

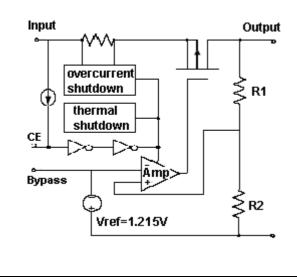
TS9007

300mA Ultra-Low-Noise, High PSRR LDO Regulator

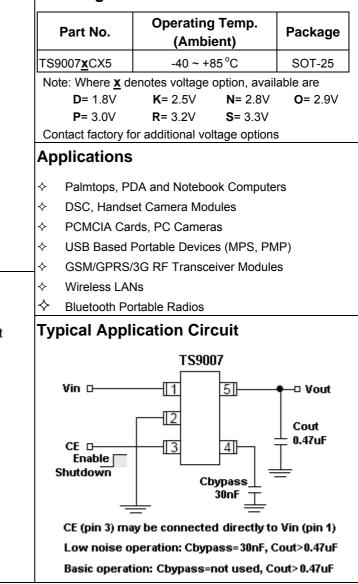
SOT-25 Pin assignment 1. Input 2. Ground 3. Enable 4. Bypass 5. Output

Low Drop Out Voltage 0.45V Low Quiescent Current High PSRR

General Description


The TS9007 series is 300mA ultra-low-noise LDO especially designed for battery-power RF and wireless applications. The TS9007 regulator achieves a low 450mV dropout at 300mA load current of 3.3V output, ultra-low output voltage noise of 15uVrms and PSRR of 57dB at 1KHz.

The TS9007 regulators are also optimized to work with low-ESR and low cost ceramic capacitors reducing the amount of board space critical in hand-held devices. The TS9007 requires only 0.47uF output capacitor for stability with and load. The TS9007 consumes less than 1uA in shutdown mode. Available in SOT-25 package.


Features

- ♦ 450mV Dropout at 300mA load (3.3V)
- ♦ Ultra low noise
- ♦ Output current up to 300mA
- Low quiescent current: 90μA
- ♦ Output voltage +/-2%
- ♦ Internal current limit and thermal shutdown
- Power saving shutdown mode (<1uA)
- Only need input and output capacitors
- ♦ Build-In internal Soft-Start
- ♦ Output short-circuit current limit protection
- ♦ Stable with 0.47uF ceramic capacitor for load
- ♦ Green package (RoHS) available

Block Diagram

Ordering Information

Supply Voltage		Vin	-C).3 ~ +7		V	
nput Supply Voltage (Recommen	ded)	Vopr	+	-2 ~ +6		V	
Dutput Short-Circuit Duration				nfinite			
Power Dissipation		Pd				mW	
Thermal Resistance		Өја	260			°C/W	
Junction Temperature Range		Tj			°C		
Storage Temperature Range		Tstg	-65 ~ +150		°C		
_ead Soldering Temperature (260	°C)	lotg	5			s	
	· ·		t damaga ta	-		0	
Caution: Stress above the listed a Electrical Characteristi		ause permanen	t damage to	the device.			
Ta = 25 °C, Vin= $(V_{OUT}+1V)$, Cin=		Vin unless othe	nvice specifi	od			
	Condit		Min	тур	Max	Unit	
Output Voltage	Vin =Vo + 1V, I _o :		-2.0		+2	%	
Output Current Limit	Short-circuit outp			200		mA	
Maximum Output Current	Vin =Vo+1V,		300			mA	
Line Regulation	Vin= $(V_{OUT}+1V)$ to 6V, I _O =10mA			0.3		%/V	
Load Regulation	Vin=Vo+1V,	Vout≥2.5V		0.2	1.0		
	$1mA \le I_L \le 300mA$					%	
	Vin=Vo+1V,	Vout<2.5V		0.2	1.0		
	1mA≤I _L ≤200mA	_					
Dropout Voltage	lo=300mA,	Vout≥2.5V		500	600	mV	
	Vout=Vo - 2%	Vout<2.5V		800	1000	_	
	lo=200mA, Vout=Vo - 2%	Vout<2.5V		800	1000		
Shutdown Supply Current	EN=0V			0.01		uA	
Ground Pin Current	lo=0mA			90	150	uA	
Ripple Rejection (PSRR)	f=100Hz, lo=1mA			55		dB	
	f=1KHz, lo=1mA			75			
	f=10kHz, Io=1mA			55			
Output Noise	Io=10mA, f=10Hz to 100kHz,			45		uVrms	
	Bypass = 0nF						
	Io=10mA, f=10Hz to 100kHz,			15		uviili	
	Bypass = 30nF						
Shutdown Exit Delay (note 2)	$R_{LOAD} = 50\Omega$			45	300	uS	
EN Logic Low Level		Vin=2.0V to 5.5V			0.4	v	
EN Logic High Level	Vin=2.0V to 5.5V		1.5		VIN	<u> </u>	
EN Input Bias Current	Vin=2.0V to 5.5V					uA	
Thermal Shutdown	Shutdown Temp			160		°C	

Note 1: The drop out voltage varies depending on output voltage selection Dropout is defined as Vin - Vout when Vout is 100mV below Vout where Vin = Vout+1V for nominal Vout Note 2: Time needed for Vout to reach 90% of final value

Functional Description

Description

The TS9007 is an ultra-low-noise, low-quiescent current, low-dropout linear regulator. It is supplied in a SOT-25 package for difference applications. This device can supply loads up to 300mA. As shown in the functional block diagram, the TS9007 consists of a reference and noise bypass circuit, error amplifier, output drive transistor, internal feedback voltage divider, thermal sensor, and short circuit current limiter. The internal reference is connected to the error amplifier's inverting input. The error amplifier compares this reference with the feedback voltage and amplifies the difference. If the feedback voltage is lower than the reference voltage, the pass=transistor gate is pulled low. This allows more current to pass to the output and increases the output voltage.

Stability

The TS9007 is a high performance LDO emphasizing stability with low output capacitance. It is able to maintain stability with an output capacitor can also be increased to optimize performance. The TS9007 will remain stable and in regulation with no load, unlike many other voltage regulators.

Internal P-Channel Pass Transistor

The TS9007 features alow impedance P-channel MOSFET pass transistor. This provides several advantages over similar designs using a PNP pass transistor, including low operating power and longer battery life. The TS9007 consumes only 90μ A of quiescent current under most conditions.

Output Short-Circuit Current Limit

The TS9007 includes a current limiter, which monitors and controls the pass transistor's gage voltage, limiting the output current to about 200mA, for example, in a short-circuit output situation.

Shutdown

The TS9007 also features a low-power active shutdown mode. It has a switch that turns off the device when disabled. This allows the output capacitor and load to discharge and de-energize the load. In the shutdown mode, the internal functional blocks, such as voltage reference and the error amplifier, are turned off completely, and the quiescent current is less than 1μ A.

Thermal Protection Shutdown

The thermal protection shutdown function protects the device from operating in over temperature condition. When the junction temperature exceeds +160 °C, the thermal sensor signals the shutdown logic, turning off the pass transistor and allowing the IC to tool down. The thermal sensor turns the pass transistor on again after the IC's junction temperature drops to +140 °C.

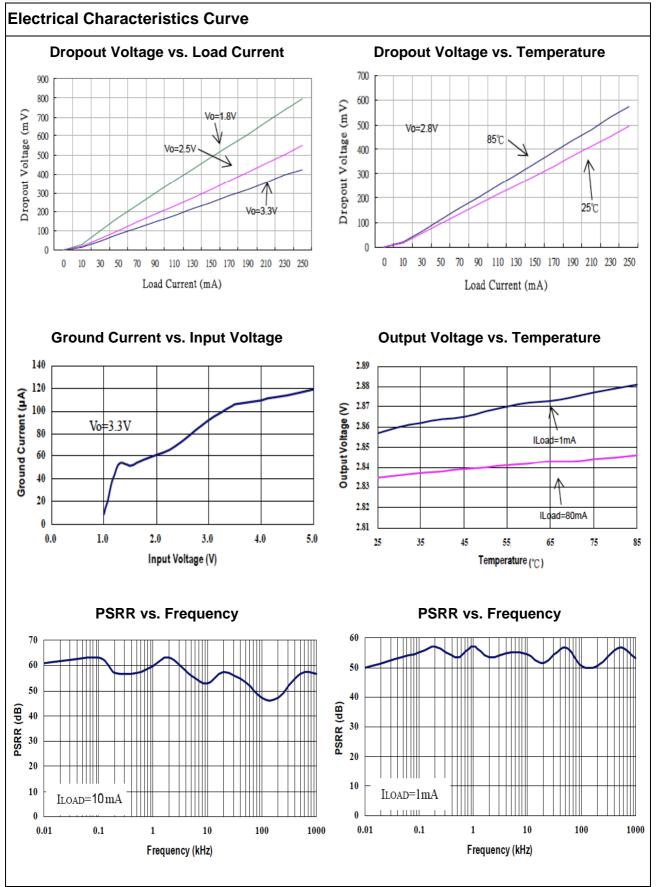
Soft-Start Circuitry

The TS9007 includes a soft-start circuitry to limit inrush current at turn-on. During power up, the output capacitor and output load are charged with a reduce output current. Shortly after the initial power up, the soft-start feature is terminated and normal operation is resumed.

Application Information

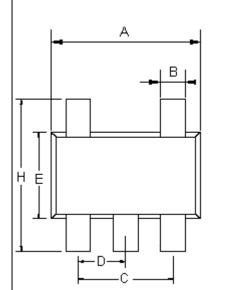
Enable / Shutdown

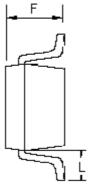
The TS9007 comes with and active-high enable pin that allows the regulator to be enabled. Forcing the enable pin low disables the regulator and puts it into the shutdown mode. This pin cannot be left floating as it may cause an undetermined state.


Input / Output Capacitor

It is recommended to use a 0.47uF capacitor on the TS9007 input and a 0.47uF capacitor on the output. For high regulation performance, larger input capacitor values and lower ESRs provide better noise rejection and line-transient response. The output noise, load-transient response, stability, and power-supply rejection can be improved by using large output capacitors. Low ESR ceramic capacitors provide optimal performance and save space.

Power Supply Rejection and Transient Response


The PSRR and transient response can be improved by increasing the values of the input and output bypass capacitors, and through passive filtering techniques



SOT-25 Mechanical Drawing

SOT-25 DIMENSION							
DIM	MILLIM	ETERS	INCHES				
	MIN	MAX	MIN	MAX			
А	2.70	3.00	0.106	0.118			
В	0.25	0.50	0.010	0.020			
С	1.90(typ)		0.075(typ)				
D	0.95(typ)		0.037(typ)				
Е	1.50	1.70	0.059	0.067			
F	1.05	1.35	0.041	0.053			
Н	2.60	3.00	0.102	0.118			
L	0.60	(typ)	0.024(typ)				