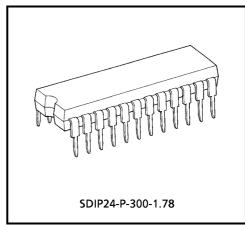
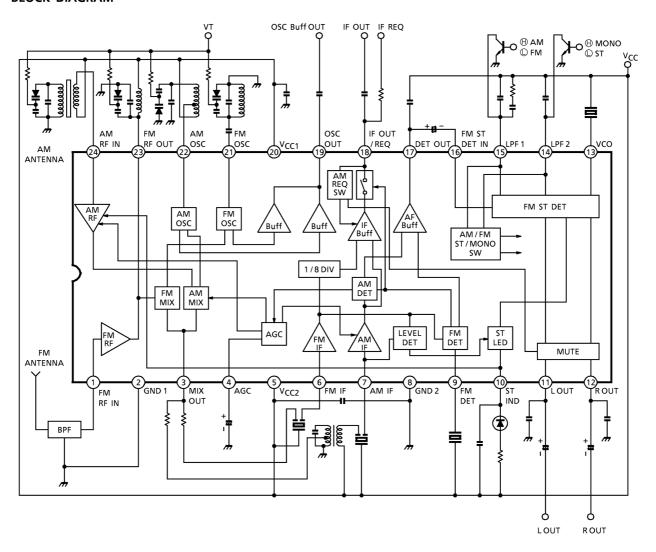
TOSHIBA Bipolar Linear Integrated Circuit Silicon Monolithic

TA2008AN


5V AM / FM 1 Chip Tuner IC (for digital tuning system)

The TA2008AN is the AM / FM 1 chip tuner IC, which is designed for radio cassette players and music centers.

This is suitable for digital tuning system applications.


Features

- Suitable for combination with digital tuning system which is included IF counter.
- One terminal type AM / FM IF count output (auto stop signal) for IF counter of digital tuning system.
 - FM: 1.3375MHz (1 / 8 dividing)
 - AM: 450kHz
- Built-in mute circuit for IF count output.
- For adopting ceramic discriminator and ceramic resonator, it is not necessary to adjust the FM quad detector circuit and FM stereo detector vco circuit.
- Built-in one terminal type AM / FM local oscillator buffer output for digital tuning system applications.
- Operating supply voltage range: $V_{CC} = 3.5 \sim 14V$ (Ta = 25°C)

Weight: 1.2g (typ.)

BLOCK DIAGRAM

Explanation Of Terminals

Pin	Characteristic Internal Circ	Internal Circuit	DC Volt (at no	tage (V) signal)
No.			AM	FM
1	FM-RF in	FM-RF OUT 23 4 4 6 GND1 2	0	0.8
2	GND1 (GND for RF stage)	_	0	0
3	Mix out	VCC1 20 AM MIX FM MIX GND1 2 3	0.3	0.8
4	AGC	V _{CC2} (S)	1.2	0.9
5	V _{CC2} (V _{CC} for IF / FM ST DET stage)	_	5.0	5.0
6	FM IF in	VCC2 (5) CO E E E E E E E E E E E E E E E E E E	5.0	5.0

Pin No.	Characteristic	Internal Circuit	DC Voltage (V) (at no signal)		
NO.			AM	FM	
7	AM IF in	VCC2 S C MAN TO THE STATE OF TH	5.0	5.0	
8	GND2 (GND for if / FM ST DET stage)	_	0	0	
9	QUAD (FM QUAD. Detector)	V _{CC2} 5 9 GND2 8	4.1	3.6	
10	St ind • Stereo LED terminal • Offset voltage cancel for AM RF amp.	19kHz AM RF Amp	4.2	_	
11 12	L-out (L-ch output) R-out (R-ch output)	(1/12) GND2 (8)	1.35	1.35	

4

Pin No.	Characteristic	Internal Circuit	DC Voltage (V) (at no signal)		
NO.			AM	FM	
13	VCO	V _{CC2} (S) (13) (GND2 (8)	5.0	4.1	
14	LPF2 • LPF terminal for synchronous detector. • VCO stop terminal V ₁₄ = GND → VCO stop	GND2 8	5.0	3.4	
15	LPF1 • LPF terminal for phase detector • Bias terminal for AM / FM SW circuit V ₁₅ = GND → AM V ₁₅ = open → FM	GND2 8	0	2.8	
16	FM ST DET in	(B) M M M M M M M M M M M M M M M M M M M	1.4	1.4	

Pin No.	Characteristic	Characteristic Internal Circuit						
17	DET out	VCC2 (5) AM OFM FM 17) (B) (B) (COM) (AM 1.4	FM 1.4				
18	IF out / REQ $V_{18} = GND \rightarrow IF$ out	\$\footnote{VCC2}	4.0	4.0				
19	OSC out	AM OSC FM OSC 2 GND1						
20	V _{CC1} (V _{CC} for RF stage)	-	5.0	5.0				
21	FM OSC	V _{CC1} 20 21 MIX - II GND1 2	5.0	5.0				

Pin No.	Characteristic	Internal Circuit	DC Voltage (V) (at no signal) AM FM		
			Alvi	1 IVI	
22	AM OSC	22	5.0	5.0	
23	FM RF out	cf. pin (1)	5.0	5.0	
24	AM RF in	V _{CC1} 20 AGC 24 GND2 2	5.0	5.0	

Maximum Ratings (Ta = 25°C)

Characteristic	Symbol	Rating	Unit
Supply voltage	V _{CC}	15	V
LED current	I _{LED}	10	mA
LED voltage	V_{LED}	15	V
Power dissipation	P _D *	1200	mW
Operating temperature	T _{opr}	-25~75	°C
Storage temperature	T _{stg}	−55~150	°C

^{*:} Derated above Ta = 25°C in the proportion of 9.6mW / °C

Electrical Characteristics

Unless Otherwise Specified, Ta = 25°C, V_{CC} = 5V, SW8: Off, F / E: f = 98MHz, f_m = 1kHz FM IF: f = 10.7MHz, Δf = ±22.5kHz, f_m = 1kHz

AM: f = 1MHz, MOD = 30%, $f_m = 1kHz$ FM ST DET: $f_m = 1kHz$

Characteristic		Symbol	Test Cir– cuit	Test Condition	Min.	Тур.	Max.	Unit	
Sunni	y current	I _{CC (FM)}	_	— V _{in} = 0, FM mode		27	36	mA	
Зиррі	y current	ICC (AM)	ı	V _{in} = 0. AM mode	_	18	25	IIIA	
. / E	Input limiting voltage	V _{in} (lim)		–3dB limiting with respect to V _{OD} level at Vin = 60dBμV EMF		11	-	dBµV EMF	
ш	Local OSC buffer output voltage	V _{OSC} (buff) FM	_	f _{OSC} = 108.7MHz	90	180	_	mV _{rms}	
	Input limiting voltage V_{in} (lim.) IF $ -3dB$ limiting with respect to V_{OD} level at V_{in} = 80dB μ V EMF		40	45	50	dBµV EMF			
	Recovered output voltage	V _{OD}	1	V _{in} = 80dBμV EMF	50	75	100	mV _{rms}	
	Signal to noise ratio	S/N	_	V _{in} = 80dBμV EMF	_	70	_	dB	
	Total harmonic distortion	THD	— V _{in} = 80dBμV EMF			0.3	_	%	
FM IF	AM rejection ratio	AMR	_	V _{in} = 80dBμV EMF	_	50	_	dB	
	SD output sensitivity	V _{SD}	V _{SD} — V _{SD} = V _{CC} -0.1V		53	58	63	dBµV EMF	
	IF count output frequency	f1 / 8 IF (FM)	_	V _{in} = 80dBμV EMF, SW8: On	1.3373	1.3375	1.3377	MHz	
	IF count output voltage	V1 / 8 IF (FM)	_	V _{in} = 80dBμV EMF,SW8: On	350	500	_	$mV_{p\!-\!p}$	
	IF count output sensitivity	IF sens (FM)	_	SW8: On	49	54	59	dBµV EMF	

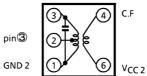
8

	Characteris	stic	Symbol	Test Cir– cuit	Test Condi	tion	Min.	Тур.	Max.	Unit
	Gain		G_V	ı	V _{in} = 26dBµV EMF		20	45	80	mV _{rms}
	Recovered output voltage		V _{OD}	_	V _{in} = 60dBμV EMF		45	65	90	mV _{rms}
	Signal to nois	se ratio	S/N	-	V _{in} = 60dBµV EMF			42	_	dB
AM	Total harmon distortion	nic	THD	_	V _{in} = 60dBμV EMF		_	1.0	_	%
4	Local OSC b output voltag		V _{OSC} (buff) AM	_	f _{OSC} = 1.45MHz		90	150	_	mV _{rms}
	IF count outp voltage	ut	V _{IF} (AM)	_	V _{in} = 60dBμV EMF, SW8: On,		350	500	_	mV_{p-p}
	IF count outp sensitivity	ut	IF sens (AM)	_	SW8: On		35	40	45	dBµV EMF
Din (1	7) output rocio	stance	D17		FM mode		_	0.75	_	kΩ
PIII (1	r) output resis	output resistance R17 — AM mode			_	15.5	_	K77		
	Input resistar	nce	R _{IN}	-			_	24	_	kΩ
	Output resistance		R _{OUT}	-			_	5	_	kΩ
	Max. Composite signal input voltage		V _{in max} (stereo)	_	L + R = 90%, P = 10%, SW4: LPF on f _m = 1kHz, THD = 3%		_	800	_	mV _{rms}
					L + R = 180mV _{rms}	f _m = 100Hz	-	42	-	dB
	Separation		Sep.	_	$P = 20mV_{rms}$	f _m = 1kHz	35	42	ı	
					SW4: LPF on	f _m = 10kHz	1	42	1	
 	Total harmonic	Monaural	THD (monaural)		V _{in} = 200mV _{rms}		_	0.1	_	%
FM St DET	distortion	Stereo	THD (stereo)		L + R = 180mV _{rms} , P = 20mV _{rms} , SW4: LPF on,		-	0.1	-	76
Ē	Voltage gain		G _V	-	V _{in} = 200mV _{rms}		-2	0	2	dB
	Channel bala	ince	C. B.	_	V _{in} = 200mV _{rms}		-2	0	2	dB
	Stereo LED	On	V _{L (ON)}		Pilot input		_	8	15	- mV _{rms}
	sensitivity	Off	V _{L (OFF)}	-	Pilot iriput		2	6	_	
	Stereo LED h	nysteresis	V _H	_	To LED turn off from LED turn on		-	2	-	mV _{rms}
	Capture rang	е	C. R.	-	P = 15mV _{rms}		_	±1.3	_	%
	Signal to nois	se ratio	S/N	_	V _{in} = 200mV _{rms}		_	80	_	dB
	Muting attenu	uation	MUTE	_	V _{in} = 200mV _{rms}		_	80	_	dB

TEST CIRCUIT

A2008AN - 1

Coil Data


Coil No.	Test Freq.	L (µH)	C _o (pF)	Qo	1–2	Tu 2–3	rns 1–3	3–6	Wire (mm _{\$\phi\$})	Reference
L1 FM RF	100MHz			100				$2\frac{1}{2}$	0.5 UEW	Within core
L1 FM OSC	100MHz			100				$2\frac{1}{2}$	0.5 UEW	Within core
T1 AM mix	455kHz		180	48↑	47	111	158	4–6 20	0.06 UEW	(T): A7LCS-12064N
T2 AM OSC	796kHz	268		125	15	89			0.06 UEW	(S): 2157–2239–213A (T): A7BRS–11998Y

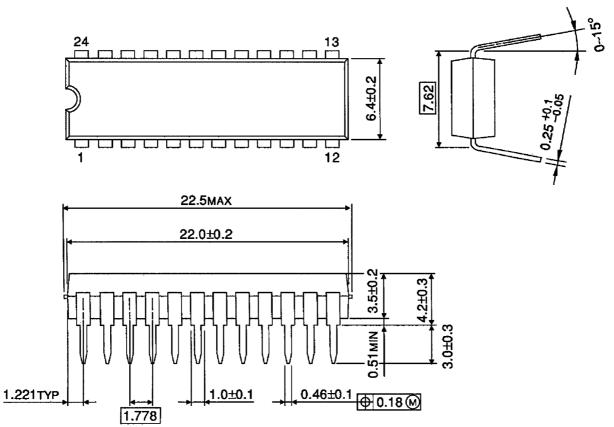
(S): Sumida electric co., Itd.

T2: AM OSC

(T): Toko co., Itd.

 $\begin{array}{c} \mathsf{L}_1 \,:\, \mathsf{FM} \;\; \mathsf{RF} \\ \mathsf{L}_2 \,:\, \mathsf{FM} \;\; \mathsf{OSC} \end{array}$

T1: AM MIX


V.C pin 🕸

V_{CC} 1

Package Dimensions

SDIP24-P-300-1.78 Unit: mm

12

Weight: 1.2g (typ.)

RESTRICTIONS ON PRODUCT USE

000707EBA

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.