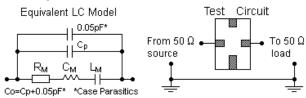


Tel: +44 118 979 1238 Fax: +44 118 979 1283

Email: info@actcrystals.com

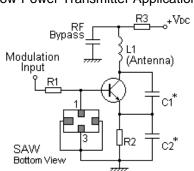
The ACTR4019/434.42/QCC4A is a true one-port, surface-acoustic-wave (SAW) resonator in a surface-mount ceramic QCC4A case. It provides reliable, fundamental-mode, quartz frequency stabilization i.e. in transmitters or local oscillators operating at 434.420 MHz.

1.Package Dimension (QCC4A)

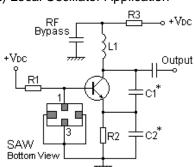


2.

Pin	Configuration		
1	Input / Output		
3	Output / Input		
2/4	Case Ground		


Sign	Data (unit: mm)	Sign	Data (unit: mm)
Α	1.2	D	1.4
В	0.8	Е	5.0
С	0.5	F	3.5

3. Equivalent LC Model and Test Circuit



4.Typical Application Circuits

1) Low-Power Transmitter Application

2) Local Oscillator Application

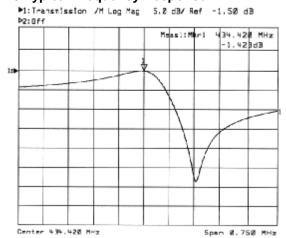
Issue: 1 C1

Date: SEPT 04

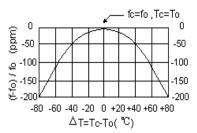
In keeping with our ongoing policy of product evolvement and improvement, the above specification is subject to change without notice.

ISO9001: 2000 Registered - Registration number 6830/2

For quotations or further information please contact us at:


3 The Business Centre, Molly Millars Lane, Wokingham, Berks, RG41 2EY, UK

http://www.actcrystals.com



Tel: +44 118 979 1238 Fax: +44 118 979 1283 Email: info@actcrystals.com

5. Typical Frequency Response

6.Temperature Characteristics

The curve shown above accounts for resonator contribution only and does not include oscillator temperature characteristics.

7.Performance

7-1.Maximum Ratings

Rating	Value	Unit	
CW RF Power Dissipation	0	dBm	
DC Voltage Between Terminals	±30V	VDC	
Case Temperature	-40 to +85	°C	
Soldering Temperature	+250	°C	

7-2. Electronic Characteristics

	Characteristic	Sym	Minimum	Typical	Maximum	Unit
Centre Frequency (+25 °C)	Absolute Frequency	fc	434.345		434.495	MHz
	Tolerance from 434.420 MHz	Δf_{C}		±75		kHz
Insertion Loss		IL		1.8	2.4	dB
Quality Factor	Unloaded Q	Q _U		9,630		
	50 Ω Loaded Q	Q _L		1,800		
Temperature Stability	Turnover Temperature	T ₀	25		55	°C
	Turnover Frequency	f ₀		fc		kHz
	Frequency Temperature Coefficient	FTC		0.032		ppm/°C ²
Frequency Aging Absolute Value during the First Year		fA		≤10		ppm/yr
DC Insulation Resistance Between Any Two Terminals			1.0			МΩ
RF Equivalent RLC Model	Motional Resistance	R _M		23	32	Ω
	Motional Inductance	L _M		81.1537		μН
	Motional Capacitance	См		1.6556		fF
	Shunt Static Capacitance	C ₀	1.60	1.85	2.10	pF

In keeping with our ongoing policy of product evolvement and improvement, the above specification is subject to change without notice.

ISO9001: 2000 Registered - Registration number 6830/2

For quotations or further information please contact us at: 3 The Business Centre, Molly Millars Lane, Wokingham, Berks, RG41 2EY, UK

Issue : 1 C1
Date : SEPT 04

Tel: +44 118 979 1238
Fax: +44 118 979 1283

Email: info@actcrystals.com

i CAUTION: Electrostatic Sensitive Device. Observe precautions for handling!

- 1. The centre frequency, f_C , is measured at the minimum IL point with the resonator in the 50 Ω test system.
- Unless noted otherwise, case temperature T_C = +25°C±2°C.
- Frequency aging is the change in f_C with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 4. Turnover temperature, T₀, is the temperature of maximum (or turnover) frequency, f₀. The nominal frequency at any case temperature, T_C, may be calculated from: f = f₀ [1 FTC (T₀ T_C)²].
- 5. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C₀ is the measured static (non-motional) capacitance between the two terminals. The measurement includes case parasitic capacitance.
- 6. Derived mathematically from one or more of the following directly measured parameters: f_C, IL, 3 dB bandwidth, f_C versus T_C, and C₀.
- 7. The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- 8. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 9. Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.

 $In keeping \ with our ongoing \ policy \ of \ product \ evolvement \ and \ improvement, \ the \ above \ specification \ is \ subject \ to \ change \ without \ notice.$

ISO9001: 2000 Registered - Registration number 6830/2