TOIREX

XC25BS6 Series

ETR1503_001

Divider Signal Output Clock Generator ICs with Built-In Crystal Oscillator Circuit

■GENERAL DESCRIPTION

The XC25BS6 is a low operating voltage, low current consumption series of CMOS ICs with built-in crystal oscillator and divider circuits designed for clock generators. Oscillation capacitors Cg and Cd are externally set up. Output is selectable from any one of the following values for f0:f0/1024, f0/512, f0/256, and f0/128. With oscillation feedback resistors built-in, it is possible to configure a stable fundamental oscillator using about 10pF of external oscillation capacitor and an external crystal. The series has a stand-by function. The oscillation completely stops in the stand-by state and output will be one of high-impedance.

■ APPLICATIONS

- Crystal oscillation modules
- Clocks for micro-computers, DSPs, etc.
- Communication equipment
- Various system clocks
- Clock time-base

■FEATURES

Oscillation Frequency: 2MHz~36MHz (fundamental)

-Oscillation feedback resistor built-in

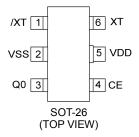
-External oscillation capacitor

Divider Ratio : f0/1024, f0/512, f0/256, f0/128

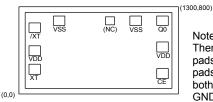
Output : 3-State
Operating Supply Voltage Range

:2.3~4.0V

Supply Current : 0.5μ A (MAX.) when stand-by mode


Chip Form : Chip size 1.3 × 0.8mm

CMOS Low Power Consumption Low Operating Supply Voltage


: 2.3V (MIN.)

Output Frequency : 32.768kHz Package : SOT-26

■PIN CONFIGURATION

■ PAD LAYOUT FOR CHIP FORM

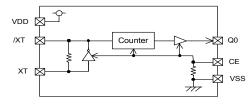
Chip Size Chip Thickness Chip Back Pad Aperture :1300 \times 800 μ m :280 \pm 20 μ m :VDD level :88 \times 88 μ m Note)
There are two Vss
pads and two VDD
pads. Please connect
both Vss pads to
GND, and connect both
VDD pads to a power

supply.

■PIN ASSIGNMENT

PIN NUMBER	PIN NAME	FUNCTIONS
1	/XT	Crystal Oscillator Connection (Output)
2	Vss	Ground
3	Q0	Clock Output
4	CE	Stand-by Control *
5	Vdd	Power Supply
6	XT	Crystal Oscillator Connection (Input)

^{*}The stand-by control pin (pin #4) has a pull-down resistor built-in.


■PAD LOCATIONS

(Unit: μ m)

PIN	PIN	FUNCTIONS	PAD DIMI	ENSIONS
NUMBER	NAME	FUNCTIONS	Χ	Υ
1	/XT	Crystal Oscillator Connection (Output)	128.0	610.0
2	Vss	Ground	328.0	672.0
3	(NC)	No Connection	741.0	672.0
4	Vss	Ground	952.0	672.0
5	Q	Clock Output	1172.0	672.0
6	Vdd	Power Supply	1172.0	430.0
7	CE	Stand-by Control *	1172.0	189.0
8	XT	Crystal Oscillator Connection (Input)	128.0	187.0
9	Vdd	Power Supply	128.0	399.0

^{*}The stand-by control pin (pin #4) has a pull-down resistor built-in.

■BLOCK DIAGRAM

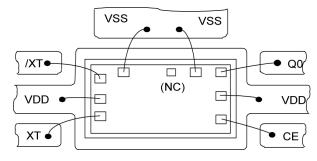
■CE, Q0 PIN FUNCTION

CE	Q0
'H'	Clock Output
'L' or Open	High Impedance

■ABSOLUTE MAXIMUM RATINGS

Ta = 25°C

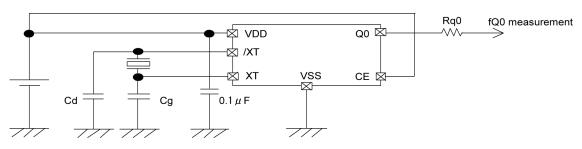
PARAMETER	SYMBOL	RATINGS	UNITS
Supply Voltage	Vdd	Vss -0.3 ~ Vss +7.0	V
CE Pin Voltage	VCE	Vss -0.3 ~ VDD +0.3	V
Q0 Pin Voltage	V _{Q0}	Vss-0.3 ~ VDD +0.3	V
Q0 Output Current	IQ0	±50	mA
Power Dissipation	Pd	150 **	mW
Operating Temperature Range	Topr	-40 ~ +85	°C
Otana a Tanana at un Dana	Tota	-65 ~ +150 (Chip Form)	လ
Storage Temperature Range	Tstg	-55 ~ +125 (SOT-26)	C


^{**} SOT-26 package, when implemented on a glass epoxy PCB.

■PRODUCT CLASSIFICATION

● Ordering Information XC25BS6 ①②③④⑤

DESIGNATOR	DESCRIPTION	SYMBOL	DESCRIPTION
		128	: 128 divider
123	Divider Ratio	256	: 256 divider
1/2/3	Divider Ratio	512	: 512 divider
		A24	: 1024 divider
4		С	: Chip form
	Package	W	: Wafer form
		М	: SOT-26
		R	: Embossed tape, standard feed
5	Device Orientation:	L	: Embossed tape, reverse feed
	Device Offentation.	T	: Chip Tray
		W	: Wafer


■WIRE BONDING CONNECTION

^{*} There are two Vss pads and VDD pads.

Please connect both Vss pads to GND, and connect both VDD pads to a power supply.

■TYPICAL APPLICATION CIRCUIT

^{*} Please use oscillation capacitors Cg, Cd =10pF externally

^{*} The same power supply can be used for VDD and CE.

■NOTES ON USE

(1) The oscillation circuit of this IC does not have internal oscillation capacitors.

Please make the oscillation circuitry using an external crystal transducer and oscillation capacitors Cg and Cd.

- *) A higher harmonic wave oscillation may occur without Cg and Cd.
- *) Cg and Cd can be connected either to GND or VDD.
 - (Cg and Cd in the above circuit example are connected to GND.)
- *) It is recommended to use around for 10pF of Cg and Cd.
 - For trimmer capacitors, 10pF as a standard value is appropriate.
- *) The crystal oscillation frequency should be measured at the output of the Q0 pin.

 When a probe is directly connected to the XT pin or the /XT pin, oscillation frequency will change and a precise value can not be taken.
- (2) Please insert a by-pass capacitor of 0.1 μ F between VDD and GND.
- (3) The use of a matching resistor Rq0 of $50\,\Omega$ connected in series to the Q0 pin is recommended in order to counter unwanted radiations.
- (4) Please place a by-pass capacitor and the matching resistor as close to the IC as possible. If the by-pass capacitor is placed away from the IC, it may cause abnormal oscillation. If the matching resistor is placed away from the IC, it may cause unwanted radiations in the pattern between the Q0 pin and the resistor.
- (5) When the CE pin is not controlled by external signals, please connect the CE pin to VDD power supply.
 - *) When the CE pin is not connected, the IC goes into stand-by mode due to the internal pull-down resistor.
- (6) As for the supply voltage, it is recommended to apply a low noise power supply, such as a series regulator. Using a power supply like a switching regulator might lead to an unstable oscillation jitter, which in turn may lead the oscillation frequency to fluctuate due to the ripple of the switching regulator.

■DC ELECTRICAL CHARACTERISTICS

XC25BS6xxxxx

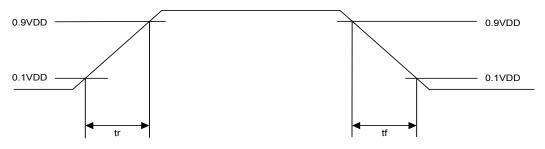
3.0V Operation (unless otherwise stated, VDD=3.0V, Fosc=16MHz, No load, Ta=25°C)

PARAMETER	SYMBOL	FUNCTIONS		STA	NDARD VA	LUE	UNIT
PARAIVIETER	STIVIDOL			MIN.	TYP.	MAX.	OINIT
Operating Supply Voltage	VDD			(2.3)	3.0	4.0	V
Crystal Oscillation Frequency	Fosc	С	g=Cd=10pF (External)	2	-	36	MHz
H Level Output Voltage	Vон	\	/DD=2.7V, IOH= - 4mA	2.3	-	-	V
L Level Output Voltage	Vol	VDD=2.7V, IOL=4mA		-	-	0.4	V
	IDD1 CE=3.0V	CE=3.0V	fOSC=4MHz, XC25BS6128	-	(0.4)	(0.8)	mA
Supply Current 1			fOSC=8MHz, XC25BS6256	-	(0.5)	(1.0)	
Supply Culterit 1)1 CE=3.0V	1001 CE=3.0V	fOSC=16MHz, XC25BS6512	-	(8.0)
			fOSC=36MHz, XC25BS6A24	1	(1.0)	(1.8)	
Supply Current 2	IDD2	CE=0V		-	-	0.5	μΑ
CE H Level Voltage	VCEH			2.4	-	-	V
CE L Level Voltage	VCEL				-	0.6	V
CE Pull-Down Resistance 1	Rp1	CE=3.0V		0.5	1.6	3.0	МΩ
CE Pull-Down Resistance 2	Rp2	CE=0.3V		22	55	90	ΚΩ
Internal Oscillation Feedback Resistance	Rf	XT Pin, CE=/XT=3.0V		0.2	0.5	1.0	МΩ
Output Disable Leakage Current	IOZ	Q0 Pin, VDD=4.0V, CE=0V		-	-	0.5	μΑ

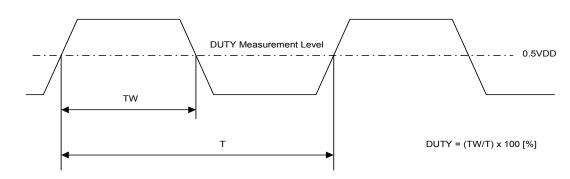
*External oscillation capacitor

■ AC ELECTRICAL CHARACTERISTICS

XC25BS6xxxxx

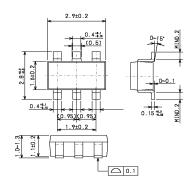

3.0V Operation (unless otherwise stated, VDD=3.0V, Fosc=16MHz, CL=15pF, Ta=25°C)

PARAMETER	SYMBOL	FUNCTIONS	STANDARD VALUE			UNIT
PARAIVIETER	STIVIBOL	FUNCTIONS	MIN.	TYP.	MAX.	ONIT
Output Rise Time	Tr	V _{DD} =3.0V (10% to 90%) *1	-	10	15	ns
Output Fall Time	Tf	V _{DD} =3.0V (10% to 90%) *1	-	10	15	ns
Duty Cycle	DUTY		45	50	55	%
Output Start Time	Ton	*1	-	-	3.0	ms

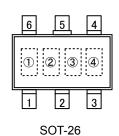

*1 R&D guarantee

■AC ELECTRICAL CHARACTERISTICS MEASUREMENT WAVE FORMS

(1) Output Rise Time, Output Fall Time



(2) Duty Cycle


■PACKAGING INFORMATION

●SOT-26

■MARKING RULE

●SOT-26

(TOP VIEW)

①Represents product series

MARK	PRODUCT SERIES		
В	XC25BS6		

2 Represents product series

O 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
MARK	PRODUCT SERIES
6	XC25BS6

③Represents divider ratio

MARK	DIVIDER RATIO	MARK	DIVIDER RATIO		
1	f0/128	2	f0/256		
5	f0/512	Α	f0/1024		

④Represents assembly lot number. (Based on internal standards)

- 1. The products and product specifications contained herein are subject to change without notice to improve performance characteristics. Consult us, or our representatives before use, to confirm that the information in this catalog is up to date.
- 2. We assume no responsibility for any infringement of patents, patent rights, or other rights arising from the use of any information and circuitry in this catalog.
- 3. Please ensure suitable shipping controls (including fail-safe designs and aging protection) are in force for equipment employing products listed in this catalog.
- 4. The products in this catalog are not developed, designed, or approved for use with such equipment whose failure of malfunction can be reasonably expected to directly endanger the life of, or cause significant injury to, the user.
 - (e.g. Atomic energy; aerospace; transport; combustion and associated safety equipment thereof.)
- Please use the products listed in this catalog within the specified ranges.
 Should you wish to use the products under conditions exceeding the specifications, please consult us or our representatives.
- 6. We assume no responsibility for damage or loss due to abnormal use.
- 7. All rights reserved. No part of this catalog may be copied or reproduced without the prior permission of Torex Semiconductor Ltd.

TOREX SEMICONDUCTOR LTD.