SKiiP 15AC066V1

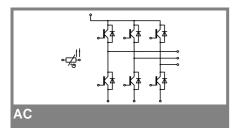
MiniSKiiP[®] 1

3-phase bridge inverter

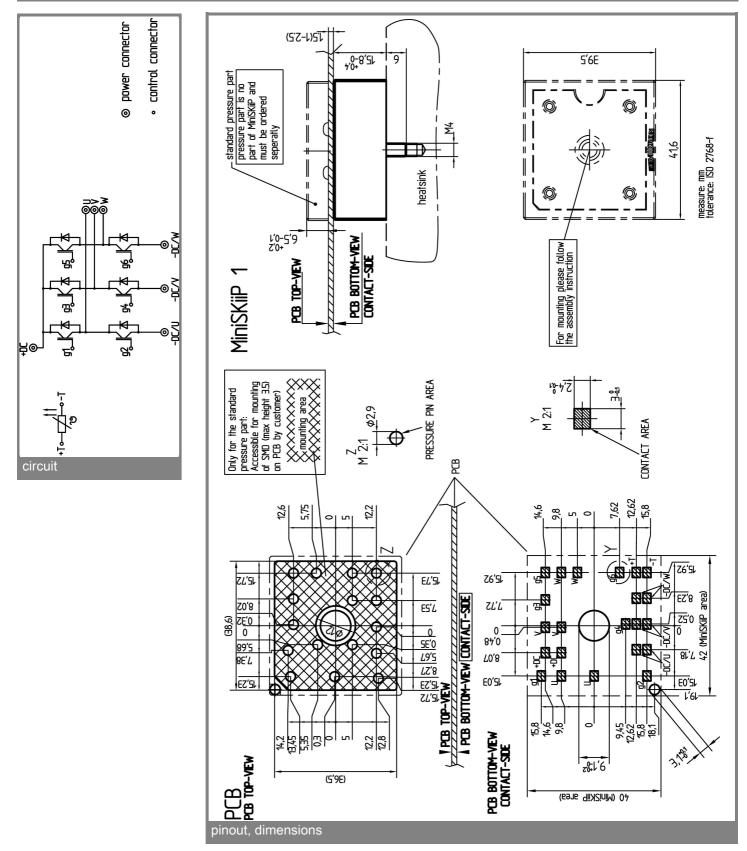
SKiiP 15AC066V1

Target Data

Features


- Trench IGBTs
- Robust and soft freewheeling diodes in CAL technology
- Highly reliable spring contacts for electrical connections
- UL recognised file no. E63532

Typical Applications


- Inverter up to 10,0 kVA
- Typical motor power 4,0 kW

Absolute Maximum Ratings		T_s = 25 °C, unless otherwise specified						
Symbol	Conditions	Values	Units					
IGBT - Inverter								
V _{CES}		600	V					
I _C	$T_s = 25 (70) \ ^{\circ}C$ $T_s = 25 (70) \ ^{\circ}C, t_p \le 1 \ ms$		А					
I _{CRM}	$T_s = 25 (70) \ ^{\circ}C, t_p \le 1 \ ms$		А					
V _{GES}		± 20	V					
Т _ј		- 40 + 150	°C					
Diode - Inverter								
I _F	T _s = 25 (70) °C		А					
I _{FRM}	$T_s = 25 (70) \ ^{\circ}C, t_p \le 1 \ ms$		А					
Т _ј		- 40 + 150	°C					
I _{tRMS}	per power terminal (20 A / spring)	40	Α					
T _{stg}	$T_{op} \leq T_{stg}$	- 40 + 125	°C					
V _{isol}	AC, 1 min.	2500	V					

Characte	ristics	T _s = 25 °C	T_s = 25 °C, unless otherwise specified					
Symbol	Conditions	min.	typ.	max.	Units			
IGBT - Inverter								
V _{CEsat}	I _C = 30 A, T _i = 25 (125) °C		2 (2,2)	2,5 (2,7)	V			
V _{GE(th)}	$V_{GE} = V_{CE}, I_{C} = 0,5 \text{ mA}$	3	4	5	V			
V _{CE(TO)}	T _j = 25 (125) °C		1,2 (1,1)	,	V			
r _T	T _j = 25 (125) °C		27 (37)	40 (50)	mΩ			
C _{ies}	$V_{CE} = 25 \text{ V}, \text{ V}_{GE} = 0 \text{ V}, \text{ f} = 1 \text{ MHz}$		1,5		nF			
C _{oes}	$V_{CE} = 25 V, V_{GE} = 0 V, f = 1 MHz$		0,2		nF			
C _{res}	V _{CE} = 25 V, V _{GE} = 0 V, f = 1 MHz		0,1		nF			
R _{th(j-s)}	per IGBT		1,35		K/W			
t _{d(on)}	under following conditions		20		ns			
t _r `´	V_{CC} = 300 V, V_{GE} = ± 15 V		15		ns			
t _{d(off)}	I _C = 30 A, T _j = 125 °C		185		ns			
t _f	$R_{Gon} = R_{Goff} = 20 \Omega$		10		ns			
Eon	inductive load		1		mJ			
E _{off}			0,5		mJ			
Diode - Ir	nverter							
V _F = V _{EC}	I _F = 30 A, T _i = 25 (125) °C		1,5 (1,5)	1,8 (1,8)	V			
V _(TO)	T _i = 25 (125) °C		1 (0,9)	,	V			
r _T	T _j = 25 (125) °C		18 (20)	23 (27)	mΩ			
R _{th(j-s)}	per diode		2,11		K/W			
I _{RRM}	under following conditions		58		А			
Q _{rr}	I _F = 30 A, V _R = 300 V		3,5		μC			
E _{rr}	V _{GE} = 0 V, T _j = 125 °C		0,8		mJ			
	di _F /dt = 2500 A/µs							
Tempera	ture Sensor	•			·			
R _{ts}	3 %, T _r = 25 (100) °C		1000(1670)		Ω			
Mechanie	cal Data	I						
m			35		g			
M _s	Mounting torque	2		2,5	Nm			

SKiiP 15AC066V1

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.