Features

- Low Insertion Loss : $0.40 \mathrm{~dB} @ 0.87 \mathrm{GHz}$
0.50 dB @ 2.5 GHz
- High Isolation: $55 \mathrm{~dB} @ 0.87 \mathrm{GHz}$

$$
47 \text { dB @ 2.5 GHz }
$$

- 50 or 75 Ohm Systems
- Low DC Power Consumption
- Miniature QFN12L (3x3 mm) Plastic Lead (Pb) Free Package
- RoHS (Restrict of Hazardous Substances) Compliant

Description

The HWS429 is a GaAs SPDT terminated (non-reflective) switch operating at $\mathrm{DC}-3 \mathrm{GHz}$ in a low cost QFN12L ($3 \times 3 \mathrm{~mm}$) plastic lead (Pb) free package. The HWS429 features low insertion loss and high isolation with very low DC power consumption and can be used in both 50 ohm and 75 ohm systems. Typical applications include CATV and basestation systems for either SPDT or SPST functions.

QFN12L (3 x 3 mm)

Electrical Specifications at $25^{\circ} \mathrm{C}$ with $\mathbf{0 , + 3 V}$ Control Voltages, 50 Ohm system

Parameter	Test Conditions	Min.	Typ.	Max.	Unit
Insertion Loss	$\begin{aligned} & \mathrm{DC}-1.5 \mathrm{GHz} \\ & 1.5-3.0 \mathrm{GHz} \end{aligned}$		$\begin{aligned} & 0.4 \\ & 0.5 \end{aligned}$	0.8	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Isolation	$\begin{aligned} & \mathrm{DC}-1.5 \mathrm{GHz} \\ & 1.5-3.0 \mathrm{GHz} \end{aligned}$	35	$\begin{aligned} & 53 \\ & 43 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Return Loss	DC-3.0 GHz		15		dB
Input Power for One dB Compression	0.5-3.0 GHz		26		dBm
Input Third Order Intermodulation Intercept Point	0.5-3.0 GHz		45		dBm
Switching Time			50		ns
Control Current			30	300	uA

Note: All measurements made in a 50 ohm system with related application circuits and $0 /+3 \mathrm{~V}$ control voltages, unless otherwise specified.

Typical Performance Data With Application Circuit A @ + $25^{\circ} \mathrm{C}$

Isolation vs Frequency

Return Loss vs Frequency

Typical Performance Data With Application Circuit B @ $+25^{\circ} \mathrm{C}$

Insertion Loss vs Frequency

Isolation vs Frequency

Return Loss vs Frequency

Absolute Maximum Ratings

Parameter	Absolute Maximum
RF Input Power	$+32 \mathrm{dBm} @+5 \mathrm{~V}$
Control Voltage	+6 V
Operating Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Pin Out (Top View)

Note: Circuit A and B are optimized for DC-1.5 GHz and $1.5-3.0 \mathrm{GHz}$, respectively.

Exposed pad in the bottom must be connected to ground by via holes.

Application Circuits

Component Values:

Circuit	C1, C2	C3, C4	C5, C6, C7	C8, C9
A	47 pF	330 pF	1000 pF	47 pF
B	2 pF	4 pF	47 pF	47 pF

Logic Table for Switch On-Path

VC1	VC2	RFC-RF1	RFC-RF2
0	1	Insertion Loss	Isolation
1	0	Isolation	Insertion Loss

$$
\begin{aligned}
& ' 1=+3 \mathrm{~V} \text { to }+5 \mathrm{~V} \\
& 0^{\prime}=0 \mathrm{~V} \text { to }+0.2 \mathrm{~V}
\end{aligned}
$$

