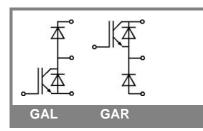


SEMITOP[®] 2

IGBT Module

SK50GAL065 SK50GAR065


Preliminary Data

Features

- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- N-channel homogeneous silicon structure (NPT-Non-Punch-Through IGBT)
- Low tail current with low
- temperature dependenceLow treshold voltage

Typical Applications

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS

Absolute	Maximum Ratings	T _s =	25 °C, unless otherwise sp	pecifie
Symbol	Conditions		Values	Units
IGBT				
V _{CES}	T _j = 25 °C T _i = 125 °C		600	V
I _C	T _j = 125 °C	T _s = 25 °C	54	Α
		T _s = 80 °C	40	Α
I _{CRM}	I _{CRM} = 2 x I _{Cnom}		60	А
V _{GES}			± 20	V
t _{psc}	V_{CC} = 300 V; $V_{GE} \le 20$ V;	T _i = 125 °C	10	μs
F	VCES < 600 V	,		
Inverse D	Diode			
I _F	T _j = 150 °C	T _s = 25 °C	57	А
		T _s = 80 °C	38	Α
I _{FRM}	I _{FRM} = 2 x I _{Fnom}		100	А
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C	440	А
Freewhee	eling Diode			
I _F	T _j = 150 °C	T _s = 25 °C	57	А
		T _s = 80 °C	38	А
I _{FRM}			100	А
I _{FSM}	t _p = 10 ms; half sine wave	T _j = 150 °C	440	А
Module				
I _{t(RMS)}				А
T _{vj}			-40 +150	°C
T _{stg}			-40 +125	°C
V _{isol}	AC, 1 min.		2500	V

Characteristics T _s =			25 °C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units	
IGBT							
V _{GE(th)}	$V_{GE} = V_{CE}, I_C = 1,4 \text{ mA}$		3	4	5	V	
I _{CES}	V_{GE} = 0 V, V_{CE} = V_{CES}	T _j = 25 °C			0,0044	mA	
I _{GES}	V _{CE} = 0 V, V _{GE} = 20 V	T _j = 25 °C			240	nA	
V _{CE0}		T _j = 25 °C		1,1		V	
		T _j = 125 °C		1,1		V	
r _{CE}	V _{GE} = 15 V	T _j = 25°C		15		mΩ	
		T _j = 125°C		19		mΩ	
V _{CE(sat)}	I _{Cnom} = 60 A, V _{GE} = 15 V	T _j = 25°C _{chiplev.}		2	2,5	V	
		T _j = 125°C _{chiplev.}		2,2		V	
C _{ies}				3,2		nF	
C _{oes}	V_{CE} = 25, V_{GE} = 0 V	f = 1 MHz		0,3		nF	
C _{res}				0,18		nF	
t _{d(on)}				60	80	ns	
t,	R _{Gon} = 16 Ω	V _{CC} = 300V		30	40	ns	
E _{on}		I _{Cnom} = 40A		1,1	1,4	mJ	
t _{d(off)}	R _{Goff} = 16 Ω	T _j = 125 °C		220	280	ns	
t _f		V _{GE} =±15V		20	26	ns	
E _{off}				0,7	0,9	mJ	
R _{th(j-s)}	per IGBT				0,85	K/W	

1

SEMITOP[®] 2

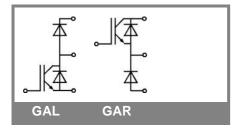
IGBT Module

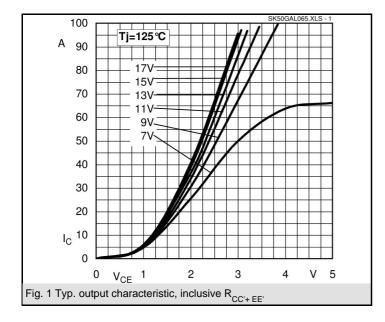
SK50GAL065 SK50GAR065

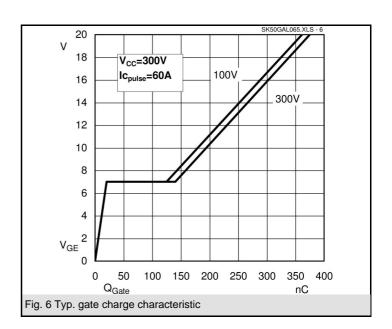
Preliminary Data

Features

- Compact design
- One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DCB)
- N-channel homogeneous silicon structure
 (NET Num Provide Theorem 100PT)
 - (NPT-Non-Punch-Through IGBT)
- Low tail current with low temperature dependence
- Low treshold voltage

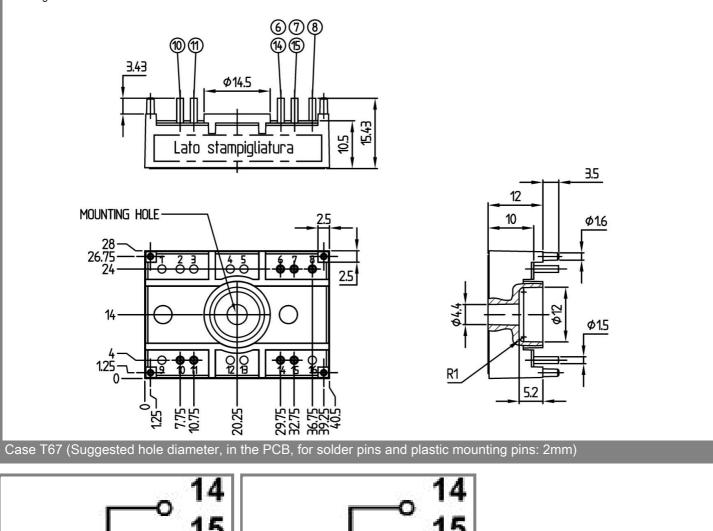

Typical Applications

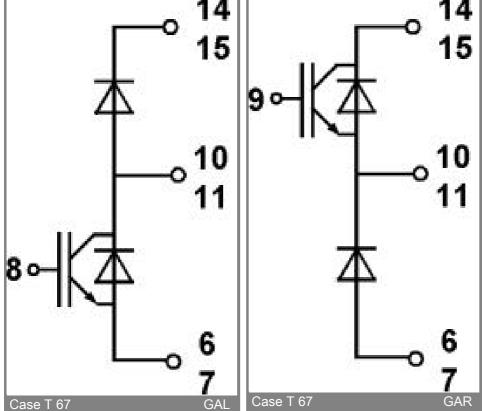

- Switching (not for linear use)
- Inverter
- Switched mode power supplies
- UPS


Characteristics							
Symbol	Conditions		min.	typ.	max.	Units	
Inverse D	Diode						
$V_F = V_{EC}$	I _{Fnom} = 30 A; V _{GE} = 0 V	T _j = 25 °C _{chiplev.}		1,3	1,5	V	
		T _j = 150 °C _{chiplev.}		1,2	1,45	V	
V _{F0}		T _j = 25 °C				V	
		T _j = 125 °C		0,85	0,9	V	
r _F		T _j = 25 °C				mΩ	
		T _j = 125 °C		9	16	mΩ	
I _{RRM}	I _{Fnom} = 30 A	T _i = 125 °C		22		Α	
Q _{rr}	di/dt = -500 A/µs	,		2,2		μC	
E _{rr}	V _{CC} = 300V			0,2		mJ	
R _{th(j-s)D}	per diode				1,2	K/W	
Freewhee	eling Diode						
$V_F = V_{EC}$	I _{Fnom} = 30 A; V _{GE} = 0 V	T _j = 25 °C _{chiplev.}		1,3	1,5	V	
		T _j = 125 °C _{chiplev.}		1,2	1,45	V	
V _{F0}		T _j = 125 °C		0,85	0,9	V	
r _F		T _i = 125 °C		9	16	V	
I _{RRM}	I _{Fnom} = 30 A	T _i = 125 °C		22		Α	
Q _{rr}	di/dt = -500 A/µs			2,2		μC	
E _{rr}	V _R =300V			0,2		mJ	
$R_{th(j-s)FD}$	per diode				1,2	K/W	
M _s	to heat sink				2	Nm	
w				19		g	

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.





3

UL recognized file

no. E 63 532

