SKM 800GA125D

SEMITRANS[®] 4

Ultrafast IGBT Modules

SKM 800GA125D

Target Data

Features

- Homogeneous Si
- NPT-IGBT
- $V_{CE(sat)}$ with positive temperature . coefficient
- High short circuit capability, self limiting to 6 x I_C

Typical Applications

- Resonant inverters up to 100 kHz
- Inductive heating
- Electronic welders at fsw > 20 . kHz

Remarks

- $I_{DC} \leq 500~A$ limited by terminals Take care of over-voltage caused by stray inductances

Absolut	e Maximum Ratings	25°C, unless otherwise s	°C, unless otherwise specified		
Symbol Conditions			Values	Units	
IGBT				_	
V _{CES}	T _j = 25 °C		1200	V	
I _C	T _j = 150 °C	T _{case} = 25 °C	760	А	
		T _{case} = 80 °C	530	А	
I _{CRM}	I _{CRM} =2xI _{Cnom}		1200	А	
V_{GES}			± 20	V	
t _{psc}	V _{CC} = 600 V; V _{GE} ≤ 20 V; VCES < 1200 V	T _j = 125 °C	10	μs	
Inverse	Diode				
I _F	T _j = 150 °C	T _{case} = 25 °C	720	А	
		T _{case} = 80 °C	500	А	
I _{FRM}	I _{FRM} =2xI _{Fnom}		1200	А	
I _{FSM}	t _p = 10 ms; sin.	T _j = 150 °C	5700	А	
Module					
I _{t(RMS)}			500	А	
T _{vj}			- 40 +150 (125)	°C	
T _{stg}			125	°C	
V _{isol}	AC, 1 min.		4000	V	

Characteristics T _{case} =			25°C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units	
IGBT							
V _{GE(th)}	V_{GE} = V_{CE} , I_C = 24 mA		4,5	5,5	6,5	V	
I _{CES}	V_{GE} = 0 V, V_{CE} = V_{CES}	T _j = 25 °C		0,2	0,6	mA	
		T _j = 125 °C				mA	
V _{CE0}		T _j = 25 °C		1,5	1,75	V	
		T _j = 125 °C		1,7	1,3	V	
r _{CE}	V _{GE} = 15 V	T _j = 25°C		2,8	3,3	mΩ	
		T _j = 125°C		3,8	5,4	mΩ	
V _{CE(sat)}	I _{Cnom} = 600 A, V _{GE} = 15 V	$T_j = °C_{chiplev.}$		3,2	3,75	V	
C _{ies}				37		nF	
C _{oes}	V_{CE} = 25, V_{GE} = 0 V	f = 1 MHz		5,6		nF	
C _{res}				2,8		nF	
R _{Gint}	$T_j = °C$			1,7		Ω	
t _{d(on)}						ns	
t _r	$R_{Gon} = \Omega$	$V_{\rm CC} = 600V$		52		ns	
E _{on}	R _{Goff} = 5 Ω	I _{Cnom} = 600A T _i = 125 °C		52		mJ ns	
t _{d(off)} t _f	Gott	$V_{GE} = \pm 15V$				ns	
E _{off}						mJ	
R _{th(j-c)}	per IGBT				0,03	K/W	

SKM 800GA125D

SEMITRANS[®] 4

Ultrafast IGBT Modules

SKM 800GA125D

Target Data

Features

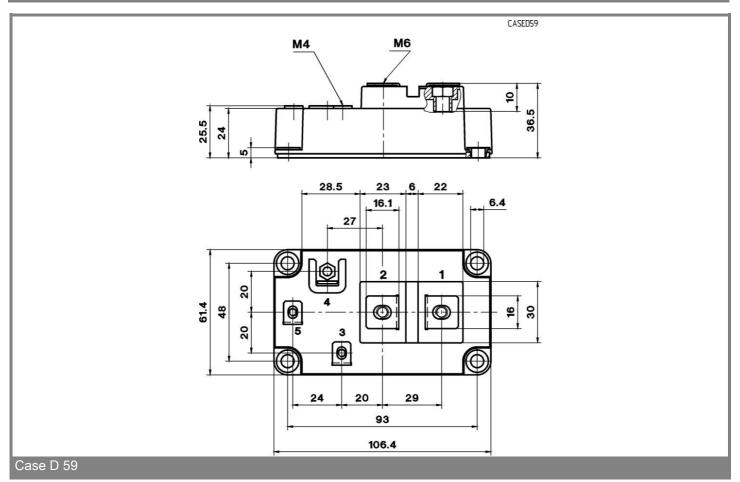
- Homogeneous Si
- NPT-IGBT
- V_{CE(sat)} with positive temperature coefficient
- High short circuit capability, self limiting to 6 x I_C

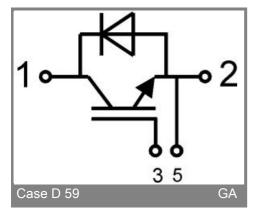
Typical Applications

- Resonant inverters up to 100 kHz
- Inductive heating
- Electronic welders at fsw > 20 kHz

Remarks

- $I_{DC} \leq 500$ A limited by terminals
- Take care of over-voltage caused by stray inductances


Characte	ristics					
Symbol	Conditions		min.	typ.	max.	Units
V _F = V _{EC}	I _{Fnom} = 600 A; V _{GE} = 0 V	T _j = 25 °C _{chiplev.}		2,3	2,5	V
		T _j = 125 °C _{chiplev.}		2,1	2,3	V
V _{F0}		T _j = °C				V
r _F		T _j = °C				mΩ
I _{RRM}	I _{Fnom} = 600 A	T _j = 25 °C				А
Q _{rr}						μC
Err	V_{GE} = 0 V; V_{CC} = 600 V					mJ
R _{th(j-c)D}	per diode				0,07	K/W
Module						
L _{CE}					20	nH
R _{CC'+EE'}	res., terminal-chip	T _{case} = 25 °C		0,18		mΩ
		T _{case} = 125 °C		0,22		mΩ
R _{th(c-s)}	per module				0,038	K/W
M _s	to heat sink M6		3		5	Nm
M _t	to terminals (M6(M4)		2,5 (1,1)		5 (2)	Nm
w					330	g


This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

SKM 800GA125D

