

4-Mbit (256K x 16) Static RAM

Features

• Temperature Ranges

- Industrial: -40°C to +85°C

- Automotive-A: -40°C to +85°C

- Automotive-E: -40°C to +125°C

· Very high speed: 45 ns

Wide voltage range: 2.20V–3.60V

Pin-compatible with CY62147CV25, CY62147CV30, and

CY62147CV33

Ultra-low active power

Typical active current: 1.5 mA @ f = 1 MHz

— Typical active current: 8 mA @ f = f_{max}

· Ultra low standby power

• Easy memory expansion with $\overline{\text{CE}}$, and $\overline{\text{OE}}$ features

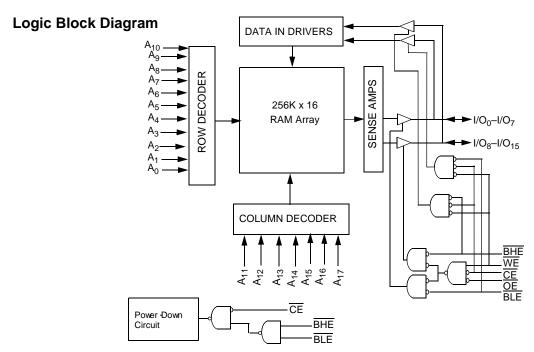
Automatic power-down when deselected

CMOS for optimum speed/power

 Available in Pb-free and non Pb-free 48-ball VFBGA and non Pb-free 44-pin TSOPII

· Byte power-down feature

Functional Description[1]


The CY62147DV30 is a high-performance CMOS static RAM organized as 256K words by 16 bits. This device features ad-

vanced circuit design to provide ultra-low active current. This is ideal for providing More Battery LifeTM (MoBL[®]) in portable applications such as cellular telephones. The device also has an automatic power-down feature that significantly reduces power consumption. The device can also be put into standby mode reducing power consumption by more than 99% when deselected (\overline{CE} HIGH or both \overline{BLE} and \overline{BHE} are HIGH). The input/output pins (I/O₀ through I/O₁₅) are placed in a high-impedance state when: deselected (\overline{CE} HIGH), outputs are disabled (\overline{OE} HIGH), both Byte High Enable and Byte Low Enable are disabled (\overline{BHE} , \overline{BLE} HIGH), or during a write operation (\overline{CE} LOW and \overline{WE} LOW).

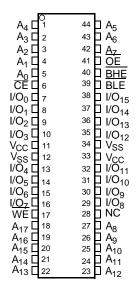
Writing to the device is accomplished by taking Chip Enable ($\overline{\text{CE}}$) and Write Enable (WE) inputs LOW. If Byte Low Enable (BLE) is LOW, then data from I/O pins (I/O $_0$ through I/O $_7$), is written into the location specified on the address pins (A $_0$ through A $_{17}$). If Byte High Enable (BHE) is LOW, then data from I/O pins (I/O $_8$ through I/O $_{15}$) is written into the location specified on the address pins (A $_0$ through A $_{17}$).

Reading from the device is accomplished by taking Chip Enable (\overline{CE}) and Output Enable (\overline{OE}) LOW while forcing the Write Enable (\overline{WE}) HIGH. If Byte Low Enable (\overline{BLE}) is LOW, then data from the memory location specified by the <u>address</u> pins will appear on I/O₀ to I/O₇. If Byte High Enable (\overline{BHE}) is LOW, then data from memory will appear on I/O₈ to I/O₁₅. See the truth table at the back of this data sheet for a complete description of read and write modes.

The CY62147DV30 is available in a 48-ball VFBGA, 44 Pin TSOPII packages.

Note:

1. For best practice recommendations, please refer to the Cypress application note "System Design Guidelines" on http://www.cypress.com.



Pin Configuration^[2, 3, 4]

VFBGA (Top View)

3 4 5 6 ŌE A_2 NC BLE A_0 A_1 Α 1/Q₈ CE BHE A_3 A_4 I/Q₀ В 1/O₁₀) I/Q₉ A_5 A_6 I/O_1 1/02 С I/O₁₁ Vcc V_{SS} A₁₇ I/O₃ D (1/O₁₂) A₁₆ Vss DNU I/O₄ Vcc Е 1/O₁₃ 1/O₁₄ A_{14} A_{15} I/O₅ I/Q₆ F A₁₃ 1/07 I/O₁₅ NC A_{12} WE G A₁₁ NC A_8 A_9 A_{10} (NC Н

44 TSOP II (Top View)

Product Portfolio

								Power D	issipatio	on	
					Speed	0	perating	J I _{CC} (m/	4)	Standl	ov Iene
Product	Range	ν _c	_C Range	(V)	(ns)	f = 1	MHz	f = 1	max	(μ.	
		Min.	Typ . ^[5]	Max.		Typ. ^[5]	Max.	Typ . ^[5]	Max.	Typ. ^[5]	Max.
CY62147DV30LL	Industrial	2.2V	3.0	3.6	45	1.5	3	10	20	2	8
CY62147DV30LL	Industrial	2.2V	3.0	3.6	55	1.5	3	8	15	2	8
CY62147DV30L	Auto-E										25
CY62147DV30LL	Industrial	2.2V	3.0	3.6	70	1.5	3	8	15	2	8
CY62147DV30LL	Auto-A	1									8

Notes:

- NC pins are not internally connected on the die.
 DNU pins have to be left floating or tied to V_{SS} to ensure proper application.
 Pins H1, G2, and H6 in the VFBGA package are address expansion pins for 8 Mb, 16 Mb, and 32 Mb, respectively.
 Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ.)}, T_A = 25°C.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied......-55°C to +125°C Supply Voltage to Ground Potential.....-0.3V to + V_{CC(MAX)} + 0.3V DC Voltage Applied to Outputs in High-Z State $^{[6,7]}$ -0.3V to $\rm V_{CC(MAX)}$ + 0.3V

Output Current into Outputs (LOW)	20 mA
Static Discharge Voltage(per MIL-STD-883, Method 3015)	. >2001V
Latch-up Current	>200 mA

Operating Range

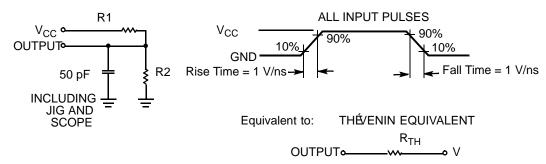
Device	Range	Ambient Temperature $[T_{A}]^{[9]}$	V _{CC}
CY62147DV30L	Automotive-E	–40°C to +125°C	2.20V
CY62147DV30LL	Industrial	-40°C to +85°C	to 3.60V
	Automotive-A	-40°C to +85°C	0.00 V

Electrical Characteristics (Over the Operating Range)

					-45			-55/-	70	
Parameter	Description	Test Condition	ons	Min.	Typ. ^[5]	Max.	Min.	Typ. ^[5]	Max.	Unit
V _{OH}	Output HIGH	$I_{OH} = -0.1 \text{ mA}$	$V_{CC} = 2.20V$	2.0			2.0			V
	Voltage	I _{OH} = -1.0 mA	$V_{CC} = 2.70V$	2.4			2.4			V
V _{OL}	Output LOW	I _{OL} = 0.1 mA	$V_{CC} = 2.20V$			0.4			0.4	V
	Voltage	I _{OL} = 2.1 mA	$V_{CC} = 2.70V$			0.4			0.4	V
V _{IH}	Input HIGH	V _{CC} = 2.2V to 2.7V		1.8		V _{CC} + 0.3V	1.8		V _{CC} + 0.3V	V
	Voltage	V _{CC} = 2.7V to 3.6V		2.2		V _{CC} + 0.3V	2.2		V _{CC} + 0.3V	V
V _{IL}	Input LOW	V _{CC} = 2.2V to 2.7V		-0.3		0.6	-0.3		0.6	V
	Voltage	V _{CC} = 2.7V to 3.6V		-0.3		0.8	-0.3		0.8	V
I _{IX}		$GND \le V_1 \le V_{CC}$	Ind'I	-1		+1	-1		+1	μΑ
	Current		Auto-A ^[9]				-1		+1	μΑ
			Auto-E ^[9]				-4		+4	μΑ
I _{OZ}	Output	$GND \le V_O \le V_{CC}$	Ind'l	-1		+1	-1		+1	μΑ
	Leakage Current	Output Disabled	Auto-A ^[9]				-1		+1	μΑ
	Curront		Auto-E ^[9]				-4		+4	μΑ
I _{CC}	V _{CC} Operating	$f = f_{MAX} = 1/t_{RC}$	$V_{CC} = V_{CCmax}$		10	20		8	15	mA
	Supply Current	f = 1 MHz	I _{OUT} = 0 mA CMOS levels		1.5	3		1.5	3	mA
I _{SB1}		$\overline{CE} \ge V_{CC} - 0.2V$,	Ind'I LL			8			8	μΑ
	Power-Down Current —	$V_{IN} \ge V_{CC} - 0.2V, V_{IN} \le 0.2V)$ f = f_{MAX} (Address and	Auto-A ^[9] LL						8	
	CMOS Inputs	Data Only), $\underline{f = 0}$ (OE, WE, BHE and BLE), $V_{CC} = 3.60V$	Auto-E ^[9] L						25	
I _{SB2}	Automatic CE	$\overline{CE} \ge V_{CC} - 0.2V$	Ind'I LL			8			8	μΑ
	Power-Down Current —	$V_{IN} \ge V_{CC} - 0.2V$ or $V_{IN} \le 0.2V$,	Auto-A ^[9] LL						8	
		$f = 0, V_{CC} = 3.60V$	Auto-E ^[9] L						25	

Notes:

- 6. $V_{IL(min.)} = -2.0V$ for pulse durations less than 20 ns.
- V_{IL(min.)} = V_{CC} + 0.75V for pulse durations less than 20 ns.
 Full device AC operation assumes a 100-μs ramp time from 0 to V_{CC}(min) and 200-μs wait time after V_{CC} stabilization.
- 9. Auto-A is available in -70 and Auto-E is available in -55.

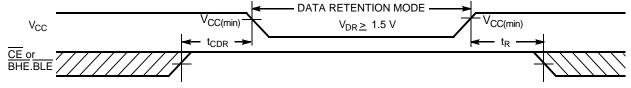

Capacitance (for all packages)^[10]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	10	pF
C _{OUT}	Output Capacitance	$V_{CC} = V_{CC(typ)}$	10	pF

Thermal Resistance^[10]

Parameter	Description	Test Conditions	VFBGA	TSOP II	Unit
Θ_{JA}	Thermal Resistance (Junction to Ambient)	Still Air, soldered on a 3×4.5 inch, four-layer printed circuit board	72	75.13	°C/W
ΘJC	Thermal Resistance (Junction to Case)		8.86	8.95	°C/W

AC Test Loads and Waveforms^[10]



Parameters	2.50V	3.0V	Unit
R1	16667	1103	Ω
R2	15385	1554	Ω
R _{TH}	8000	645	Ω
V _{TH}	1.20	1.75	V

Data Retention Characteristics (Over the Operating Range)

Parameter	Description	Conditions			Typ. ^[5]	Max.	Unit
V_{DR}	V _{CC} for Data Retention			1.5			V
I _{CCDR}	Data Retention Current	$\frac{V_{CC}=1.5V}{CE \ge V_{CC}-0.2V},$	L (Auto-E)			15	μΑ
		$CE \ge V_{CC} - 0.2V,$ $V_{IN} \ge V_{CC} - 0.2V \text{ or}$ $V_{IN} \le 0.2V$	LL (Ind'I/Auto-A)			6	
t _{CDR} ^[10]	Chip Deselect to Data Retention Time			0			ns
t _R ^[12]	Operation Recovery Time			t _{RC}			ns

Data Retention Waveform^[13]

- Notes:

 10. Tested initially and after any design or process changes that may affect these parameters.
 11. Test condition for the 45-ns part is a load capacitance of 30 pF.
 12. Full device operation requires linear V_{CC} ramp from V_{DR} to V_{CC(min.)} ≥ 100 μs or stable at V_{CC(min.)} ≥ 100 μs.

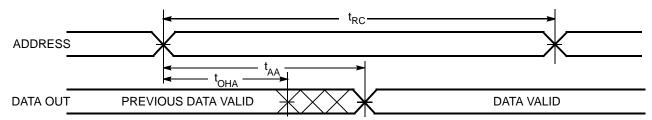
 13. BHE.BLE is the AND of both BHE and BLE. Chip can be deselected by either disabling the chip enable signals or by disabling both BHE and BLE.

Switching Characteristics Over the Operating Range^[14]

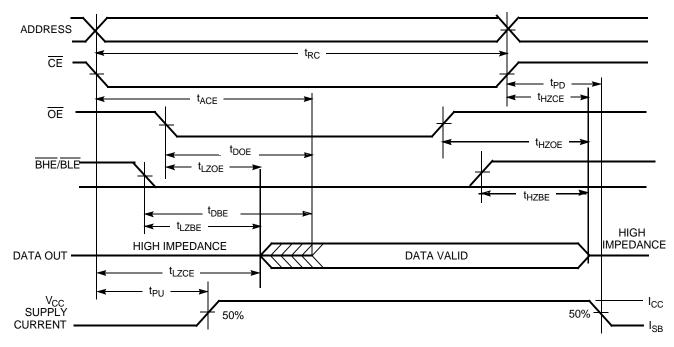
		45 r	าร ^[11]	55	ns	70 ns		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Read Cycle		•	•	•	•	•	•	
t _{RC}	Read Cycle Time	45		55		70		ns
t _{AA}	Address to Data Valid		45		55		70	ns
t _{OHA}	Data Hold from Address Change	10		10		10		ns
t _{ACE}	CE LOW to Data Valid		45		55		70	ns
t _{DOE}	OE LOW to Data Valid		25		25		35	ns
t _{LZOE}	OE LOW to LOW Z ^[15]	5		5		5		ns
t _{HZOE}	OE HIGH to High Z ^[15, 16]		15		20		25	ns
t _{LZCE}	CE LOW to Low Z ^[15]	10		10		10		ns
t _{HZCE}	CE HIGH to High Z ^[15, 16]		20		20		25	ns
t _{PU}	CE LOW to Power-Up	0		0		0		ns
t _{PD}	CE HIGH to Power-Down		45		55		70	ns
t _{DBE}	BLE/BHE LOW to Data Valid		45		55		70	ns
t _{LZBE}	BLE/BHE LOW to Low Z ^[15]	10		10		10		ns
t _{HZBE}	BLE/BHE HIGH to HIGH Z ^[15, 16]		15		20		25	ns
Write Cycle ^[17]								
t _{WC}	Write Cycle Time	45		55		70		ns
t _{SCE}	CE LOW to Write End	40		40		60		ns
t _{AW}	Address Set-up to Write End	40		40		60		ns
t _{HA}	Address Hold from Write End	0		0		0		ns
t _{SA}	Address Set-up to Write Start	0		0		0		ns
t _{PWE}	WE Pulse Width	35		40		45		ns
t _{BW}	BLE/BHE LOW to Write End	40		40		60		ns
t _{SD}	Data Set-up to Write End	25		25		30		ns
t _{HD}	Data Hold from Write End	0		0		0		ns
t _{HZWE}	WE LOW to High-Z ^[15, 16]		15		20		25	ns
t _{LZWE}	WE HIGH to Low-Z ^[15]	10		10		10		ns

^{14.} Test conditions for all parameters other than tri-state parameters assume signal transition time of 3 ns (1 V/ns) or less, timing reference levels of V_{CC(typ)}/2, input pulse levels of 0 to V_{CC(typ.)}, and output loading of the specified I_{OL}/I_{OH} as shown in the "AC Test Loads and Waveforms" section.

15. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZBE} is less than t_{LZOE}, and t_{HZWE} is less than t_{LZOE}, and t_{HZWE} for any given device.


^{16.} t_{HZOE}, t_{HZBE}, and t_{HZWE} transitions are measured when the <u>outputs</u> enter <u>a high</u> impedence state.

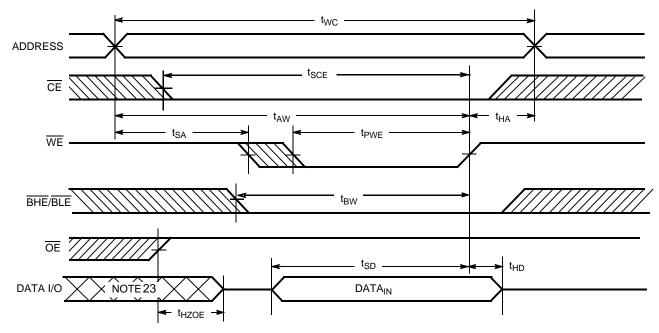
17. The internal Write time of the memory is defined by the overlap of WE, CE = V_{IL}, BHE and/or BLE = V_{IL}. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input set-up and hold timing should be referenced to the edge of the signal that terminates the write.



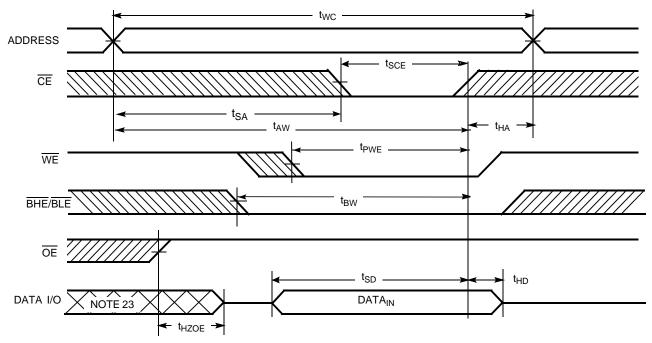
Switching Waveforms

Read Cycle 1 (Address Transition Controlled)^[18, 19]

Read Cycle No. 2 (OE Controlled)[19, 20]



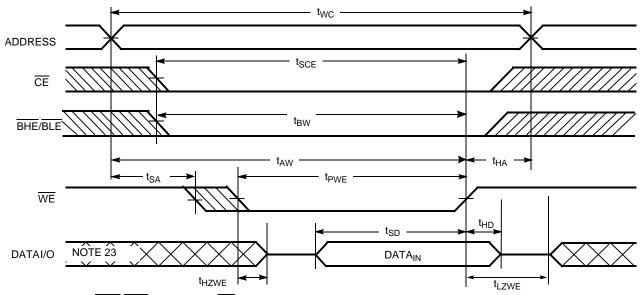
- 18. <u>The</u> device is continuously selected. <u>OE</u>, <u>CE</u>= V_{IL}, <u>BHE</u> and/or <u>BLE</u> = V_{IL}. 19. WE is HIGH for read cycle.
- 20. Address valid prior to or coincident with $\overline{\text{CE}}$ and $\overline{\text{BHE}}$, $\overline{\text{BLE}}$ transition LOW.



Switching Waveforms (continued)

Write Cycle No. 1 (WE Controlled)[17, 21, 22]

Write Cycle No. 2 (CE Controlled)[17, 21, 22]


Notes:

- 22. If \overline{CE} goes HIGH simultaneously with $\overline{WE} = V_{IH}$, the output remains in a high-impedance state. 23. During this period, the I/Os are in output state and input signals should not be applied.



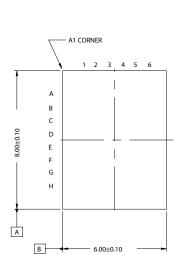
Switching Waveforms (continued)

Write Cycle No. 3 (WE Controlled, OE LOW)[22]

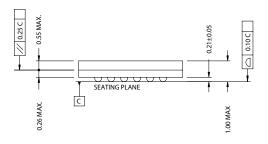
Write Cycle No. 4 (BHE/BLE Controlled, OE LOW)[22]

Truth Table

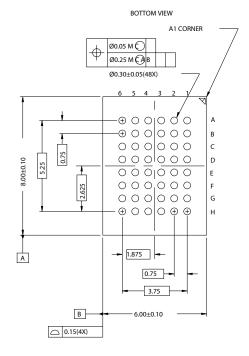
CE	WE	OE	BHE	BLE	Inputs/Outputs	Mode	Power
Н	Х	Х	Х	Х	High Z	Deselect/Power-Down	Standby (I _{SB})
Χ	Х	Х	Н	Н	High Z	Deselect/Power-Down	Standby (I _{SB})
L	Н	L	L	L	Data Out (I/O _O -I/O ₁₅)	Read	Active (I _{CC})
L	Н	L	Н	L	Data Out (I/O _O -I/O ₇); I/O ₈ -I/O ₁₅ in High Z	Read	Active (I _{CC})
L	Н	L	L	Н	Data Out (I/O ₈ –I/O ₁₅); I/O ₀ –I/O ₇ in High Z	Read	Active (I _{CC})
L	Н	Н	L	L	High Z	Output Disabled	Active (I _{CC})
L	Н	Н	Н	L	High Z	Output Disabled	Active (I _{CC})
L	Н	Н	L	Н	High Z	Output Disabled	Active (I _{CC})
L	L	Х	L	L	Data In (I/O _O -I/O ₁₅)	Write	Active (I _{CC})
L	L	Х	Н	L	Data In (I/O _O -I/O ₇); I/O ₈ -I/O ₁₅ in High Z	Write	Active (I _{CC})
L	L	Х	L	Н	Data In (I/O ₈ –I/O ₁₅); I/O ₀ –I/O ₇ in High Z	Write	Active (I _{CC})


Ordering Information

Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
45	CY62147DV30LL-45BVXI	51-85150	48-ball (6 mm × 8mm × 1 mm) VFBGA (Pb-free)	Industrial
	CY62147DV30LL-45ZSXI	51-85087	44-pin TSOP II (Pb-free)]
55	CY62147DV30LL-55BVI	51-85150	48-ball (6 mm × 8mm × 1 mm) VFBGA	Industrial
	CY62147DV30LL-55BVXI		48-ball (6 mm × 8mm × 1 mm) VFBGA (Pb-free)	
	CY62147DV30LL-55ZSXI	51-85087	44-pin TSOP II (Pb-free)]
	CY62147DV30L-55BVXE	51-85150	48-ball (6 mm × 8mm × 1 mm) VFBGA (Pb-free)	Automotive-E
	CY62147DV30L-55ZSXE	51-85087	44-pin TSOP II (Pb-free)	
70	CY62147DV30LL-70BVI	51-85150	48-ball (6 mm × 8mm × 1 mm) VFBGA	Industrial
	CY62147DV30LL-70BVXA		48-ball (6 mm x 8mm x 1 mm) VFBGA (Pb-free)	Automotive-A

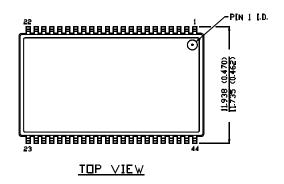


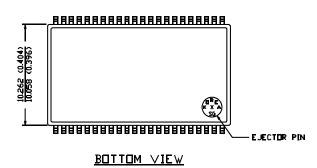
Package Diagram


48-ball VFBGA (6 x 8 x 1 mm) (51-85150)

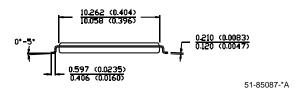
TOP VIEW

- 6.00±0.10


51-85150-*D



Package Diagram (continued)


44-Pin TSOP II (51-85087)

DIMENSION IN MM (INCH)
MAX
MIN

MoBL is a registered trademark, and More Battery Life is a trademark, of Cypress Semiconductor Corporation. All product and company names mentioned in this document may be the trademarks of their respective holders.

Document History Page

REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	127481	06/17/03	HRT	New Data Sheet
*A	131010	01/23/04	CBD	Changed from Advance to Preliminary
*B	213252	See ECN	AJU	Changed from Preliminary to Final Added 70 ns speed bin Modified footnote 7 to include ramp time and wait time Modified input and output capacitance values to 10 pF Modified Thermal Resistance values on page 4 Added "Byte power-down feature" in the features section Modified Ordering Information for Pb-free parts
*C	257349	See ECN	PCI	Modified ordering information for 70-ns Speed Bin
*D	316039	See ECN	PCI	Added 45-ns Speed Bin in AC, DC and Ordering Information tables Added Footnote #10 on page #4 Added Pb-free package ordering information on page #9 Changed 44-lead TSOP-II package name on page 11 from Z44 to ZS44 Standardized Icc values across 'L' and 'LL' bins
*E	330365	See ECN	AJU	Added Automotive product information
*F	498575	See ECN	NXR	Added Automotive-A range Added note# 9 on page# 3 Updated ordering information table