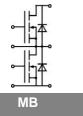
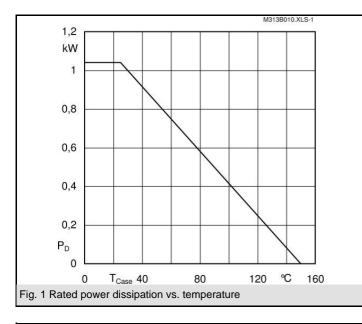


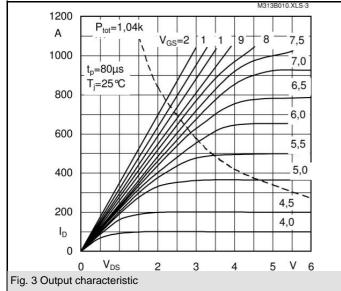
Power MOSFET Modules

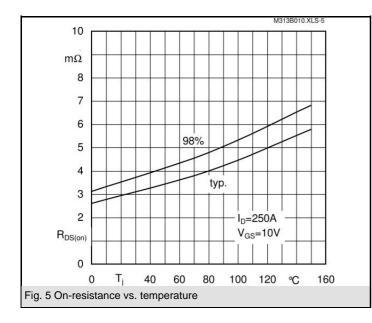
SKM 313B010

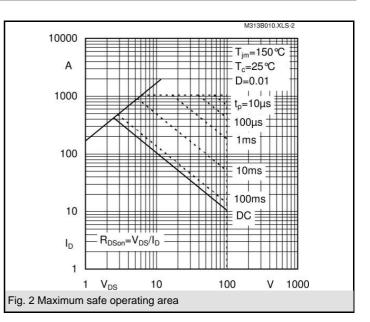
Features

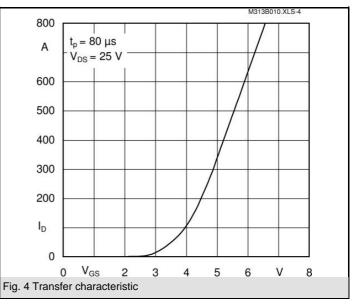

- N Channel, enhancement mode
- Avalanche characteristics
- Short internal connections avoid oscillations
- Isolated copper baseplates
- All electrical connections on top for easy busbaring
- Large clearance (13mm) and creepage distances (20mm)
- UL recognized, file no. E 63 532

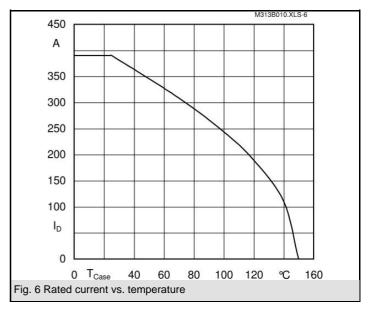

Typical Applications


- Switched mode power supplies
- DC servo and robot drives
- DC choppers
- UPS equipment
- Plasma cutting
- Not suitable for linear amplification


Absolute	Maximum Ratings	T_c = 25 °C, unless otherwise specified					
Symbol	Conditions	Values	Units				
V _{DS}		100	V				
ID	T _s = 25 (80) °C	390 (290)	А				
I _{DM}	1 ms	1170	А				
V _{GS}		± 20	V				
T _{vj} , (T _{stg})		- 40 + 150 (125)	°C				
V _{isol}	AC, 1 min.	2500	V				
Inverse diode							
I _F = - I _S		380	А				
I_{FM} = - I_{SM}		1140	Α				


Characteristics		T_c = 25 °C, unless otherwise specified			
Symbol	Conditions	min.	typ.	max.	Units
V _{(BR)DSS}	V _{GS} = 0 V, I _D = 0,5 mA	100			V
V _{GS(th)}	$V_{GS} = V_{DS}, I_{D} = 5 \text{ mA}$	2,1	3	4	V
I _{DSS}	$V_{GS} = 0 V, V_{DS} = 100 V,$ T _i = 25 (125) °C			100	μA
I _{GSS}	$V_{GS} = 20 \text{ V}, \text{ V}_{DS} = 0 \text{ V}$			1000	nA
R _{DS(on)}	V _{GS} = 10 V, I _D = 300 A		3	3,5	mΩ
9 _{fs}	V _{DS} = 25 V, I _D = 300 A	150	200		S
C _{CHC}	V _{GS} = 0, V _{DS} = 25 V, f = 1 MHz			700	pF
C _{iss}			24	32	nF
C _{oss}			7,3	11	nF
C _{rss}			4,3	6,5	nF
L _{DS}				20	nH
t _{d(on)}	V _{DD} = 30 V, I _D = 250 A,		100		ns
t _r	$V_{GS} = = \pm 10 \text{ V}, \text{ R}_{G} = 4,7 \Omega$		100		ns
t _{d(off)}			700		ns
t _f			250		ns
Inverse d	iode				
V _{SD}	I _F = 300 A; V _{GS} = 0 V		1,2	1,5	V
t _{rr}	T _j = 25 (150) °C		160		ns
Q _{rr}	T _j = 25 °C		10		μC
l _{rr}	$T_j = °C$				А
Thermal	characteristics				
R _{th(j-c)}	per MOSFET			0,12	K/W
R _{th(c-s)}	$\rm M_{s},$ surface 10 $\mu m,$ per module			0,038	K/W
Mechanic	al data				
M _s	to heatsink (M6)	4		5	Nm
M _t	for terminals (M5)	2,5		5	Nm
w				325	g

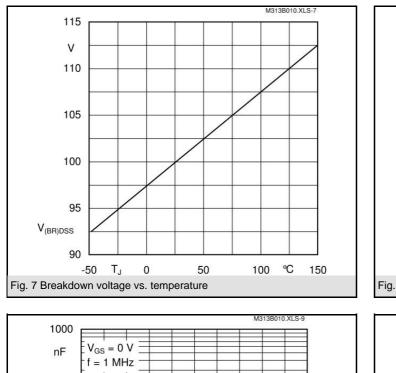




100

10

С

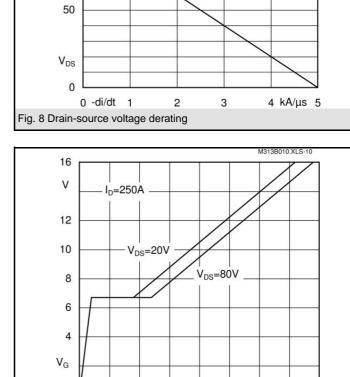

1

0 V_{DS} 10

Fig. 9 Capacitances vs. drain-source voltage

20

30

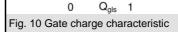

C_{iss}

Coss

Crss

50

40 V

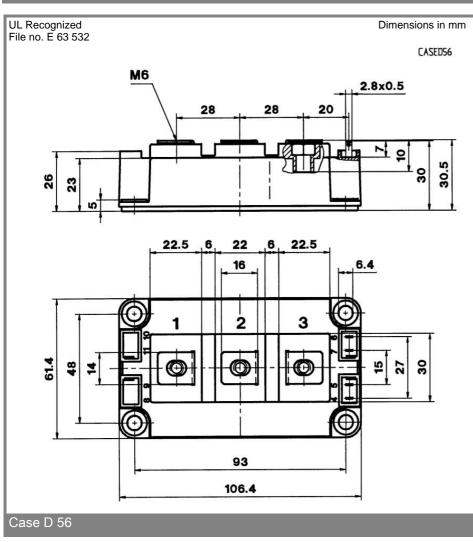

2

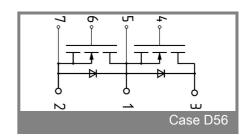
3

μC

4

M313B010.XLS-8




0

0

150 ٧

100

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.