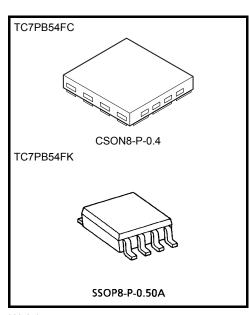
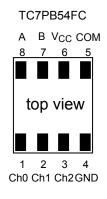
TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

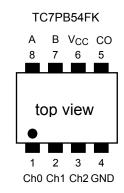
TC7PB54FC,TC7PB54FK

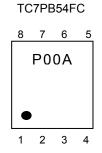

Single 1-of-3 Demultiplexer with N-channel pull-down MOSFET

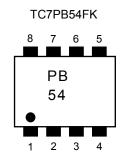
The TC7PB54 is a single 1-of-3 high-speed CMOS demultiplexer designed for low-voltage applications. The low ON-resistance of the switch allows the input (COM) to be connected to the outputs (Ch0 and Ch1) while maintaining CMOS low power dissipation. The device uses P-channel MOSFETs for the switch block between the input and output pins. The single-input multiplexer can direct the potential supplied on the COM pin to one of the Ch0 to Ch2 pins depending on the combined state of control pins A and B. The unused Chx pins are clamped to ground using an N-channel MOSFET.

All inputs are equipped with protection circuits against static discharge.

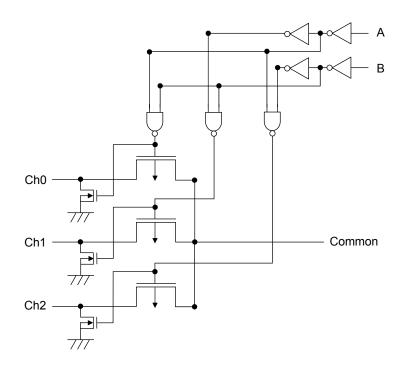

Features

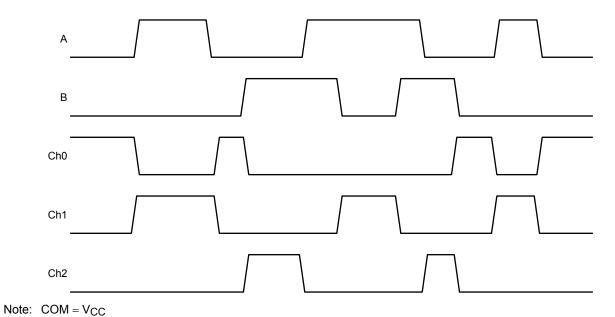

- Operating voltage range: VCC = 2 to 3.6 V
- High-speed operation: tpd = 70 ns (max) @2.7 V
- Very low ON-resistance: $R_{ON} = 3 \Omega \text{ (max)} @2.7 \text{ V}$
- High latch-up immunity: Higher than or equal to ± 300 mA
- ESD performance: Machine model $\geq \pm 200~V$ $Human~body~model \geq \pm 2000~V$
- Package: CSON8 (CST8), SSOP8 (US8)


Weight CSON8-P-0.4: 0.002 g (typ.) SSOP8-P-0.50A: 0.01 g (typ.)


Pin Assignment (top view)

Marking




Truth Table

Input		Function			
Α	В	Ch0	Ch1	Ch2	
L	L	COM	L	L	
Н	L	L	COM	L	
L	Н	L	L	COM	
Н	Н	L	L	L	

System Diagram

Timing Chart

2

2007-10-19

Absolute Maximum Ratings (Note 1)

Characteristics	Symbol	Rating	Unit
Power supply voltage	V_{CC}	-0.5 to 4.6	V
DC input voltage (A, B)	V _{IN}	-0.5 to 4.6	٧
DC switch voltage (COM and Ch)	Vs	-0.5 to V_{CC} + 0.5	٧
Input diode current (A, B)		-25	mA
Output diode current (COM and Ch)	I _{IK}	±25	mA
Switch I/O current (COM to Ch)	IS	128	mA
N-channel MOSFET current (Note 2)	lout	25	mA
Power dissipation	P_{D}	150 (CSON8) 200 (SSOP8)	mW
DC VCC/ground current	I _{CC} /IGND	±50	mA
Storage temperature	T _{stg}	-65 to 150	°C

Note 1: Exceeding any of the absolute maximum ratings, even briefly, may lead to deterioration in IC performance or even destruction.

Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings and the operating ranges.

Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Note 2: N-channel MOSFET allowable current to clamp the unused pin to ground.

Operating Ranges (Note 1)

Characteristics	Symbol	Rating	Unit
Power supply voltage	V _{CC}	2.0 to 3.6	٧
Input voltage (A, B)	V_{IN}	0 to 3.6	>
DC switch voltage (COM and Ch) (Note 2)	VS	0 to V _{CC} + 0.3	V
Operating temperature	T _{opr}	-40 to 85	°C
Input rise and fall time (A, B)	d _t /d _v	0 to 10	ns/V

Note 1: The operating ranges must be maintained to ensure the normal operation of the device. Unused inputs must be tied to either V_{CC} or GND.

Note 2: Ensure that the voltages on the COM and Ch pins do not exceed V_{CC} + 0.3 V even during a power-up sequence or when the power decreases.

Electrical Characteristics

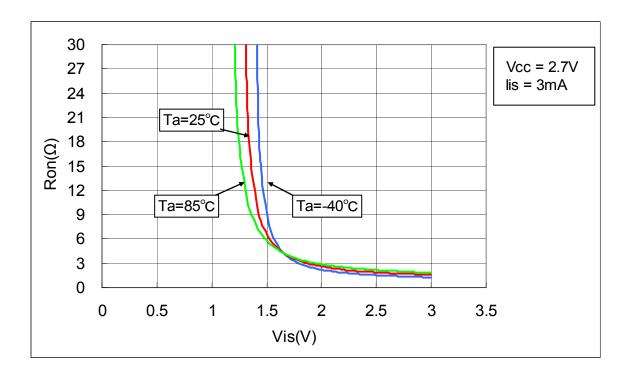
DC Electrical Characteristics ($Ta = -40 \text{ to } 85^{\circ}\text{C}$)

Characteristics	Symbol	Test Condition V _{CC} (V)		Min	Тур.	Max	Unit	
I limb lavaliment valtama			2.8	1.55	_	_		
High-level input voltage	V_{IH}	_	2.3	1.50	_	_	V	
Low lovel input voltage	\/	2.8 —	_	0.6	v			
Low-level input voltage	V_{IL}	_	2.3	_	_	0.5	1	
Input leakage current (A, B)	I _{IN}	A, B = 0 to 3.6 V	2.0 to 3.6	_	_	±1.0	μА	
Off-state leakage current	I _{IZ}	COM, Ch = 0 to V _{CC}	2.0 to 3.6	_	_	±1.0	μА	
Output diode current (COM and Ch)	I _{IK}	COM, Ch = V _{CC} - 0.3 V to V _{CC} + 0.3 V 2.0 to 3.6		_	_	100	μА	
Switch ON resistance (Note 1)		$V_{IS} = 2.7$ to 3.0 V, $I_{IS} = 3$ mA (Note 1)	2.7 to 3.0	_	1.6	3	Ω	
	Da	V ₁₀ = 2.7 to 3.0 V ₁₀ = 30 mΔ	2.3	_	2.1	5		
	R _{ON}		1.6	3	- 12			
		V _{IS} = 2.3 V, I _{IS} = 30 mA	2.1	5				
N-ch MOSFET ON resistance	R	I _L = 5 mA	2.7	_		50	0	
IN-CITIVIOSI ET ON TESISIATICE	ĸ	I _L = 4 mA	2.3	_	_	75	Ω	
Increase in I _{CC} per Input	I _{CC}	V _{IN} = V _{CC} or GND	3.6	_	_	10	μА	
morease in iCC ber mbar	I _{CCT}	PER INPUT: V _{IN} = 1.7 V	2.95	_	_	25	μА	

Note 1: Measured by the voltage drop between the COM and Ch pins at the indicated current through the switch. On resistance is determined by the lower of the voltages on the two (COM or Ch) pins.

AC Electrical Characteristics ($Ta = -40 \text{ to } 85^{\circ}\text{C}$)

Characteristics	Symbol	Test Condition	V _{CC} (V)	Min	Max	Unit
Propagation delay time	t _{pLH}	COM = V _{CC} (Figures 1 and 2)	3.0 ± 0.3	_	70	ns
(A, B to Ch)	t_{pHL}	COIVI = VCC (Figures Fand 2)	2.5 ± 0.2		140	115


Capacitive Characteristics (Ta = 25°C)

Characteristics	Symbol	Test Condition	V _{CC} (V)	Тур.	Unit
Control input capacitance (A, B)	C _{IN}	(Note)	3.0	5	pF
COM-Ch I/O capacitance	C _{I/O}	(Note)	3.0	70	pF

Note: Capacitance quoted is not tested.

Note 2: The typical value of Ron is V_{CC} (= 2.85 V).

 $R_{ON}-V_{IN}$ Characteristic Curves $V_{CC}=2.7$ V, lis = 3 mA, Ta = $-40/25/85^{\circ}C$

Meanings of Symbols

Symbol	Description		
I _{IN}	Leakage current when voltage is applied to the A pin		
I_{IZ}	Leakage current when voltage of 0 to V _{CC} is applied between the COM and Ch pins		
I _{IK}	Leakage current when voltage of V _{CC} to V _{CC} + 0.3 V is applied between the COM and Ch pins		
R _{ON}	Resistance between the COM and Ch pins		
V _{IS}	Reference voltage for measuring Ron		
I _{IS}	Reference current for measuring Ron		
R	Resistance of the N-channel MOS used to fixed the logical state		
ΙL	Reference current drawn from the N-channel MOS used to fixed the logical state		

5 2007-10-19

AC Test Circuit

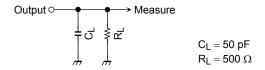


Figure 1

AC Waveforms

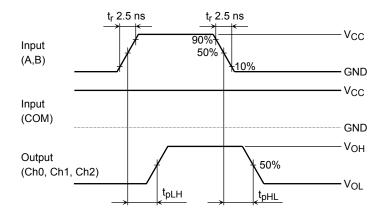
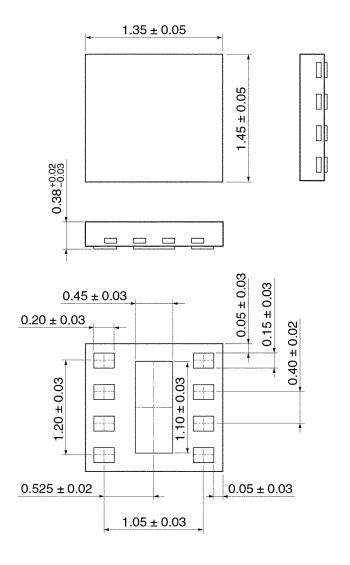
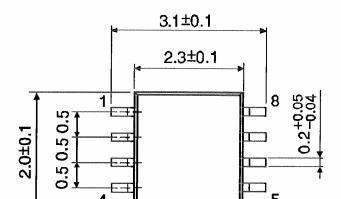



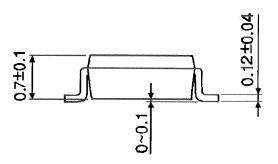
Figure 2 t_{pLH}, t_{pHL}

6

Package Dimensions

CSON8-P-0.4 Unit: mm




Weight: 0.002 g (typ.)

Unit: mm

Package Dimensions

SSOP8-P-0.50A

Weight: 0.01 g (typ.)

8 2007-10-19

RESTRICTIONS ON PRODUCT USE

Handbook" etc.

20070701-EN GENERAL

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility
 is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from
 its use. No license is granted by implication or otherwise under any patents or other rights of TOSHIBA or the third
 parties.
- Please contact your sales representative for product-by-product details in this document regarding RoHS
 compatibility. Please use these products in this document in compliance with all applicable laws and regulations
 that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses
 occurring as a result of noncompliance with applicable laws and regulations.

9 2007-10-19