

SEMITOP[®] 2

IGBT Module

SK60GAL125 SK60GAR125

Target Data

Features

- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- High short circuit capability
- Ultra Fast NPT IGBT technology
- V_{ce,sat} with positive coefficient

Typical Applications

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

Absolute Maximum Ratings T _s = 25 °C, unless otherwise specified						
Symbol	Conditions		Values	Units		
IGBT						
V _{CES}	T _j = 25 °C T _j = 125 °C		1200	V		
I _C	T _j = 125 °C	T _s = 25 °C	51	A		
		T _s = 80 °C	35	А		
I _{CRM}	I _{CRM} = 2 x I _{Cnom}		100	А		
V _{GES}			± 20	V		
t _{psc}	V_{CC} = 300 V; $V_{GE} \le 20$ V;	T _j = 125 °C	10	μs		
	VCES < 600 V					
Inverse [T - 25 °C	43			
I _F	T _j = 150 °C	T _s = 25 °C T _s = 80 °C	43 29	A		
		1 _s = 80°C	29			
I _{FRM}	I _{FRM} = 2 x I _{Fnom}			A		
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 25 °C	110	А		
Freewhe	eling Diode					
I _F	T _j = 150 °C	T _s = 25 °C	57	А		
		T _s = 80 °C	38	А		
I _{FRM}				А		
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C	550	А		
Module						
I _{t(RMS)}				А		
T _{vj}			-40 +150	°C		
T _{stg}			-40 +125	°C		
V _{isol}	AC, 1 min.		2500	V		

Characteristics T _s =		25 °C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units
IGBT						
V _{GE(th)}	$V_{GE} = V_{CE}, I_C = 2 \text{ mA}$		4,5	5,5	6,5	V
I _{CES}	V_{GE} = 0 V, V_{CE} = V_{CES}	T _j = 25 °C			0,006	mA
I _{GES}	V _{CE} = 0 V, V _{GE} = 20 V	T _j = 25 °C			300	nA
V _{CE0}		T _j = 25 °C		1,4	1,9	V
		T _j = 125 °C		1,7	2,2	V
r _{CE}	V _{GE} = 15 V	T _j = 25°C		36		mΩ
		T _j = 125°C		43		mΩ
V _{CE(sat)}	I _{Cnom} = 50 A, V _{GE} = 15 V	T _j = 25°C _{chiplev.}		3,2	3,7	V
		T _j = 125°C _{chiplev.}		3,85		V
C _{ies}				3,3		nF
C _{oes}	V_{CE} = 25, V_{GE} = 0 V	f = 1 MHz		0,5		nF
C _{res}				0,22		nF
t _{d(on)}						ns
t _r	R _{Gon} = 33 Ω	V _{CC} = 600V				ns
E _{on}	D 0	I _{Cnom} = 45A		8,36		mJ
t _{d(off)}	$R_{Goff} = 33 \Omega$	$T_{j} = 125 \text{ °C}$				ns
t _f		V _{GE} =±15V				ns
E _{off}				3,32		mJ
R _{th(j-s)}	per IGBT				0,6	K/W

1

SEMITOP[®] 2

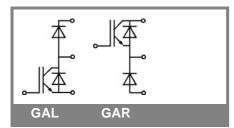
IGBT Module

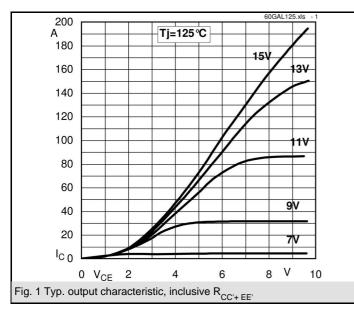
SK60GAL125 SK60GAR125

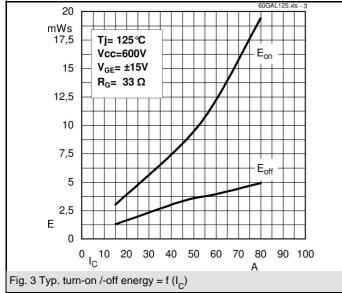
Target Data

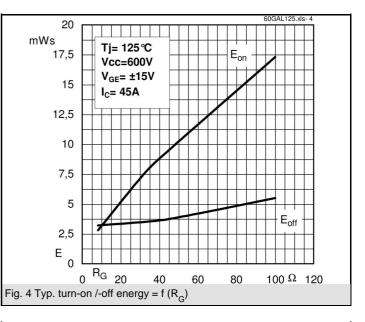
Features

- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- High short circuit capability
- Ultra Fast NPT IGBT technology
- V_{ce,sat} with positive coefficient

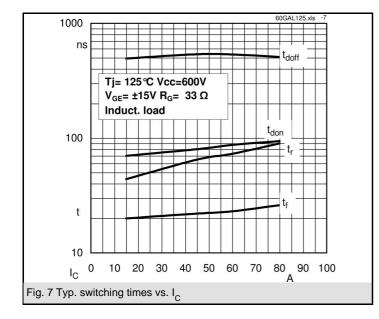

Typical Applications

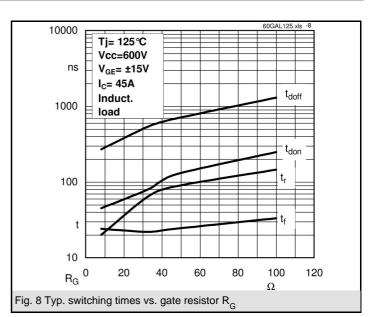

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

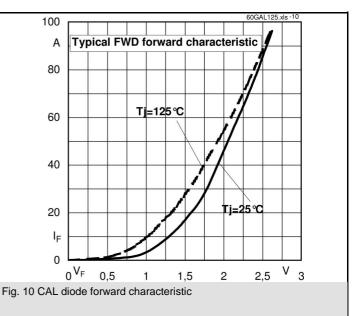

Characte	ristics					
Symbol	Conditions		min.	typ.	max.	Units
Inverse D	Diode					
$V_F = V_{EC}$	I _{Fnom} = 10 A; V _{GE} = 0 V	T _j = 25 °C _{chiplev.}		2	2,5	V
		$T_j = 150 \ ^{\circ}C_{chiplev.}$		1,79	2,3	V
V _{F0}		T _j = 25 °C				V
		T _j = 125 °C		1,18		V
r _F		T _j = 25 °C				mΩ
		T _j = 125 °C		31,5		mΩ
I _{RRM}	I _{Fnom} = 30 A	T _j = 125 °C				А
Q _{rr}	di/dt = -100 A/µs					μC
E _{rr}	V _{CC} = 400V					mJ
R _{th(j-s)D}	per diode				1,16	K/W
	eling Diode					
V _F = V _{EC}	I _{Fnom} = 50 A; V _{GE} = 0 V	T _j = 25 °C _{chiplev.}		2	2,5	V
		T _j = 125 °C _{chiplev.}		1,8		V
V _{F0}		T _j = 125 °C		1	1,2	V
r _F		T _j = 125 °C		16	22	V
I _{RRM}	I _{Fnom} = 50 A	T _j = 125 °C				Α
Q _{rr}	di/dt = -800 A/µs					μC
Err	V _R =600V					mJ
R _{th(j-s)FD}	per diode				0,9	K/W
M _s	to heat sink				2	Nm
w				19		g

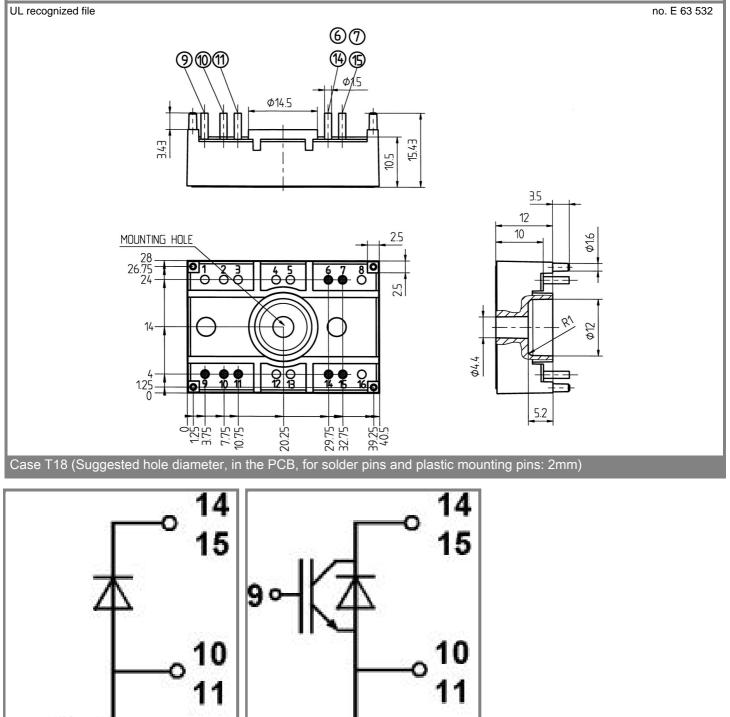

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.









Case T 18

6

1

GAL

6

7

GAR

Case T 18

8