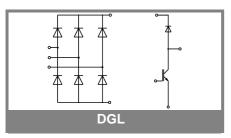


SEMITOP® 3

3-phase bridge rectifier + brake chopper

SK 95 DGL 126

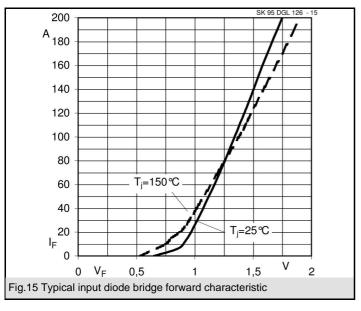

Target Data

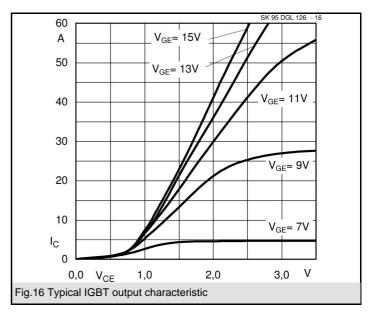
Features

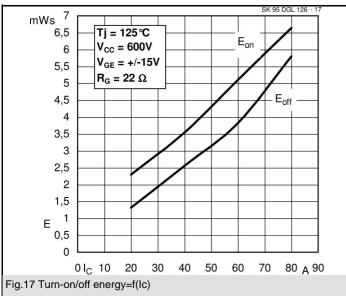
- Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded alumium oxide ceramic (DCB)
- Trench IGBT technology
- CAL Technology FWD

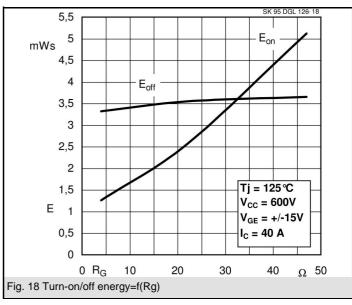
Typical Applications

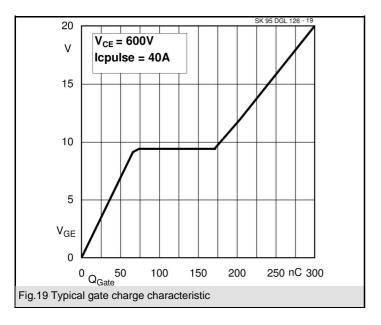
Rectifier

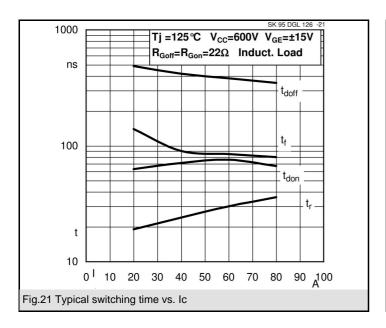


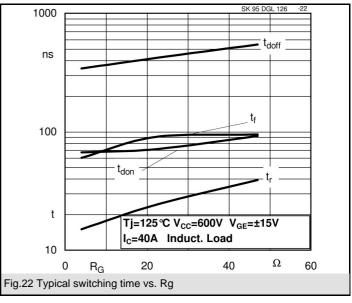

Absolute Maximum Ratings T _s = 25°C, unless otherwise specified								
Symbol	Conditions	Values	Units					
IGBT - Chopper								
V_{CES}		1200	V					
I _C	T _s = 25 (80) °C	40 (32)	Α					
I _{CRM}	$I_{CRM} = 2 \times I_{Cnom}, t_p = 1 \text{ ms}$	70	Α					
V_{GES}		±20	V					
T _j		-40 + 150	°C					
Diode - Chopper								
I _F	T _s = 25 (80) °C	45 (35)	Α					
I _{FRM}	$I_{FRM} = 2xI_{Fnom}, t_p = 1 \text{ ms}$	100	Α					
T _j	·	-40 + 150	°C					
Rectifier								
V_{RRM}		1600	V					
I _D	T _s = 80 °C	96	Α					
I _{FSM} / I _{TSM}	$t_p = 10 \text{ ms}$, sin 180 °, $T_i = 25 \text{ °C}$	700	Α					
I ² t	t _p = 10 ms , sin 180 ° ,T _i = 25 °C	2450	A²s					
T _j	,	-40 + 150	°C					
T _{sol}	Terminals, 10s	260	°C					
T _{stg}		-40 + 125	°C					
V _{isol}	AC, 1 min. / 1s	2500 / 3000	V					

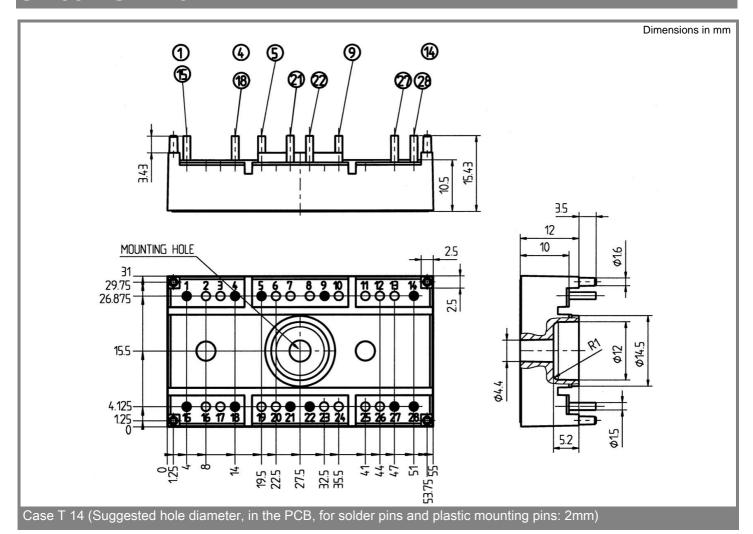

Characteristics		T _s = 25°C, unless otherwise specified						
Symbol	Conditions	min.	typ.	max.	Units			
IGBT - Chopper								
V _{CEsat} V _{GE(th)} V _{CE(TO)} r _T C _{ies}	$I_C = 35 \text{ A}, T_j = 25 (125) ^{\circ}\text{C}$ $V_{GE} = V_{CE}, I_C = 1,5 \text{ mA}$ $T_j = 25 ^{\circ}\text{C} (125) ^{\circ}\text{C}$ $T_j = 25 ^{\circ}\text{C} (125) ^{\circ}\text{C}$ $V_{CE} = 25 V_{GE} = 0 \text{ V}, f = 1 \text{ MHz}$	5	1,7 (2) 5,8 1 (0,9) 20 (31) 2,4	2,1 6,5 1,2 26	V V V mΩ nF			
C _{oes} C _{res} R _{th(j-s)}	$V_{CE} = 25 V_{GE} = 0 V$, f = 1 MHz $V_{CE} = 25 V_{GE} = 0 V$, f = 1 MHz per IGBT		0,5 0,4	1,05	nF nF K/W			
t _{d(on)} t _r t _{d(off)} t _f E _{on} E _{off}	under following conditions $\begin{aligned} &V_{CC} = 600 \text{ V}, V_{GE} = \pm 15 \text{ V} \\ &I_{C} = 30 \text{ A}, T_{j} = 125 \text{ °C} \\ &R_{Gon} = R_{Goff} = 22 \Omega \\ &\text{inductive load} \end{aligned}$		85 30 430 90 4,6 4,3		ns ns ns ns mJ mJ			
$ \begin{aligned} $	In opper $ I_F = 45 \text{ A}, T_j = 25 (125) \text{ °C} $ $ T_j = \text{ °C} (125) \text{ °C} $ $ T_j = $		1,5 (1,5) (0,92) (13,4) 30 10	1,77 (1,77)	V V mΩ K/W A μC mJ			
Diode rectifier								
$V_{F} \\ V_{(TO)} \\ r_{T} \\ R_{th(j-s)}$	$I_F = 35 \text{ A}, T_j = 25 \text{ °C}$ $T_j = 150 \text{ °C}$ $T_j = 150 \text{ °C}$ per diode			1,2 0,8 11 1,2	V V mΩ K/W			
Temperatur sensor								
R _{ts}	%, T _r = () °C		()		Ω			
Mechanical data								
w M _s	Mounting torque		30	2,5	g Nm			

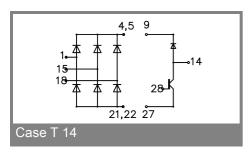

© by SEMIKRON


SK 95 DGL 126








SK 95 DGL 126

3 18-07-2007 DIL © by SEMIKRON

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.