

Description

The SE5117 is an efficient linear voltage regulator. It has extra low dropout voltage. At light loads the typical dropout voltage is 5.5mV, and at full load the typical dropout voltage is 650mV. The output voltage accuracy is better than 2%.

The SE5117 has low ground current, so it can help prolong battery life. The SE5117 is specially designed for hand-held, battery-powered devices.

Pin Configuration

Features

Typical 90mV dropout voltage at 150mA.

Guaranteed 1A output over the full operating temperature range.

650mV typical dropout voltage at full load.

Extremely tight load and line regulation.

Low temperature coefficient.

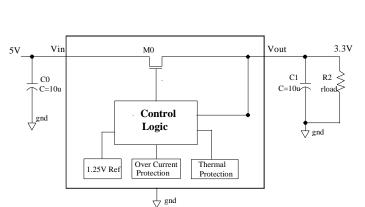
Current and thermal limiting.

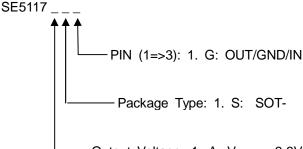
No-load stability.

Standard SOT-223 package.

Application

Active SCSI terminators.


Post regulators for switching supplies.


Battery chargers.

High-efficiency linear power supplies.

Computer motherboard, display, graphic card DC/DC converter, such as 3.3V to 2.8V or 3.3V to 2.5V.

Ordering Information

Output Voltage: 1. A: $V_{OUT} = 3.3V$

2. B: $V_{OUT} = 2.8V$

3. C: $V_{OUT} = 2.5V$

4. D: $V_{OUT} = 1.8V$

5. E: $V_{OUT} = 1.5V$

6. F: $V_{OUT} = 3.0V$

Application Diagram

Absolute Maximum Rating

Parameter	Syn	nbol Value	Unit
Supply Input Voltage	V _{IN}	-0.7 to +7	V
Power Dissipation	P _D	Internally Limited ⁽³⁾	
Junction Temperature	TJ	0 to +125	°C
Lead Temperature	т.		200 %0
(soldering, 5 sec.)	T_LEAD		260 °C
Storage Temperature	T _{STG}	-10 to +150	°C

Operating Ratings⁽²⁾

Parameter	Syn	nbol Value	Unit	
Supply Input Voltage	V _{IN}	+2.5 to +6	V	
Junction Temperature	TJ	0 to +125	°C	
Package Thermal	0	12E (S	OT 222)	
Resistance	$ heta_{JA}$	135 (5	OT-223) °C/W	

- Note 1: Exceeding the absolute maximum rating may damage the device.
- Note 2: The device is not guaranteed to function outside its operating rating.
- Note 3: The maximum allowable power dissipation at any T_A (ambient temperature) is calculated using: $P_{D(max)} = (T_{J(max)} T_A)/\theta_{JA}$. Exceeding the maximum allowable power dissipation will result in excessive die temperature, and the regulator will go into thermal shutdown. See the "Thermal Considerations" section for details.
- **Note 4:** Output voltage temperature coefficient is the worst-case voltage change divided by the total temperature range.
- Note 5: Regulation is measured at constant junction temperature using low duty cycle pulse testing. Parts are tested for load regulation in the load range from 100µA to 1A. Changes in output voltage due to heating effects are covered by the thermal regulation specification.
- **Note 6:** Dropout voltage is defined as the input to output differential at which the output voltage drops 2% below its nominal value measured at 1V differential.

Electrical Characteristics

 $V_{IN} = V_{OUT} \ + 1.0 V \ (V_{IN,MIN} = 3 V); \ C_{OUT} = 4.7 \mu F, \ I_{OUT} = 100 \mu A; \ T_{J} = 25 ^{\circ}C, \ unless \ otherwise \ specified.$

Symbol	Paramete		r Conditions	Min	Тур	Max	Units
V _{оит}	Output Voltage Accuracy		$\begin{array}{c} 10\text{mA} \leq I_{\text{OUT}} \leq 1\text{A}, T_{\text{A}} \!\!=\!\! 25^{\circ}\text{C}, \\ \text{SE5117-1.5}, 3.0\text{V} \leq \text{V}_{\text{IN}} \leq 5.5\text{V} \\ \text{SE5117-1.8}, 3.0\text{V} \leq \text{V}_{\text{IN}} \leq 5.5\text{V} \\ \text{SE5117-2.5}, 3.5\text{V} \leq \text{V}_{\text{IN}} \leq 5.5\text{V} \\ \text{SE5117-2.8}, 3.8\text{V} \leq \text{V}_{\text{IN}} \leq 5.5\text{V} \\ \text{SE5117-3.0}, 4.0\text{V} \leq \text{V}_{\text{IN}} \leq 5.5\text{V} \\ \text{SE5117-3.3}, 4.3\text{V} \leq \text{V}_{\text{IN}} \leq 5.5\text{V} \\ \text{SE5117-3.3}, 4.3\text{V} \leq \text{V}_{\text{IN}} \leq 5.5\text{V} \\ \end{array}$	1.470 1.764 2.450 2.744 2.940 3.234	1.5 1.8 2.5 2.8 3.0 3.3	1.530 1.836 2.550 2.856 3.060 3.366	V V V V
ΔV _{OUT} /ΔΤ	Output Voltage Temperature Coefficient		Note 4			40	
ΔV_{OUT} / V_{OUT}	Line Regulation		$V_{IN} = V_{OUT} + 1V$ to 5.5V		0.3		%
ΔV_{OUT} / V_{OUT}	Load Regulation ⁽⁵⁾		I _{OUT} =10mA to 1A ⁽⁵⁾		0.5		
V _{IN} - V _{OUT}	% Dropout ⁽⁶ Voltage	· V _{out} <2V	I _{OUT} =10mA I _{OUT} =500mA I _{OUT} =1A		9 530	 50	mV
		V _{OUT} >2V	I _{OUT} =10mA I _{OUT} =150mA 			90	mV
T _{PROTECTION}	Thermal Protection		I _{OUT} =500mA Temperature Protection Hysterisys		300 1 30	 50 	°C
PSRR	Ripple Rejection		f =120Hz		75		dB
Iground	Ground Curre		nt I _{OUT} =10mA mA		-	- 1	

Application Hints

Like any Low dropout regulator, SE5117 requires external capacitors to ensure stability. The external capacitors must be carefully selected to ensure the performances.

Input Capacitor:

An Input Capacitor of at least 10uF is required.

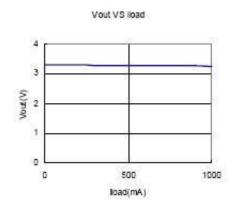
Ceramic or Tantalum can be used. The value can be increased without upper limit.

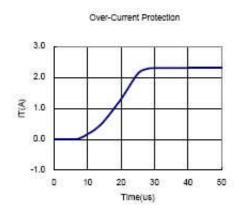
Output Capacitor:

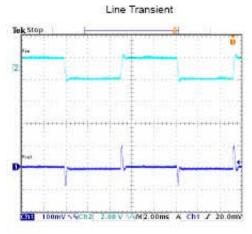
An Output Capacitor is required for look stability. It must be located no more than 1cm away from the V_{OUT} pin, and connected directly between V_{OUT} and GND pins. The minimum value is 10uF but once again its value can be increased without limit.

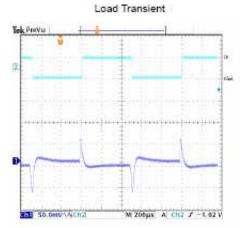
Thermal Consideration

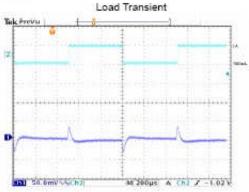
It is important that the thermal limit of the package should not be exceeded. The SE5117 has built-in thermal protection. When the thermal limit is exceeded, the IC will enter protection, and the V_{OUT} will be reset to zero. The power dissipation for a given application can be calculated as follows:

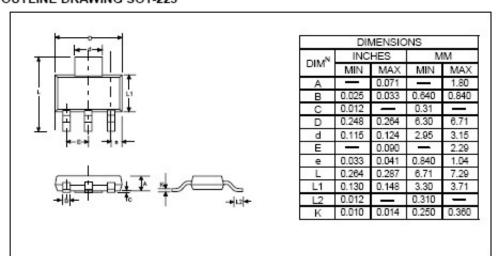

The Power Dissipation (P_D) is $P_D = I_{OUT} * [V_{IN} - V_{OUT}]$


The thermal limit of the package is then limited to $P_{D(MAX)} = [T_J - T_A]/\theta_{JA}$ where T_J is the junction temperature, T_A is ambient temperature, and θ_{JA} is around 135°C/W for SE5117. SE5117 is designed to enter thermal protection at 150°C. For example, if T_A is 25°C then the max P_D is limited to about 1W. In other words, if $I_{OUT(MAX)} = 1A$, then $[V_{IN} - V_{OUT}]$ can not exceed 1V.




Typical Performance Characteristics


(V_{IN}=5V, V_{OUT}=3.3V, C_{IN}=1uF; C_{OUT}=10uF, T_A=25°C, unless otherwise noted.)



OUTLINE DRAWING SOT-223

