# SK 45 WT

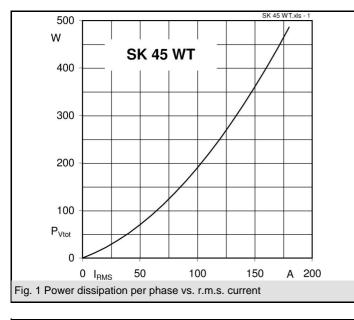


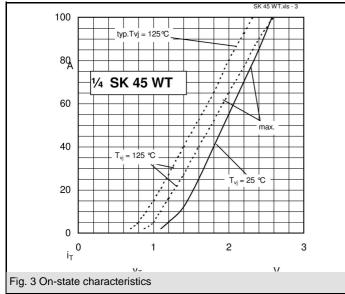
## Antiparallel Thyristor Module

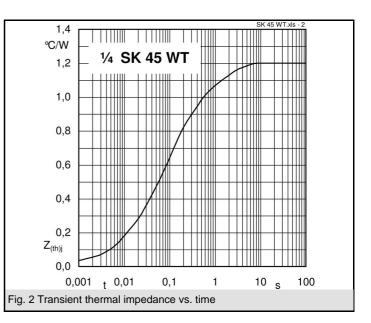
#### SK 45 WT

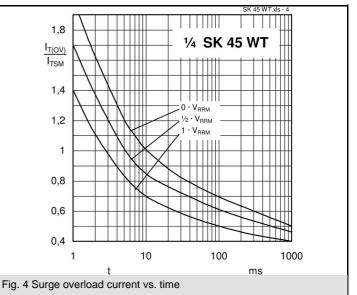
Preliminary Data

### Features

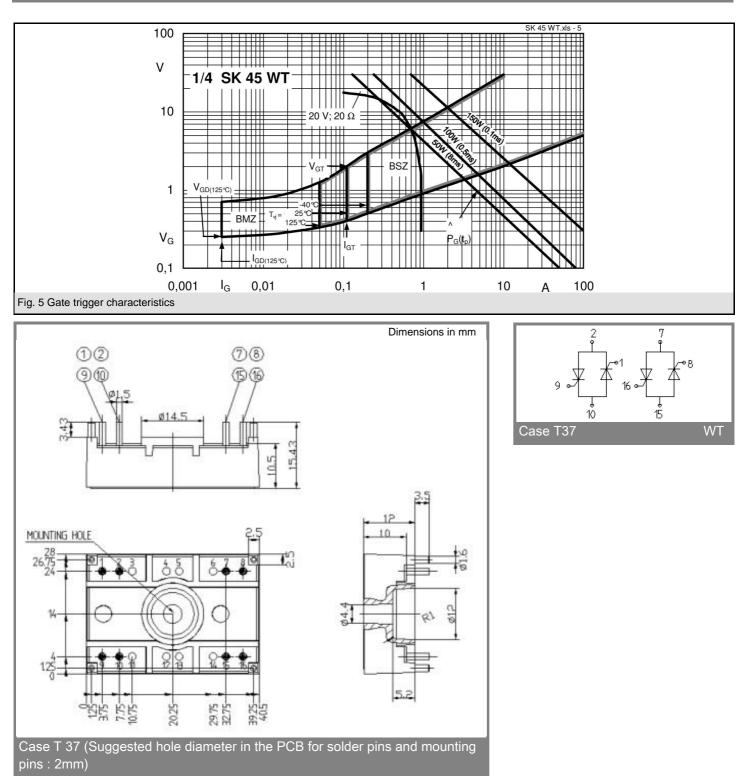

- Compact Design
- One screw mounting
- Heat transfer and isolation through direct copper bonded aluminium oxide ceramic (DBC)
- Glass passived thyristor chips
- Up to 1600V reverse voltage
- UL recognized, file no. E 63 532


#### **Typical Applications**


- Soft starters
- Light control (studios, theaters...)
- Temperature control


| V <sub>RSM</sub>                 | V <sub>RRM</sub> , V <sub>DRM</sub>                               |           | I <sub>RMS</sub> = 47 A A (full conduction) |       |
|----------------------------------|-------------------------------------------------------------------|-----------|---------------------------------------------|-------|
| V V                              | V                                                                 |           | $(T_s = 85 \text{ °C})$                     |       |
| 900                              | 800                                                               |           | (1 <sub>s</sub> = 05 °C)<br>SK 45 WT 08     |       |
| 1300                             | 1200                                                              |           | SK 45 WT 12                                 |       |
|                                  |                                                                   |           |                                             |       |
| 1700                             | 1600                                                              |           | SK 45 WT 16                                 |       |
| Symbol                           | Conditions                                                        |           | Values                                      | Units |
| I <sub>RMS</sub>                 | W1C ; sin. 180° ; T <sub>s</sub> = 100                            | °C        | 33                                          | A     |
| T(WIO                            | W1C ; sin. 180° ; T <sub>s</sub> = 85°                            |           | 47                                          | А     |
| I <sub>TSM</sub>                 | T <sub>vi</sub> = 25 °C ; 10 ms                                   |           | 450                                         | А     |
| 1.214                            | $T_{vi} = 125 \text{ °C}$ ; 10 ms                                 |           | 380                                         | A     |
| i²t                              | T <sub>vi</sub> = 25 °C ; 8,310 ms                                |           | 1000                                        | A²s   |
|                                  | T <sub>vi</sub> = 125 °C ; 8,310 ms                               |           | 720                                         | A²s   |
| V <sub>T</sub>                   | T <sub>vi</sub> = 25 °C, I <sub>T</sub> = 75 A                    |           | max. 1,9                                    | V     |
| V <sub>T(TO)</sub>               | T <sub>vi</sub> = 125 °C                                          |           | max. 1                                      | V     |
| r <sub>T</sub>                   | T <sub>vi</sub> = 125 °C                                          |           | max. 10                                     | mΩ    |
| I <sub>DD</sub> ;I <sub>RD</sub> | T <sub>vi</sub> = 25 °C, V <sub>RD</sub> =V <sub>RRM</sub>        |           | max. 0,5                                    | mA    |
| 55 115                           | T <sub>vi</sub> = 125 °C, V <sub>RD</sub> =V <sub>RRM</sub>       |           | max. 10                                     | mA    |
| t <sub>gd</sub>                  | T <sub>vi</sub> = 25 °C, I <sub>G</sub> = 1 A; di <sub>G</sub> /d | t= 1 A/µs | 1                                           | μs    |
| t <sub>gr</sub>                  | V <sub>D</sub> = 0,67 *V <sub>DRM</sub>                           |           | 2                                           | μs    |
| (dv/dt) <sub>cr</sub>            | T <sub>vi</sub> = 125 °C                                          |           | 1000                                        | V/µs  |
| (di/dt) <sub>cr</sub>            | T <sub>vi</sub> = 125 °C; f= 5060 Hz                              | :         | 50                                          | A/µs  |
| t <sub>q</sub>                   | T <sub>vi</sub> = 125 °C; typ.                                    |           | 120                                         | μs    |
| l <sub>H</sub>                   | T <sub>vj</sub> = 25 °C; typ. / max.                              |           | 80 / 150                                    | mA    |
| ΙL                               | $T_{vj}$ = 25 °C; $R_{G}$ = 33 Ω ; ty                             | p. / max. | 150 / 300                                   | mA    |
| V <sub>GT</sub>                  | T <sub>vi</sub> = 25 °C; d.c.                                     |           | min. 3                                      | V     |
| I <sub>GT</sub>                  | T <sub>vi</sub> = 25 °C; d.c.                                     |           | min. 100                                    | mA    |
| V <sub>GD</sub>                  | T <sub>vi</sub> = 125 °C; d.c.                                    |           | max. 0,25                                   | V     |
| $I_{GD}$                         | T <sub>vj</sub> = 125 °C; d.c.                                    |           | max. 3                                      | mA    |
| R <sub>th(j-s)</sub>             | cont. per thyristor                                               |           | 1,2                                         | K/W   |
| 0,                               | sin 180° per thyristor                                            |           | 1,24                                        | K/W   |
| R <sub>th(j-s)</sub>             | cont. per W1C                                                     |           | 0,6                                         | K/W   |
|                                  | sin 180° per W1C                                                  |           | 0,62                                        | K/W   |
| Τ <sub>vj</sub>                  |                                                                   |           | -40 +125                                    | °C    |
| T <sub>stg</sub>                 |                                                                   |           | -40 +125                                    | °C    |
| T <sub>solder</sub>              | terminals, 10s                                                    |           | 260                                         | °C    |
| V <sub>isol</sub>                | a. c. 50 Hz; r.m.s.; 1 s / 1                                      |           | 3000 / 2500                                 | V~    |
| M <sub>s</sub>                   | Mounting torque to heatsing                                       | ık        | 1,5                                         | Nm    |
| M <sub>t</sub>                   |                                                                   |           |                                             | Nm    |
| а                                |                                                                   |           |                                             | m/s²  |
| m                                |                                                                   |           | 13                                          | g     |
| Case                             | SEMITOP <sup>®</sup> 2                                            |           | Т 37                                        |       |

## SK 45 WT










## SK 45 WT



This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.