Data Book # AU9520 USB Smart Card Reader Controller Technical Reference Manual Product Specification Official Release Revision 1.18W Public May 2005 ## **Data Sheet Status** | MEINIACTIVA SNACIFICATION | This data sheet contains target or goal specifications for product development. | |---------------------------|---| | Preliminary specification | This data sheet contains preliminary data; supplementary data may be published later. | | Product specification | This data sheet contains final product specifications. | # **Revision History** | Revision | Description | |------------|---| | V1.18W/D22 | Removed the schematics.
Please contact our sales if you need it. | #### **Copyright Notice** Copyright 1997 - 2004 Alcor Micro Corp. All Rights Reserved. #### **Trademark Acknowledgements** The company and product names mentioned in this document may be the trademarks or registered trademarks of their manufacturers. #### **Disclaimer** Alcor Micro Corp. reserves the right to change this product without prior notice. Alcor Micro Corp. makes no warranty for the use of its products and bears no responsibility for any error that appear in this document. Specifications are subject to change without prior notice. #### **Contact Information:** Web site: http://www.alcormicro.com/ #### Taiwan Alcor Micro Corp. 4F, No 200 Kang Chien Rd., Nei Hu, Taipei, Taiwan, R.O.C. Phone: 886-2-8751-1984 Fax: 886-2-2659-7723 #### **Santa Clara Office** 2901 Tasman Drive, Suite 206 Santa Clara, CA 95054 USA Phone: (408) 845-9300 Fax: (408) 845-9086 #### **Los Angeles Office** 9400 Seventh St., Bldg. A2 Rancho Cucamonga, CA 91730 Phone: (909) 483-9900 Fax: (909) 944-0464 # **Table of Contents** | 1 | <u>Introduction</u> | 6 | |---|---|----| | | 1.1 Description | 6 | | | 1.2 Features | 6 | | 2 | Application Block Diagram | 7 | | 3 | Pin Assignment | 8 | | 4 | System Architecture and Reference Design | 10 | | | 4.1 Block Diagram | 10 | | 5 | Electrical Characteristics | 11 | | | 5.1 Recommended Operating Conditions | 11 | | | 5.2 General DC Characteristics | 11 | | | 5.3 DC Electrical Characteristics for 3.3 volts operation | 11 | | | 5.4 Crystal Oscillator Circuit Setup for Characterization | 12 | | | 5.5 ESD Test Results | 12 | | | 5.6 Latch-Up Test Results | 13 | | 6 | Mechanical Information | 15 | | 7 | Abbreviations | 16 | # **List of Figures** | 2.1 | Block Diagram | 7 | |-------------------|---|----------------| | 3.1 | Pin Assignment Diagram | 8 | | 4.1 | AU9520 USB eToken controller Block Diagram | 10 | | 5.1 | Crystal Oscillator Circuit Setup for Characterization | 12 | | 5.2 | Latch-Up Test Results Diagram | 13 | | 6.1 | Mechanical Information Diagram | 15 | | | | | | | List of Tables | | | 3.1 | | 9 | | 3.1
5.1 | | 9
11 | | | <u>Pin Descriptions</u> | _ | | 5.1 | Pin Descriptions Recommended Operation Condition. General DC Characteristics. | 11 | | 5.1
5.2
5.3 | Pin Descriptions Recommended Operation Condition. General DC Characteristics. DC Electrical Characteristics for 3.3 volts operation. | 11
11
11 | # 1.0. Introduction # 1.1. Description AU9520 is a highly integrated single chip, USB Smart Card reader controller. Highly integration enables the lowest BOM cost of USB Smart Card reader. The AU9520 supports multiple international standards including ISO7816 for IC card standard, PC/SC 1.0 for windows smart card standard, Microsoft WHQL, EMV for Europay MasterCard Visa standard and USB-IF CCID standard. Manufacturers can easily create a high-security Smart Card reader by deploying Au9520. The application of AU9520 can be generally applied to Smart Card read/write terminal device, such as ATM, POS terminal, Public telephone, E-Commerce, personal consumption on Internet, personal certification, prepay system, loyalty system...etc. #### 1.2. Feature - Support EMV specification. - Support the Universal Serial Bus Specification, version 1.1. - Based on ISO7816 implementation - Support PC Smart Card industry standard PC/SC 1.0 - Support Microsoft Smart Card for Windows - Meet Microsoft WHQL USB Smart Card Reader requirements - Include WDM driver to work on Windows 98 and Windows 2000 - Support dual slots for higher security application - Support T0, T1 protocol, I2C memory card, SLE4418, SLE4428, SLE4432, SLE4442, AT88SC1608 and AT45D041 card. - Dedicated hardware block implementation for IC and memory card protocols for highest performance - Implemented as an USB full speed device with bulk transfer endpoint - Built-in 3.3V regulator for single 5V operation - Built-in PLL for USB and Smart Card clocks requirement - Support EEPROM for USB descriptors customization, including VID/PID - Available in 48-LQFP Package - Based on USB-CCID class, short APDU level - Compatible with Microsoft USB-CCID driver - Support 3V/5V card # 2.0. Application Block Diagram AU9520 is a highly integrated single chip, which is used as USB Smart Card reader or in an embedded USB device in the downstream port of an USB hub. Following is the application diagram of a typical card reader product with AU9520. By connecting the card reader to a ATM or E-Commerce...etc. ## 2.1 Block Diagram Figure 2.1 Block Diagram # 3.0. Pin Assignment The AU9520 is packed in 48-LQFP-form factor. The following figure shows signal name for each pin and the table in the following page describes each pin in detail Figure 3.1 Pin Assignment Diagram #### **Table 3.1 Pin Descriptions** | 1 | Pin | Pin Name | 1/0 | Description | |---|----------|------------|-----|--| | SINDA | 1 | VCCA | PWR | | | 3 | 2 | | | | | A | | | ı | | | 5 PSWOUTB O Connect to Slot1 Power. 7 VCC5V PWR 5V power supply Input 8 VCC3V PWR 3.3V power supply output 9 USB_DP I/O USB D- 10 USB_DM I/O USB D- 11 GNDIO PWR Chip I/O Ground. 12 GPL_0 1 Reserved (need pull Low) 13 GPL_1 1 Reserved (need pull Low) 14 SCL I/O EEPROM Clock (need pull High) 15 SDA I/O EEPROM Data (need pull Low) 16 PORT1_0 1 Reserved (need pull Low) 17 PORT1_1 I/O General IO 1 18 PORT1_3 O Slot2 LED 20 PORT1_4 O Device LED 21 PORT1_5 I PID/VID ("1": 9520 one slot mode, "0": 9522 two slot mode, default: "1") 22 PORT1_6 I Reserved (need pull Low) 23 PORT1_7 I | | | 0 | | | 6 PSWOUTA O Connect to Slot0 Power. 7 VCC5V PWR 5V power supply Input 8 VCC3V PWR 3.3 y power supply output 9 USB_DP I/O USB D- 10 USB_DM I/O USB D- 11 GNDIO PWR Chip I/O Ground. 12 GPI_O I Reserved (need pull Low) 13 GPI_1 I Reserved (need pull Low) 14 SCL I/O EEPROM Clock (need pull High) 15 SDA I/O EEPROM Data (need pull High) 16 PORTI_0 I Reserved (need pull Low) 17 PORTI_1 I/O Solot1 LED 19 PORTI_3 O Slot1 LED 20 PORTI_4 O Device LED 21 PORTI_5 I Reserved (need pull Low) 23 PORTI_7 I Reserved (need pull Low) 24 PROM_DATA0 I/O Rom data 0 | | | | | | 7 | | | | | | 8 | | | | | | 9 | | | | | | 10 | | | | | | 11 | | | | | | 12 | | | | | | 13 | | | I | | | 14 | | | i | | | 15 | | | 1/0 | | | 16 | | | | | | 17 | | | 1/0 | , , , | | 18 | | | 1/0 | | | PORT1_3 | . | | | | | PORT1_4 | | _ | | | | PORT1_5 | | | | | | PORTI_5 | 20 | PORTI_4 | U | | | 23 PORT1_7 I Reserved (need pull low) 24 PROM_DATA0 I/O Rom data 0 25 PROM_DATA1 I/O Rom data 1 26 VCCK PWR Core power supply 3.3V 27 GNDK PWR Core ground 28 PROM_DATA2 I/O Rom data 2 29 PROM_DATA3 I/O Rom data 3 30 PROM_DATA4 I/O Rom data 4 31 PROM_DATA5 I/O Rom data 5 32 PROM_DATA6 I/O Rom data 7 34 NC NC 35 ICC1DETN I Smart card 1 inserted (Low true) (pull high) 36 SC1DATA I/O Smart card 1 clock 38 SC1RST I/O Smart card 1 reset 39 SC1FCB I/O Smart card 1 GPIO_0 40 SC1C6 I/O Smart card 1 GPIO_2 42 ICCODETN I Smart card 0 inserted (Low true) (pull high) | 21 | PORT1_5 | I | | | 24 PROM_DATAO I/O Rom data 0 25 PROM_DATA1 I/O Rom data 1 26 VCCK PWR Core power supply 3.3V 27 GNDK PWR Core ground 28 PROM_DATA2 I/O Rom data 2 29 PROM_DATA3 I/O Rom data 3 30 PROM_DATA4 I/O Rom data 4 31 PROM_DATA5 I/O Rom data 5 32 PROM_DATA6 I/O Rom data 6 33 PROM_DATA7 I/O Rom data 7 34 NC NC 35 ICC1DETN I Smart card 1 inserted (Low true) (pull high) 36 SC1DATA I/O Smart card 1 clock 38 SC1RST I/O Smart card 1 reset 39 SC1FCB I/O Smart card 1 GPIO_0 40 SC1C6 I/O Smart card 1 GPIO_2 42 ICCODETN I Smart card 0 inserted (Low true) (pull high) 43 | 22 | PORT1_6 | ı | Reserved (need pull Low) | | 25 PROM_DATA1 I/O Rom data 1 26 VCCK PWR Core power supply 3.3V 27 GNDK PWR Core ground 28 PROM_DATA2 I/O Rom data 2 29 PROM_DATA3 I/O Rom data 3 30 PROM_DATA4 I/O Rom data 4 31 PROM_DATA5 I/O Rom data 5 32 PROM_DATA6 I/O Rom data 6 33 PROM_DATA7 I/O Rom data 7 34 NC NC 35 ICC1DETN I Smart card 1 inserted (Low true) (pull high) 36 SC1DATA I/O Smart card 1 clock 38 SC1RST I/O Smart card 1 reset 39 SC1FCB I/O Smart card 1 GPIO_0 40 SC1C6 I/O Smart card 1 GPIO_2 42 ICCODETN I Smart card 0 inserted (Low true) (pull high) 43 SCODATA I/O Smart card 0 serial data <t< td=""><td>23</td><td>PORT1_7</td><td>l</td><td>Reserved (need pull low)</td></t<> | 23 | PORT1_7 | l | Reserved (need pull low) | | 26 VCCK PWR Core power supply 3.3V 27 GNDK PWR Core ground 28 PROM_DATA2 I/O Rom data 2 29 PROM_DATA3 I/O Rom data 3 30 PROM_DATA4 I/O Rom data 4 31 PROM_DATA5 I/O Rom data 5 32 PROM_DATA6 I/O Rom data 7 34 NC NC 35 ICC1DETN I Smart card 1 inserted (Low true) (pull high) 36 SC1DATA I/O Smart card 1 serial data 37 SC1CLK I/O Smart card 1 clock 38 SC1RST I/O Smart card 1 reset 39 SC1FCB I/O Smart card 1 GPIO_0 40 SC1C6 I/O Smart card 1 GPIO_2 41 SC1C8 I/O Smart card 0 inserted (Low true) (pull high) 43 SC0DATA I/O Smart card 0 olock 45 SC0RST I/O Smart card 0 reset | 24 | PROM_DATA0 | 1/0 | Rom data 0 | | 27 GNDK PWR Core ground 28 PROM_DATA2 I/O Rom data 2 29 PROM_DATA3 I/O Rom data 3 30 PROM_DATA4 I/O Rom data 4 31 PROM_DATA5 I/O Rom data 5 32 PROM_DATA6 I/O Rom data 7 34 NC NC 35 ICC1DETN I Smart card 1 inserted (Low true) (pull high) 36 SC1DATA I/O Smart card 1 serial data 37 SC1CLK I/O Smart card 1 clock 38 SC1RST I/O Smart card 1 reset 39 SC1FCB I/O Smart card 1 reset 40 SC1C6 I/O Smart card 1 reset 41 SC1C8 I/O Smart card 1 reset 42 ICCODETN I Smart card 1 reset (Low true) (pull high) 43 SC0DATA I/O Smart card 0 inserted (Low true) (pull high) 43 SCORST I/O Smart card 0 clock | 25 | PROM_DATA1 | 1/0 | Rom data 1 | | 28 PROM_DATA2 I/O Rom data 2 29 PROM_DATA3 I/O Rom data 3 30 PROM_DATA4 I/O Rom data 4 31 PROM_DATA5 I/O Rom data 5 32 PROM_DATA6 I/O Rom data 7 34 NC NC 35 ICC1DETN I Smart card 1 inserted (Low true) (pull high) 36 SC1DATA I/O Smart card 1 serial data 37 SC1CLK I/O Smart card 1 clock 38 SC1RST I/O Smart card 1 reset 39 SC1FCB I/O Smart card 1 GPIO_0 40 SC1C6 I/O Smart card 1 GPIO_1 41 SC1C8 I/O Smart card 1 GPIO_2 42 ICCODETN I Smart card 0 inserted (Low true) (pull high) 43 SC0DATA I/O Smart card 0 serial data 44 SCOCLK I/O Smart card 0 reset 46 SCOFCB I/O Smart card 0 GPIO_0 <td>26</td> <td>VCCK</td> <td>PWR</td> <td>Core power supply 3.3V</td> | 26 | VCCK | PWR | Core power supply 3.3V | | 29 PROM_DATA3 I/O Rom data 3 30 PROM_DATA4 I/O Rom data 4 31 PROM_DATA5 I/O Rom data 5 32 PROM_DATA7 I/O Rom data 7 34 NC NC 35 ICC1DETN I Smart card 1 inserted (Low true) (pull high) 36 SC1DATA I/O Smart card 1 serial data 37 SC1CLK I/O Smart card 1 clock 38 SC1RST I/O Smart card 1 reset 39 SC1FCB I/O Smart card 1 GPIO_0 40 SC1C6 I/O Smart card 1 GPIO_1 41 SC1C8 I/O Smart card 1 GPIO_2 42 ICCODETN I Smart card 0 inserted (Low true) (pull high) 43 SCODATA I/O Smart card 0 clock 45 SCORST I/O Smart card 0 GPIO_0 | 27 | GNDK | PWR | Core ground | | 30 | 28 | PROM_DATA2 | 1/0 | Rom data 2 | | 31 PROM_DATA5 I/O Rom data 5 32 PROM_DATA6 I/O Rom data 6 33 PROM_DATA7 I/O Rom data 7 34 NC NC 35 ICC1DETN I Smart card 1 inserted (Low true) (pull high) 36 SC1DATA I/O Smart card 1 serial data 37 SC1CLK I/O Smart card 1 clock 38 SC1RST I/O Smart card 1 reset 39 SC1FCB I/O Smart card 1 GPIO_0 40 SC1C6 I/O Smart card 1 GPIO_1 41 SC1C8 I/O Smart card 0 inserted (Low true) (pull high) 43 SCODATA I/O Smart card 0 serial data 44 SCOCLK I/O Smart card 0 clock 45 SCORST I/O Smart card 0 GPIO_0 | 29 | PROM_DATA3 | 1/0 | Rom data 3 | | 32PROM_DATA6I/ORom data 633PROM_DATA7I/ORom data 734NC35ICC1DETNISmart card 1 inserted (Low true) (pull high)36SC1DATAI/OSmart card 1 serial data37SC1CLKI/OSmart card 1 clock38SC1RSTI/OSmart card 1 Feset39SC1FCBI/OSmart card 1 GPIO_040SC1C6I/OSmart card 1 GPIO_141SC1C8I/OSmart card 1 GPIO_242ICCODETNISmart card 0 inserted (Low true) (pull high)43SCODATAI/OSmart card 0 serial data44SCOCLKI/OSmart card 0 clock45SCORSTI/OSmart card 0 reset46SCOFCBI/OSmart card 0 GPIO_0 | 30 | PROM_DATA4 | 1/0 | Rom data 4 | | 33 PROM_DATA7 I/O Rom data 7 34 NC 35 ICC1DETN I Smart card 1 inserted (Low true) (pull high) 36 SC1DATA I/O Smart card 1 serial data 37 SC1CLK I/O Smart card 1 clock 38 SC1RST I/O Smart card 1 reset 39 SC1FCB I/O Smart card 1 GPIO_0 40 SC1C6 I/O Smart card 1 GPIO_1 41 SC1C8 I/O Smart card 1 GPIO_2 42 ICC0DETN I Smart card 0 inserted (Low true)(pull high) 43 SC0DATA I/O Smart card 0 serial data 44 SC0CLK I/O Smart card 0 clock 45 SC0RST I/O Smart card 0 GPIO_0 | 31 | PROM_DATA5 | 1/0 | Rom data 5 | | 34 NC 35 ICC1DETN I Smart card 1 inserted (Low true) (pull high) 36 SC1DATA I/O Smart card 1 serial data 37 SC1CLK I/O Smart card 1 clock 38 SC1RST I/O Smart card 1 reset 39 SC1FCB I/O Smart card 1 GPIO_0 40 SC1C6 I/O Smart card 1 GPIO_1 41 SC1C8 I/O Smart card 1 GPIO_2 42 ICC0DETN I Smart card 0 inserted (Low true)(pull high) 43 SC0DATA I/O Smart card 0 serial data 44 SC0CLK I/O Smart card 0 clock 45 SC0RST I/O Smart card 0 reset 46 SC0FCB I/O Smart card 0 GPIO_0 | 32 | PROM_DATA6 | 1/0 | Rom data 6 | | 35 ICC1DETN I Smart card 1 inserted (Low true) (pull high) 36 SC1DATA I/O Smart card 1 serial data 37 SC1CLK I/O Smart card 1 clock 38 SC1RST I/O Smart card 1 reset 39 SC1FCB I/O Smart card 1 GPIO_0 40 SC1C6 I/O Smart card 1 GPIO_1 41 SC1C8 I/O Smart card 1 GPIO_2 42 ICCODETN I Smart card 0 inserted (Low true) (pull high) 43 SC0DATA I/O Smart card 0 serial data 44 SC0CLK I/O Smart card 0 clock 45 SC0RST I/O Smart card 0 reset 46 SC0FCB I/O Smart card 0 GPIO_0 | 33 | PROM_DATA7 | 1/0 | Rom data 7 | | 36 SC1DATA I/O Smart card 1 serial data 37 SC1CLK I/O Smart card 1 clock 38 SC1RST I/O Smart card 1 reset 39 SC1FCB I/O Smart card 1 GPIO_0 40 SC1C6 I/O Smart card 1 GPIO_1 41 SC1C8 I/O Smart card 1 GPIO_2 42 ICCODETN I Smart card 0 inserted (Low true) (pull high) 43 SCODATA I/O Smart card 0 serial data 44 SCOCLK I/O Smart card 0 clock 45 SCORST I/O Smart card 0 reset 46 SCOFCB I/O Smart card 0 GPIO_0 | | | | | | 37 SC1CLK I/O Smart card 1 clock 38 SC1RST I/O Smart card 1 reset 39 SC1FCB I/O Smart card 1 GPIO_0 40 SC1C6 I/O Smart card 1 GPIO_1 41 SC1C8 I/O Smart card 1 GPIO_2 42 ICCODETN I Smart card 0 inserted (Low true)(pull high) 43 SCODATA I/O Smart card 0 serial data 44 SCOCLK I/O Smart card 0 clock 45 SCORST I/O Smart card 0 reset 46 SCOFCB I/O Smart card 0 GPIO_0 | 35 | ICC1DETN | I | Smart card 1 inserted (Low true) (pull high) | | 38 SC1RST I/O Smart card 1 reset 39 SC1FCB I/O Smart card 1 GPIO_0 40 SC1C6 I/O Smart card 1 GPIO_1 41 SC1C8 I/O Smart card 1 GPIO_2 42 ICCODETN I Smart card 0 inserted (Low true)(pull high) 43 SCODATA I/O Smart card 0 serial data 44 SCOCLK I/O Smart card 0 clock 45 SCORST I/O Smart card 0 reset 46 SCOFCB I/O Smart card 0 GPIO_0 | 36 | SC1DATA | 1/0 | Smart card 1 serial data | | 39 SC1FCB I/O Smart card 1 GPIO_0 40 SC1C6 I/O Smart card 1 GPIO_1 41 SC1C8 I/O Smart card 1 GPIO_2 42 ICCODETN I Smart card 0 inserted (Low true)(pull high) 43 SCODATA I/O Smart card 0 serial data 44 SCOCLK I/O Smart card 0 clock 45 SCORST I/O Smart card 0 reset 46 SCOFCB I/O Smart card 0 GPIO_0 | 37 | SC1CLK | 1/0 | Smart card 1 clock | | 40 SC1C6 I/O Smart card 1 GPIO_1 41 SC1C8 I/O Smart card 1 GPIO_2 42 ICCODETN I Smart card 0 inserted (Low true) (pull high) 43 SCODATA I/O Smart card 0 serial data 44 SCOCLK I/O Smart card 0 clock 45 SCORST I/O Smart card 0 reset 46 SCOFCB I/O Smart card 0 GPIO_0 | 38 | SC1RST | 1/0 | Smart card 1 reset | | 40 SC1C6 I/O Smart card 1 GPIO_1 41 SC1C8 I/O Smart card 1 GPIO_2 42 ICCODETN I Smart card 0 inserted (Low true) (pull high) 43 SCODATA I/O Smart card 0 serial data 44 SCOCLK I/O Smart card 0 clock 45 SCORST I/O Smart card 0 reset 46 SCOFCB I/O Smart card 0 GPIO_0 | 39 | SC1FCB | 1/0 | Smart card 1 GPIO_0 | | 42 ICCODETN I Smart card 0 inserted (Low true) (pull high) 43 SCODATA I/O Smart card 0 serial data 44 SCOCLK I/O Smart card 0 clock 45 SCORST I/O Smart card 0 reset 46 SCOFCB I/O Smart card 0 GPIO_0 | 40 | | 1/0 | | | 42 ICCODETN I Smart card 0 inserted (Low true) (pull high) 43 SCODATA I/O Smart card 0 serial data 44 SCOCLK I/O Smart card 0 clock 45 SCORST I/O Smart card 0 reset 46 SCOFCB I/O Smart card 0 GPIO_0 | 41 | SC1C8 | 1/0 | Smart card 1 GPIO_2 | | 43 SCODATA I/O Smart card 0 serial data 44 SCOCLK I/O Smart card 0 clock 45 SCORST I/O Smart card 0 reset 46 SCOFCB I/O Smart card 0 GPIO_0 | 42 | | I | | | 44 SCOCLK I/O Smart card 0 clock 45 SCORST I/O Smart card 0 reset 46 SCOFCB I/O Smart card 0 GPIO_0 | 43 | | 1/0 | | | 45 SCORST I/O Smart card 0 reset 46 SCOFCB I/O Smart card 0 GPIO_0 | 44 | | 1/0 | | | 46 SC0FCB I/O Smart card 0 GPIO_0 | | | | | | | | | | | | 47 30000 170 SHIALL CALAU U GETU_T | 47 | SC0C6 | 1/0 | Smart card 0 GPIO_1 | | 48 SC0C8 I/O Smart card 0 GPIO_2 | | | | | # 4.0. System Architecture and Reference Design # 4.1. Block Diagram Figure 4.1 AU9520 USB Dual-Slot USB Smart Card Reader Controller # 5.0. Electronic Characteristics # **5.1 Recommended Operation Condition** **Table 5.1 Recommended Operation Condition** | SYMBOL | PARAMETER | MIN | TYP | MAX | UNITS | |------------------|-----------------------|------|-----|----------|-------| | V _{CC} | Power Supply | 4.75 | 5 | 5.25 | V | | V _{IN} | Input Voltage | 0 | | V_{CC} | V | | T _{OPR} | Operating Temperature | 0 | | 85 | °С | | T _{STG} | Storage Temperature | -40 | | 125 | °С | #### 5.2 General DC Characteristics Table 5.2 General DC Characteristics | SYMBOL | PARAMETER | CONDITIONS | MIN | TYP | MAX | UNITS | |------------------|-----------------------------------|----------------------------|-----|-----|-----|-------| | I _{IL} | Input low current | no pull-up or
pull-down | -1 | | 1 | μА | | I _{IH} | Input high current | no pull-up or
pull-down | -1 | | 1 | μΑ | | I _{OZ} | Tri-state leakage current | | -10 | | 10 | μΑ | | C _{IN} | Input capacitance | | | 5 | | ρF | | Соит | Output capacitance | | | 5 | | ρF | | C _{BID} | Bi-directional buffer capacitance | | | 5 | | ρF | # **5.3 DC Electrical Characteristics for 3.3 volts operation** Table 5.3 DC Electrical Characteristics for 3.3 volts operation | | Table 3.9 Be Electrical characteristics for 3.9 Volts operation | | | | | | |-----------------|---|----------------------------|-----|----------|-----|-------| | SYMBO | PARAMETER | CONDITIONS | MIN | TYP | MAX | UNITS | | V _{IL} | Input Low Voltage | CMOS | | | 0.9 | V | | V _{IH} | Input Hight Voltage | CMOS | 2.3 | | | V | | V _{OL} | Output low voltage | I _{OL} =4mA, 16mA | | | 0.4 | V | | V _{OH} | Output high voltage | I _{OH} =4mA,16mA | 2.4 | | | V | | Rı | Input Pull-up/down resistance | $Vil=0_V$ or $Vih=V_{CC}$ | | 10K/200K | | ΚΩ | ## 5.4 Crystal Oscillator Circuit Setup for Characterization The following setup was used to measure the open loop voltage gain for crystal oscillator circuits. The feedback resistor serves to bias the circuit at its quiescent operating point and the AC coupling capacitor, Cs, is much larger than C1 and C2. Figure 5.1 Crystal Oscillator Circuit Setup for Characterization #### 5.5 ESD Test Results **Test Description**: ESD Testing was performed on a Zapmaster system using the Human-Body-Model (HBM) and Machine-Model (MM), according to MIL-STD 883 and EIAJ IC-121 respectively. - Human-Body-Model stresses devices by sudden application of a high voltage supplied by a 100pF capacitor through 1.5k-ohm resistance. - Machine-Model stresses devices by sudden application of a high voltage supplied by a 200pF capacitor through very low (0 ohm) resistance. #### **Test Circuit & Condition** - Zap Interval: 1 second - Number of Zaps: 3 positive and 3 negative at room temperature - Criteria: I-V Curve Tracing Table 5.4 ESD Data | Table 6.1 Lob Buta | | | | | | | | |--------------------|---------------|-----|--------|---------|--|--|--| | Model | Mode | S/S | Target | Results | | | | | HBM | Vdd, Vss, I/C | 15 | 6000V | PASS | | | | | MM | Vdd, Vss, I/C | 15 | 200V | PASS | | | | #### 5.6 Latch-Up Test Results **Test Description**: Latch-Up testing was performed at room ambient using an IMCS-4600 system which applies a stepped voltage to one pin per device with all other pins open except Vdd and Vss which were biased to 5Volts and ground respectively. Testing was started at 5.0V (Positive) or 0V (Negative), and the DUT was biased for 0.5 seconds. If neither the PUT current supply nor the device current supply reached the predefined limit (DUT=00mA, Icc=100mA), then the voltage was increased by 0.1Volts and the pin was tested again. This procedure was recommended by the JEDEC JC-40.2 CMOS Logic standardization committee. #### Notes: - 1. DUT: The device under test. - 2. PUT: The pin under test. 1 SOURCE PIN Vec UNTESTED + OUTPUT OPEN TEST UNTESTED INPUT TIED TO ± V SUPPLY TRIGGER SOURCE ICC MEASUREMENT V SUPPLY OUTPUT OPEN CIRCUIT Figure 5.2 Latch-Up Test Results Diagram Test Circuit: Positive Input/Output Overvoltage/Overcurrent Test Circuit: Negative Input/Output Overvoltage/Overcurrent Figure 5.2 Latch-Up Test Results Diagram (continue) #### **Supply Overvoltage Test** **Table 5.5 Latch-Up Data Table** | Mode | | Voltage (V)/Current (mA) | S/S | Results | |-----------|---|--------------------------|-----|---------| | Voltage | + | 11.0 | 5 | Pass | | Voltage | - | 11.0 | 5 | Pass | | Current | + | 200 | 5 | Pass | | Current | - | 200 | 5 | Pass | | Vdd - Vxx | | 9.0 | 5 | Pass | # 6.0. Mechanical Information Figure 7.1 Mechanical Information Diagram # 7.0. Abbreviation This chapter lists and defines terms and abbreviations used throughout this specification. WHQL Windows Hardware Quality Labs **EMV** Europay MasterCard Visa **ATM** Automatic Teller Machine **BOM** Bill of Material PC/SC This is association name. (http://www.pcscworkgroup.com/) VID Vendor ID PID Product ID PLL Phase Lock Loop **GSM** ..Globe System for Mobile Communication **ESD** Electrostatic Sensitive Device [MEMO] #### **About Alcor Micro, Corp** Alcor Micro, Corp. designs, develops and markets highly integrated and advanced peripheral semiconductor, and software driver solutions for the personal computer and consumer electronics markets worldwide. We specialize in USB solutions and focus on emerging technology such as USB and IEEE 1394. The company offers a range of semiconductors including controllers for USB hub, integrated keyboard/USB hub and USB Flash memory card reader...etc. Alcor Micro, Corp. is based in Taipei, Taiwan, with sales offices in Taipei, Japan, Korea and California. Alcor Micro is distinguished by its ability to provide innovative solutions for spec-driven products. Innovations like single chip solutions for traditional multiple chip products and on-board voltage regulators enable the company to provide cost-efficiency solutions for the computer peripheral device OEM customers worldwide.