
Skew Controlled SDRAM Buffer

Features

- · Six skew controlled CMOS outputs
- Output skew between any two outputs is less than 150 ps
- SMBus Serial configuration interface
- 2.5 ns to 5 ns propagation delay
- DC to 133 MHz operation (Commercial)
- DC to 100 MHz operation (Industrial)
- Single 3.3V supply voltage
- · Low power CMOS design packaged in a 16-pin SSOP (Small Shrink Outline Package)

Key Specifications

Supply Voltages:	$V_{DDQ3} = 3.3V \pm 5\%$
Operating Temperature: (Commercial)	0°C to +70°C
Operating Temperature: (Industrial)	–40°C to +85°C
Input Threshold:	1.5V typical
Maximum Input Voltage:	V _{DDQ3} + 0.5V
Input Frequency: (Commercial)	0 to 133 MHz
Input Frequency: (Industrial)	0 to 100 MHz
BUF_IN to SDRAM0:5 Propagation Dela	y:2.5 ns to 5 ns
Min. Output Edge Rate:	1.0V/ns
Max. Output Skew:	150 ps
Output Duty Cycle:	.45/55% worst case
Output Impedance:	15Ωtyp.

www.SpectraLinear.com

Pin Definitions

Pin Name	Pin No.	Pin Type	Pin Description
SDRAM0:5	1, 3, 6, 11, 13, 15	0	SDRAM Outputs: Provides buffered copy of BUF_IN. The propagation delay from a rising input edge to a rising output edge is 2.5 to 5 ns. All outputs are skew controlled to within ±150 ps of each other.
BUF_IN	4	I	Clock Input: This clock input has an input threshold voltage of 1.5V (typ).
SDATA	8	I/O	SMBus Data input: Data should be presented to this input as described in the SMBus section of this data sheet. Internal 250-k Ω pull-up resistor.
SCLOCK	9	I	SMBus clock input: The SMBus Data clock should be presented to this input as described in the SMBus section of this data sheet. Internal 250-kΩ pull-up resistor.
VDDQ3	7, 12, 16	Р	Power Connection: Power supply for core logic and output buffers. Connected to 3.3V supply.
GND	2, 5, 10, 14	G	Ground Connection: Connect all ground pins to the common system ground plane.

Overview

The W191 is a skew controlled fanout buffer optimized for interface with registered DIMMs.

Functional Description

Output Drivers

The W191 output buffers are CMOS type which deliver a rail-to-rail (GND to VDD) output voltage swing into a nominal capacitive load. Thus, output signaling is both TTL and CMOS level compatible. Nominal output buffer impedance is 15Ω .

Serial Control

Serial control data is written to the W191 in ten bytes of eight bits each. Bytes are written in the order shown in *Table 1*

Writing Data Bytes

Each bit in the data bytes control a particular device function. Bits are written MSB (most significant bit) first, which is bit 7. *Table 1* gives the bit formats for registers located in Data Bytes 0-2.

Table 1. Byte Writing Sequence

Byte Sequence	Byte Name	Bit Sequence	Byte Description
1	Slave Address	11010010	Commands the W191 to accept the bits in Data Bytes 0-6 for internal register configuration. Since other devices may exist on the same common serial data bus, it is necessary to have a specific slave address for each potential receiver. The slave receiver address for the W191 is 11010010. Register setting will not be made if the Slave Address is not correct (or is for an alternate slave receiver).
2	Command Code	Don't Care	Unused by the W191, therefore bit values are ignored (don't care). This byte must be included in the data write sequence to maintain proper byte allocation. The Command Code Byte is part of the standard serial communication protocol and may be used when writing to another addressed slave receiver on the serial data bus.
3	Byte Count	Don't Care	Unused by the W191, therefore bit values are ignored (don't care). This byte must be included in the data write sequence to maintain proper byte allocation. The Byte Count Byte is part of the standard serial communication protocol and may be used when writing to another addressed slave receiver on the serial data bus.
4	Data Byte 0	Refer to	The data bits in these bytes set internal W191 registers that control device
5	Data Byte 1	Table 2	operation. The data bits are only accepted when the Address Byte bit sequence is 11010010, as noted above. For description of bit control
6	Data Byte 2		functions, refer to <i>Table 2</i> .
7	Data Byte 3	Don't Care	
8	Data Byte 4		
9	Data Byte 5		
10	Data Byte 6		

Table 2. Data Bytes 0–2 Serial Configuration Map^[2]

	Affe	cted Pin		Bit Control		
Bit(s)	Pin No.	Pin Name	Control Function	0	1	
Data Byte	0 SDRAM Act	tive/Inactive Reg	ister (1 = Enable, 0 = Disable)			
7	6	SDRAM2	Clock Output Disable	Low	Active	
6			(Reserved)			
5			(Reserved)			
4			(Reserved)			
3			(Reserved)			
2	3	SDRAM1	Clock Output Disable	Low	Active	
1			(Reserved)			
0	1	SDRAM0	Clock Output Disable			
Data Byte	1 SDRAM Act	tive/Inactive Reg	ister (1 = Enable, 0 = Disable)			
7			Clock Output Disable			
6	15	SDRAM5	Clock Output Disable	Low	Active	
5			Clock Output Disable			
4			(Reserved)			
3	13	SDRAM4	Clock Output Disable	Low	Active	
2			(Reserved)			
1			(Reserved)			
0			(Reserved)			
Data Byte	2 SDRAM Act	tive/Inactive Reg	ister (1 = Enable, 0 = Disable)			
7	11	SDRAM3	Clock Output Disable	Low	Active	
6			(Reserved)			
5			(Reserved)			
4			(Reserved)			
3			(Reserved)			
2			(Reserved)			
1			(Reserved)			
0			(Reserved)			

Note:
2. At power up all SDRAM outputs are enabled and active. Program Reserved bits to 0.

Absolute Maximum Ratings[3]

Stresses greater than those listed in this table may cause permanent damage to the device. These represent a stress

rating only. Operation of the device at these or any other conditions above those specified in the operating sections of this specification is not implied. Maximum conditions for extended periods may affect reliability.

Parameter	Description	Rating	Unit
V _{DDQ3} , V _{IN}	Voltage on any pin with respect to GND	-0.5 to + 7.0	V
T _{STG}	Storage Temperature	-65 to + 150	°C
T _B	Ambient Temperature under Bias	-55 to + 125	°C
T _A	Operating Temperature (Commercial)	0 to + 70	°C
T _A	Operating Temperature (Industrial)	-40 to + 85	°C

DC Electrical Characteristics: T_A = 0°C to +70°C (Commercial), V_{DDQ3} = 3.3V ± 5%, T_A = -40°C to +85°C (Industrial), V_{DDQ3} = 3.3V ± 5% [4]

Parame- ter	Description	Test Condition	Min.	Тур.	Max.	Unit
I _{DD}	3.3V Supply Current	BUF_IN = 100 MHz		173		mA
I _{DD}	3.3V Supply Current in three-state	BUF_IN = 100 MHz		5		mA
Logic Inp	uts (BUF_IN, OE, SCLOCK, SDATA)	•				
V _{IL}	Input Low Voltage		GND-0.3		0.8	V
V _{IH}	Input High Voltage		2.0		V _{DDQ3} +0.5	V
I _{ILEAK}	Input Leakage Current, BUF_IN		-5		+5	μΑ
I _{ILEAK}	Input Leakage Current ^[5]		-20		+5	μΑ
Logic Out	tputs (SDRAM0:5)	•				
V _{OL}	Output Low Voltage	I _{OL} = 1 mA			50	mV
V _{OH}	Output High Voltage	I _{OH} = -1 mA	3.1			V
I _{OL}	Output Low Current	V _{OL} = 1.5V	65	100	160	mA
I _{OH}	Output High Current	V _{OH} = 1.5V	70	110	185	mA
Pin Capad	citance/Inductance	1			1	
C _{IN}	Input Pin Capacitance (Except BUF_IN)				5	pF
C _{OUT}	Output Pin Capacitance				6	pF
L _{IN}	Input Pin Inductance				7	nH

Multiple supplies: The voltage on any input or I/O pin cannot exceed the power pin during power-up. Power supply sequencing is NOT required.
 Outputs loaded by 6" 60Ω transmission lines with 20 pF capacitors.
 OE, SCLOCK, and SDATA logic pins have a 250-kΩ internal pull-up resistor (not CMOS level).

AC Electrical Characteristics: T_A = 0°C to +70°C (Commercial), V_{DDQ3} = 3.3V ± 5%, T_A = -40°C to +85°C (Industrial), V_{DDQ3} = 3.3V ± 5% (Lump Capacitance Test Load = 30pF)

Parameter	Description	Test Condition	Min.	Тур.	Max.	Unit
f _{IN}	Input Frequency (Commercial)		0		133	MHz
f _{IN}	Input Frequency (Industrial)		0		100	MHz
t _R	Output Rise Edge Rate	Measured from 0.4V to 2.4V	1.0		4.0	V/ns
t _F	Output Fall Edge Rate	Measured from 2.4V to 0.4V	1.0		4.0	V/ns
t _{SR}	Output Skew, Rising Edges				150	ps
t _{SF}	Output Skew, Falling Edges				150	ps
t _{EN}	Output Enable Time		1.0		8.0	ns
t _{DIS}	Output Disable Time		1.0		8.0	ns
t _{PR}	Rising Edge Propagation Delay		2.5		5.0	ns
t _{PF}	Falling Edge Propagation Delay		2.5		5.0	ns
t _D	Duty Cycle	Measured at 1.5V	45		55	%
Z _o	AC Output Impedance			15		Ω

How To Use the Serial Data Interface

Electrical Requirements

Figure 1 illustrates electrical characteristics for the serial interface bus used with the W191. Devices send data over the bus with an open drain logic output that can (a) pull the bus line low, or (b) let the bus default to logic 1. The pull-up resistor on the bus (both clock and data lines) establish a default logic 1. All bus devices generally have logic inputs to receive data.

Although the W191 is a receive-only device (no data write-back capability), it does transmit an "acknowledge" data pulse after each byte is received. Thus, the SDATA line can both transmit and receive data.

The pull-up resistor should be sized to meet the rise and fall times specified in AC parameters, taking into consideration total bus line capacitance.

Signaling Requirements

As shown in Figure 2, valid data bits are defined as stable logic 0 or 1 condition on the data line during a clock HIGH (logic 1)

pulse. A transitioning data line during a clock high pulse may be interpreted as a start or stop pulse (it will be interpreted as a start or stop pulse if the start/stop timing parameters are met).

A write sequence is initiated by a "Start Bit" as shown in Figure 3. A "Stop Bit" signifies that a transmission has ended.

As stated previously, the W191 sends an "acknowledge" pulse after receiving eight data bits in each byte as shown in *Figure 4*.

Sending Data to the W191

The device accepts data once it has detected a valid start bit and address byte sequence. Device functionality is changed upon the receipt of each data bit (registers are not double buffered). Partial transmission is allowed meaning that a transmission can be truncated as soon as the desired data bits are transmitted (remaining registers will be unmodified). Transmission is truncated with either a stop bit or new start bit (restart condition).

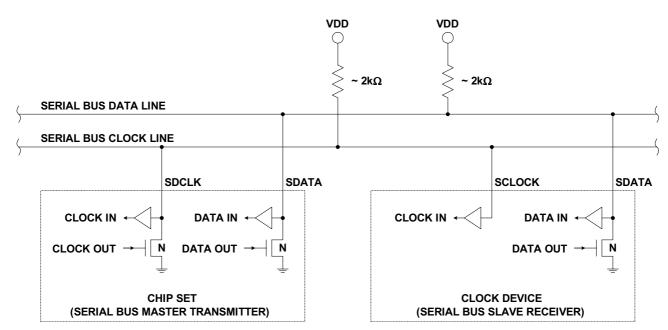


Figure 1. Serial Interface Bus Electrical Characteristics

Rev 1.0, November 20, 2006

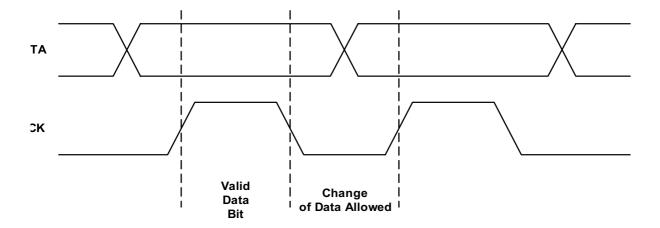


Figure 2. Serial Data Bus Valid Data Bit

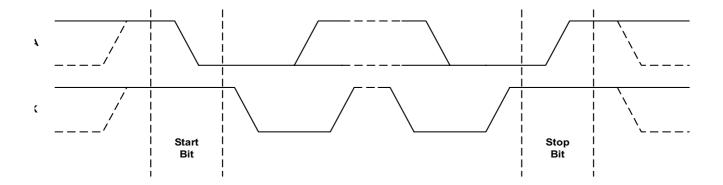


Figure 3. Serial Data Bus Start and Stop Bit

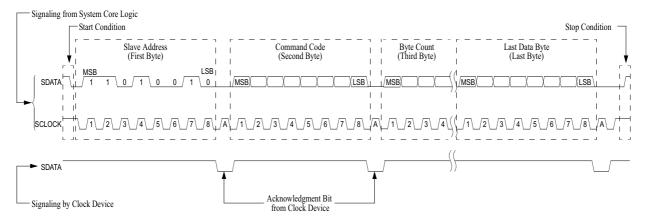


Figure 4. Serial Data Bus Write Sequence

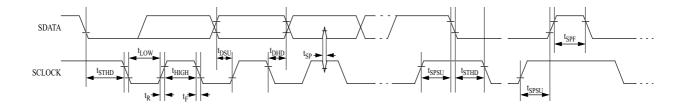
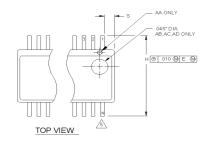
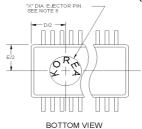
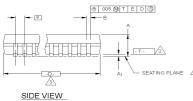
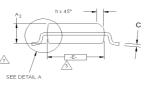


Figure 5. Serial Data Bus Timing Diagrams

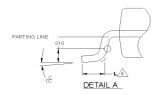

Ordering Information


Ordering Code	Package Type	Temperature Range
W191HI	16 pin = SSOP (150 mil)	l = Industrial
W191H	16 pin = SSOP (150 mil)	Commercial




Package Diagrams

Shrink Small Outline Package (SSOP 150 inch)



END VIEW

NOTES:

- 1982. DIMENSIONING & TOLERANCES PER ANSI Y14.5M 1982.
- 2 "T" IS A REFERENCE DATUM.
- TO "& "E" ARE REFERENCE DATUMS AND DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS, BUT DOES INCLUDE MOLD MISMATCH AND ARE MEASURED AT THE MOLD PARTING LINE. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .006 INCHES PER SIDE.
- SOLDERING TO A SUBSTRATE.

 SOLDERING TO A SUBSTRATE.

 "N" IS THE NUMBER OF TERMINAL POSITIONS.
- REFERENCE ONLY TERMINAL POSITIONS ARE SHOWN FOR
- ARFERENCE ONLY.

 7 FORMED LEADS SHALL BE PLANAR WITH RESPECT TO ONE ANOTHER WITHIN .003 INCHES AT SEATING PLANE.

 8 COUNTRY OF ORIGIN LOCATION AND EJECTOR PIN ON PACKAGE BOTTOM IS OPTIONAL AND DEPENDS ON ASSEMBLY LOCATION.
- 9 CONTROLLING DIMENSION: INCHES.
- MAXIMUM DIE THICKNESS ALLOWABLE WITHOUT DIE COAT IS .016.

THIS TABLE IN INCHES

S	COMMON				NOTE		3					5
M B	DIMENSIONS			N _O	VARI-	Ď			S			N
°L	MIN.	NOM.	MAX.	¹⁰ те	ATIONS	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	14
Α	.061	.064	.068		AA	.189	.194	.196	.0020	.0045	.0070	16
A	.004	.006	.0098		AB	.337	.342	.344	.0500	.0525	.0550	20
A₂	.055	.058	.061		AC	.337	.342	.344	.0250	.0275	.0300	24
В	.008	.010	.012		AD	.386	.391	.393	.0250	.0280	.0300	28
С	.0075 .008 .0098											
D	SEE VARIATIONS			3								
E	.150	.155	.157									
е		.025 BSC										
Н	.230	.236	.244									
h	.010	.013	.016									
L	.016	.025	.035									
N	SEE	VARIATION	18	5								
S	SEE VARIATIONS											
35	0°	5°	8°									
Χ	.085	.093	.100									

THIS TABLE IN MILLIMETERS

S	COMMON				NOTE		3					5
M B	DIMENSIONS			N _O	VARI-	D			S			N
2	MIN.	NOM.	MAX.	T _E	ATIONS	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	1.4
Α	1.55	1.63	1.73		AA	4.80	4.93	4.98	0.05	0.11	0.18	16
A,	0.127	0.15	0.25		AB	8.56	8.69	8.74	1.27	1.33	1.40	20
A ₂	1.40	1.47	1.55		AC	8.56	8.69	8.74	0.64	0.70	0.76	24
В	0.20	0.25	0.31		AD	9.80	9.93	9.98	0.64	0.71	0.76	28
С	0.19	0.20	0.25									
D E	SEE VARIATIONS			3								
E	3.81	3.94	3.99									
е		0.635 BSC										
Н	5.84	5.99	6.20									
h	0.25	0.33	0.41									
L	0.41	0.64	0.89									
N	SEE VARIATIONS			5								
S	SEE VARIATIONS											
æ	0°	5°	8°									
Х	2.16	2.36	2.54									

While SLI has reviewed all information herein for accuracy and reliability, Spectra Linear Inc. assumes no responsibility for the use of any circuitry or for the infringement of any patents or other rights of third parties which would result from each use. This product is intended for use in normal commercial applications and is not warranted nor is it intended for use in life support, critical medical instruments, or any other application requiring extended temperature range, high reliability, or any other extraordinary environmental requirements unless pursuant to additional processing by Spectra Linear Inc., and expressed written agreement by Spectra Linear Inc. Spectra Linear Inc. reserves the right to change any circuitry or specification without notice.