

DFP2INT

Floating Point To Integer Pipelined Converter ver 2.20

OVERVIEW

The DFP2INT is the **pipelined** floating point to integer converter. The input and output numbers format is according to IEEE-754 standard. DFP2INT supports single precision real numbers and double word integers (4 Bytes). Convert operation is pipelined to 2 levels. Input data are fed every clock cycle. The first result appears after latency equal to 2 clock periods and next results are available **each clock** cycle. Full precision and accuracy are accomplished.

APPLICATION

- Math coprocessors
- DSP algorithms
- Embedded arithmetic coprocessor
- Data processing & control

KEY FEATURES

- Full IEEE-754 compliance
- Single precision real input numbers
- Double word output numbers(4 Bytes)
- Simple interface
- No programming required
- 2 levels pipelining
- Full accuracy and precision
- Results available at every clock
- Overflow, underflow and invalid operation flags
- Fully configurable

All trademarks mentioned in this document are trademarks of their respective owners.

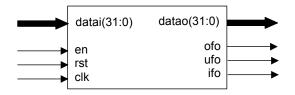
Fully synthesizable, static synchronous design with no internal tri-states

DELIVERABLES

- Source code:
 - ♦ VHDL Source Code or/and
 - ♦ VERILOG Source Code or/and
 - ♦ Encrypted, or plain text EDIF netlist
- VHDL & VERILOG test bench environment
 - Active-HDL automatic simulation macros
 - NCSim automatic simulation macros
 - ModelSim automatic simulation macros
 - Tests with reference responses
- Technical documentation
 - ♦ Installation notes
 - ♦ HDL core specification
 - ◊ Datasheet
- Synthesis scripts
- Example application
- Technical support
 - ◊ IP Core implementation support
 - ♦ 3 months maintenance
 - Delivery the IP Core updates, minor and major versions changes
 - Delivery the documentation updates
 - Phone & email support

LICENSING

Comprehensible and clearly defined licensing methods without royalty fees make using of IP Core easy and simply.


<u>Single Design</u> license allows using IP Core in single FPGA bitstream and ASIC implementation. It also permits FPGA prototyping before ASIC production.

http://www.DigitalCoreDesign.com http://www.dcd.pl <u>Unlimited Designs</u> license allows using IP Core in unlimited number of FPGA bitstreams and ASIC implementations.

In all cases number of IP Core instantiations within a design, and number of manufactured chips are unlimited. There is no time of use limitations.

- Single Design license for
 - VHDL, Verilog source code called <u>HDL</u> <u>Source</u>
 - o Encrypted, or plain text EDIF called Netlist
- Unlimited Designs license for
 - HDL Source
 - Netlist
- Upgrade from
 - Netlist to HDL Source
 - Single Design to Unlimited Designs

SYMBOL

PINS DESCRIPTION

PIN	TYPE	DESCRIPTION	
clk	Input	Global system clock	
rst	Input	Global system reset	
en	Input	Enable computing	
datai[31:0]	Input	Data bus input	
datao[31:0]	Output	Data bus output	
ofo	Output	Overflow flag	
ufo	Output	Underflow flag	
ifo	Output	Invalid result flag	

BLOCK DIAGRAM

Arguments Checker - performs input data analyze against IEEE-754 number standard compliance. The appropriate numbers and information about the input data classes are given as the results to Main FP Pipelined Unit.

Main FP Pipelined Unit - performs floating point to integer conversion. Gives the complex information about the results to Result Composer module.

Result Composer - performs result rounding function, data alignment to IEEE-754 standard, and the final flags setting.

PERFORMANCE

The following table gives a survey about the Core area and performance in the ALTERA® devices after Place & Route:

Device	Speed grade	Logic Cells	F_{max}
FLEX10KE	-1	335	67 MHz
ACEX1K	-1	335	71 MHz
APEX20K	-1	295	69 MHz
APEX20KE	-1	295	67 MHz
APEX20KC	-7	295	88 MHz
APEX-II	-7	295	114 MHz
MERCURY	-5	270	208 MHz
STRATIX	-5	245	184 MHz
CYCLONE	-6	245	165 MHz
STRATIX-II	-3	185	214 MHz
CYCLONE-II	-6	265	133 MHz

Core performance in ALTERA® devices

CONTACTS

For any modification or special request please contact to Digital Core Design or local distributors.

Headquarters:

Wroclawska 94

41-902 Bytom, POLAND

e-mail: info@dcd.pl

tel. : +48 32 282 82 66 fax : +48 32 282 74 37

Distributors:

Please check http://www.dcd.pl/apartn.php