current driving condition and LEDs' lifetime might be decreases dramatically.
- iv. For further thermal management suggestions, please consult Everlight Design Guide or local representatives for assistance.

EHP-A09/SUG31-PU5/TR

4. Soldering Condition

4-1. For Reflow process

- i. EHP-A09 series are suitable for SMT process.
- ii. Lead reflow soldering temperature profile

- iii. Reflow soldering should not be done more than two times.
- iv. In soldering process, stress on the LEDs during heating should be avoided.
- v. After soldering, do not warp the circuit board.