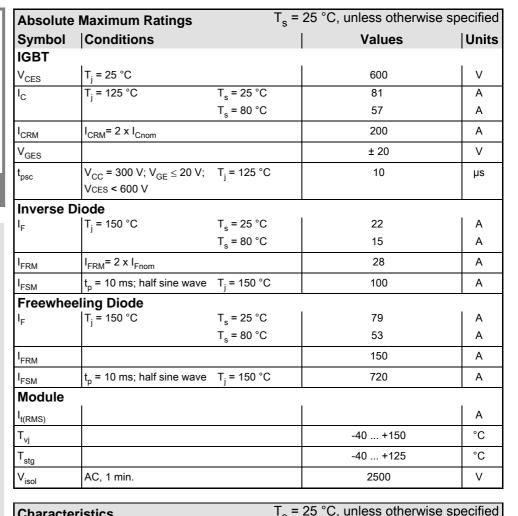


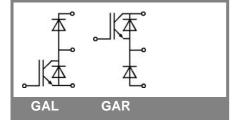
SEMITOP® 2

IGBT Module

SK70GAL063 SK70GAR063


Preliminary Data

Features


- Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- High short circuit capability
- Low tail current with low temperature dependence

Typical Applications

- Switching (not for linear use)
- Inverter
- · Switched mode power supplies
- UPS

Characteristics 1 _s - 25 °C, unless otherwise spe						Jecilieu
Symbol	Conditions		min.	typ.	max.	Units
IGBT						_
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 1.5 \text{ mA}$		4,5	5,5	6,5	V
I _{CES}	V _{GE} = 0 V, V _{CE} = V _{CES}	T _j = 25 °C			0,3	mA
		T _j = 125 °C				mA
I _{GES}	V _{CE} = 0 V, V _{GE} = 30 V	T _j = 25 °C			300	nA
		T _j = 125 °C				nA
V _{CE0}		T _j = 25 °C		1		V
		T _j = 125 °C		1,1		V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		11		mΩ
		T _j = 125°C		9		mΩ
V _{CE(sat)}	I _{Cnom} = 100 A, V _{GE} = 15 V			2,1	2,5	V
		$T_j = 125^{\circ}C_{chiplev.}$		2	2,3	V
C _{ies}				4,3		nF
C _{oes}	$V_{CE} = 25, V_{GE} = 0 V$	f = 1 MHz				nF
C _{res}				0,4		nF
Q_G	V _{GE} = 0 20 V			310		nC
t _{d(on)}				50		ns
t _r	R_{Gon} = 10 Ω	V _{CC} = 300V		40		ns
E _{on}	$R_{Goff} = 10 \Omega$	I _{Cnom} = 100A T _i = 125 °C		4 300		mJ ns
$egin{aligned} t_{ ext{d(off)}} \ t_{ ext{f}} \end{aligned}$	Goff - 10 52	V _{GE} =±15V		35		ns
E _{off}		GE		3		mJ
R _{th(j-s)}	per IGBT	-			0,6	K/W

SK70GAL063

SEMITOP® 2

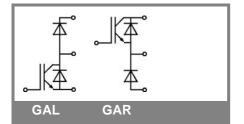
IGBT Module

SK70GAL063 SK70GAR063

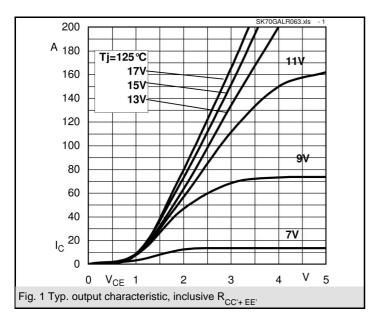
Preliminary Data

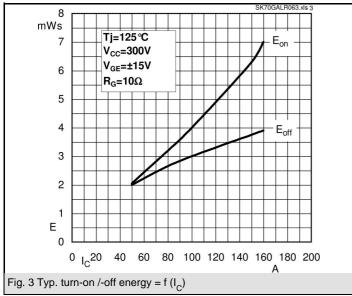
Features

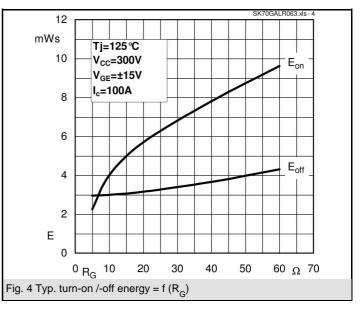
- Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- · High short circuit capability
- Low tail current with low temperature dependence

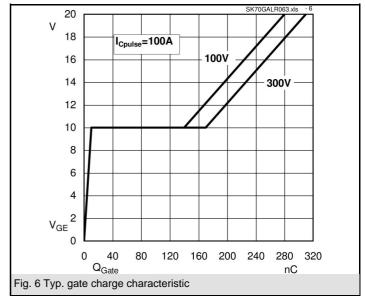

Typical Applications

- Switching (not for linear use)
- Inverter
- · Switched mode power supplies
- UPS

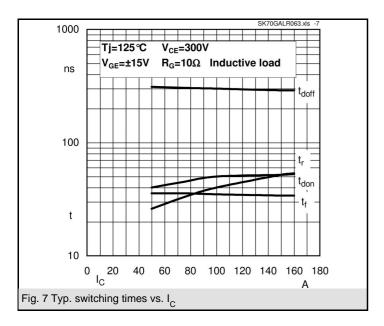

Characteristics									
Symbol	Conditions	ĺ	min.	typ.	max.	Units			
Inverse Diode									
$V_F = V_{EC}$	I_{Fnom} = 10 A; V_{GE} = 0 V			1,45	1,7	V			
		$T_j = 125 ^{\circ}C_{\text{chiplev.}}$		1,4	1,7	V			
V_{F0}		T _j = 125 °C		0,85	0,9	V			
r _F		T _j = 125 °C		55	80	mΩ			
I _{RRM}	I _{Fnom} = 10 A	T _j = 125 °C		6,5		Α			
Q_{rr}	di/dt = -200 A/μs			1		μC			
E _{rr}	V _{CC} = 300V			0,1		mJ			
$R_{th(j-s)D}$	per diode				2,3	K/W			
Freewheeling Diode									
$V_F = V_{EC}$	I_{Fnom} = 60 A; V_{GE} = 0 V	$T_j = 25 ^{\circ}C_{chiplev.}$		1,4		V			
		$T_j = 125 ^{\circ}C_{\text{chiplev.}}$		1,3		V			
V_{F0}		T _j = 125 °C		0,85	0,9	V			
r _F		T _j = 125 °C		6,5	11	V			
I _{RRM}	I _{Fnom} = 60 A	T _j = 125 °C		90		Α			
Q_{rr}	di/dt = -3000 A/µs	,		7		μC			
E _{rr}	V _R =300V			1,2		mJ			
R _{th(j-s)FD}	per diode				0,9	K/W			
M_s	to heat sink M1				2	Nm			
w				19		g			

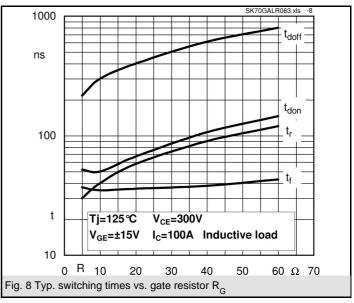

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

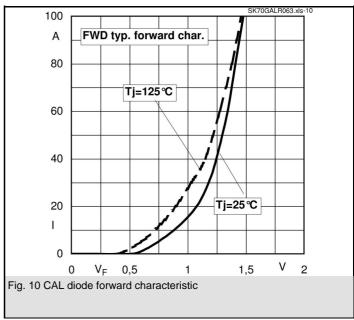

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

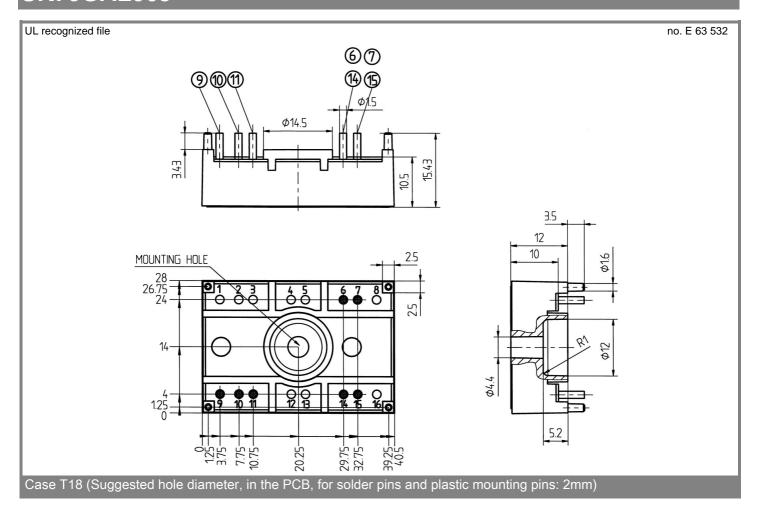


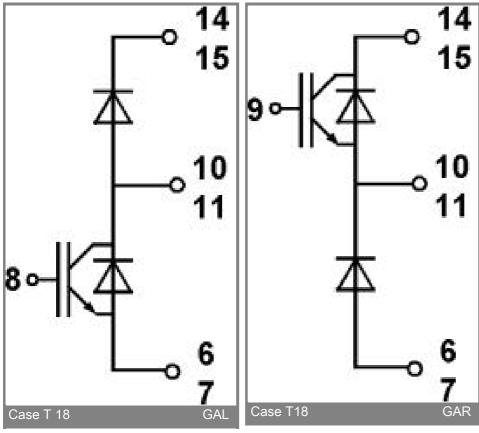
SK70GAL063










SK70GAL063

