

HMC-AUH256

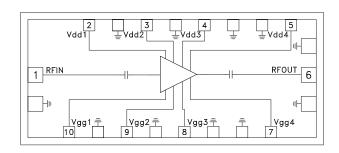
GaAs HEMT MMIC DRIVER AMPLIFIER, 17.5 - 41.0 GHz

Typical Applications

This HMC-AUH256 is ideal for:

- · Point-to-Point Radios
- · Point-to-Multi-Point Radios
- VSAT
- SATCOM

Features


Gain: 21 dB

P1dB Output Power: +20 dBm

Wideband Performance: 17.5 to 40 GHz

Supply Voltage: +5V @ 295 mA Small Chip Size: 2.1 x 0.92 x 0.1 mm

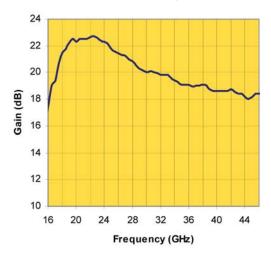
Functional Diagram

General Description

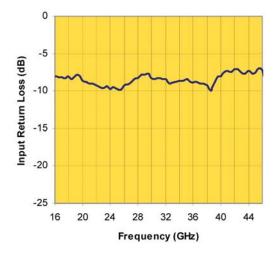
The HMC-AUH256 is a GaAs MMIC HEMT four stage Driver Amplifier which covers the frequency range of 17.5 to 40 GHz. The chip can easily be integrated into Multi-Chip-Modules (MCMs) due to its small (1.93 mm²) size. The HMC-AUH256 offers 21 dB of gain and +20 dBm output power at 1 dB compression from a bias supply of +5V @ 295 mA. The HMC-AUH256 may also be used as a frequency doubler. Detail bias condition to achieve doubler operation.

Electrical Specifications [1], $T_A = +25$ °C Vdd1 = Vdd2 = Vdd3 = Vdd4 = 5V, Idd1 + Idd2 + Idd3 + Idd4 = 295mA[2]

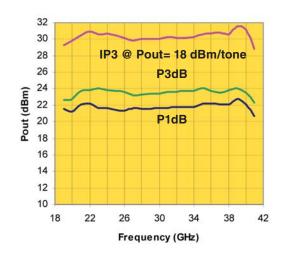
Parameter	Min.	Тур.	Max.	Units
Frequency Range		17.5 - 41		GHz
Gain		21		dB
Input Return Loss		8		dB
Output Return Loss 20 - 30 GHz 30 - 45 GHz		15 8		dB dB
Output Power for 1 dB Compression		20		dBm
Saturated Output Power		23		dBm
Output IP3		27		dBm
Supply Current (Idd1 + Idd2 + Idd3 + Idd4)		295		mA

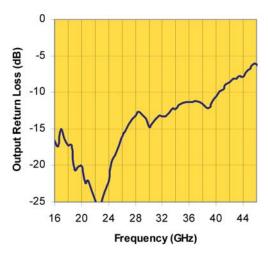

^[1] Unless otherwise indicated, all measurements are from probed die

^[2] Adjust Vgg1 = Vgg2 = Vgg3 = Vgg4 between -1V to +0.3V (Typ. -0.3V)



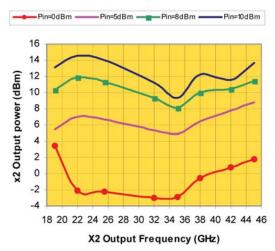
GaAs HEMT MMIC DRIVER AMPLIFIER, 17.5 - 41.0 GHz


Linear Gain vs. Frequency

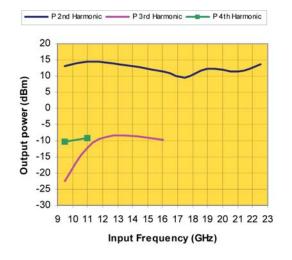

Input Return Loss vs. Frequency

Fixtured Pout vs. Frequency

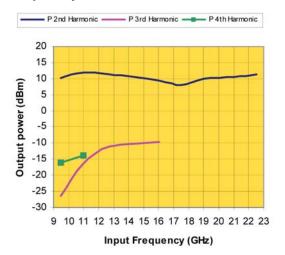
Output Return Loss vs. Frequency



Note: Measured Performance Characteristics (Typical Performance at 25°C) Vd1= Vd2= Vd3= Vd4= 5V, Id1= 50mA, Id2= 50mA, Id3= 75mA, Id4= 120mA



GaAs HEMT MMIC DRIVER AMPLIFIER, 17.5 - 41.0 GHz

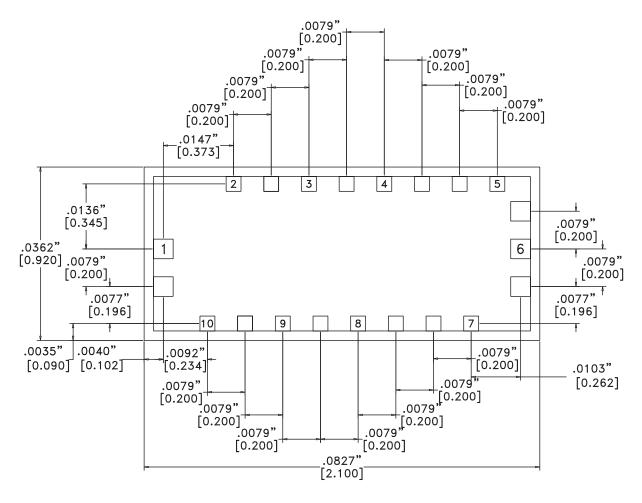

x2 Pout vs. Frequency (vs Pad)

Fixtured Pout vs. Frequency @ Pin= 10 dBm

Fixtured Pout vs. Frequency @ Pin= 8 dBm

Absolute Maximum Ratings

Drain Bias Voltage	+5.5 Vdc	
RF Input Power	15 dBm	
Drain Bias Current (Idd1, Idd2)	62 mA	
Drain Bias Current (Idd3)	93 mA	
Drain Bias Current (Idd4)	150 mA	
Gate Bias Voltage	-1 to +0.3 Vdc	
Channel Temperature	180 °C	
Thermal Resistance (channel to die bottom)	77.5 °C/W	
Storage Temperature	-65 to +150 °C	



Note: Multiplier Performance Characteristics (Typical Performance at 25°C) Vd1= 2V, Vd2= Vd3= Vd4= 5V, Id1= 5mA, Id2+Id3+Id4= 245mA

GaAs HEMT MMIC DRIVER AMPLIFIER, 17.5 - 41.0 GHz

Outline Drawing

NOTES:

- 1. ALL DIMENSIONS ARE IN INCHES IMMI.
- 2. TYPICAL BOND PAD IS .004" SQUARE.
- 3. BACKSIDE METALLIZATION: GOLD.
- 4. BACKSIDE METAL IS GROUND.
- 5. BOND PAD METALLIZATION: GOLD.
- 6. CONNECTION NOT REQUIRED FOR UNLABELED BOND PADS.
- 7. OVERALL DIE SIZE ±.002"