

NTE7162 Integrated Circuit DC-Coupled Vertical Deflection and East-West Output Circuit

Description:

The NTE7162 is a power circuit in a 13–Lead Staggered SIP type package designed for use in 90° and 110° color deflection systems for field frequencies of 50Hz to 120Hz. The circuit provides a DC driven vertical deflection output circuit, operating as a highly effecient class G system and an East–West driver for sinking the diode modulator current.

Features:

- Few External Components
- Highly Efficient Fully DC-Coupled Vertical Output Bridge Circuit
- Vertical Flyback Switch
- Guard Circuit
- Protection Against:

Short Circuit of the Output Pins

Short-Circuit of the Output Pins to VP

- High EMC Immunity due to Common Mode Inputs
- Temperature Protectection
- East–West Output Stge with One Single Conversion Resistor

Absolute Maximum Ratings:

Supply Voltage, V _P	
Operating	25V
Non-Operating	
Flyback Supply Voltage, V _{FB}	50V
Flyback Supply Voltage (Note 1), V _{FB}	60V
Output Current (Peak-to-Peak Value, Note 2), I _O	3A
Output Voltage (Pin9), V _{O(A)}	52V
Output Voltage (Pin9, Note 1), V _{O(A)}	
Peak Output Current, I _M	
Output Voltage ($I_{O(sink)} = 10\mu A$, Note 3), $V_{O(sink)}$	40V
Output Current ($V_{O(sink)} = 2V$, Note 3), $I_{O(sink)}$	

- Note 1. A flyback supply voltage of > 50V up to 60V i allowed in application. A 220nF capacitor in series with a 22Ω resistor (depending on I_O and the inductance of the coil) has to be connected between Pin9 and GND. The decoupling capacitor of V_{FB} has to be connected between Pin8 and Pin4. The supply voltage line must have a resistance of 33Ω .
- Note 2. I_O maximum determined by current protection.
- Note 3. The operating area is limited by a straight line between the points $V_{O(sink)} = 40V$; $I_{O(sink)} = 10\mu A$ and $V_{O(sink)} = 2V$; $I_{O(sink)} = 500 \text{mA}$.

Absolute Maximum Ratings (Cont'd):

Virtual Junction Temperature, T _{VJ}	+150°C
Operating Ambient Temperature Range, T _A	–25° to +75°C
Storage Temperature Range, T _{stq}	–65° to +150°C
Thermal Resistance, Virtual Junction-to-Case, R _{thVJC}	4K/W
Thermal Resistance, Virtual Junction-to-Ambient (In Free Air), R _{thVJA}	40K/W
Short–Circuiting Time (Note 4), t _{sc}	1 Hour
Note 4. Up to $V_P = 10V$.	

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit	
DC Supply							
Operating Supply Voltage	V_{P}		9	_	25	V	
Flyback Supply Voltage	V_{FB}		V_{P}	_	50	V	
		Note 1	_	_	60	V	
Supply Current	Ι _Ρ	No Signal, No Load	_	30	55	mΑ	
Vertical Circuit							
Output Voltage Swing (Scan)	V _O	I _{diff} = 0.6mA (Peak-to-Peak), V _{diff} = 1.8V (Peak-to-Peak), I _O = 3A (Peak-to-Peak)	19.8	-	-	V	
Linearity Error	LE	I _O = 3A (Peak-to-Peak), Note 5	_	1	3	%	
		I _O = 50mA (Peak-to-Peak), Note 5	_	1	3	%	
Output Voltage Swing (Flyback) $V_{O(A)} - V_{O(B)}$	Vo	$I_{\text{diff}} = 0.3\text{mA}, I_{\text{O}} = 1.5\text{A}$	_	39	-	V	
Forward Voltage of the Internal Effeciency Diode (V _{O(A)} – V _{FB})	V_{DF}	$I_{O} = -1.5A$, $I_{diff} = 0.3mA$	_	-	1.5	V	
Output Offset Current	I _{OS}	$I_{diff} = 0$, $I_{I(sb)} = 50\mu A$ to $500\mu A$	_	_	30	mΑ	
Offset Voltage at the Input of the Feedback Amplifier $V_{I(fb)} = V_{O(B)}$	V _{OS}	$I_{diff} = 0$, $I_{I(sb)} = 50\mu A$ to $500\mu A$	_	-	18	mV	
Output Offset Voltag as a Function of Temperature	ΔV _{OS} T	I _{diff} = 0	_	-	72	μV/K	
DC Output Voltage	$V_{O(A)}$	I _{diff} = 0, Note 6	_	8	_	V	
Open Loop Voltage Gain V ₉₋₅ /V ₁₋₂	G _V	Note 7, Note 8	_	80		dB	
$V_{9-5}/V_{3-5}, V_{1-2} = 0$		Note 7	_	80	_	dB	

- Note 1. A flyback supply voltage of > 50V up to 60V i allowed in application. A 220nF capacitor in series with a 22Ω resistor (depending on I_O and the inductance of the coil) has to be connected between Pin9 and GND. The decoupling capacitor of V_{FB} has to be connected between Pin8 and Pin4. The supply voltage line must have a resistance of 33Ω .
- Note 5. The linearity error is measured without S–correction and based on the same measurement priinciple as performed on the screen. The measuring method is as follows:

 Divide the output signal I₅ I₉ (V_{RM}) into 22 equal parts ranging from 1 to 22 inclusive. measure the value of two succeeding parts called one block starting with 2 and 3 (block 1) and ending with 20 an 21 (block 10). Thus part 1 and 22 are unused. The equations for linearity error for adjacent blocks (LEAB) and linearity error for not adjacent blocks (LENAB) are given below:

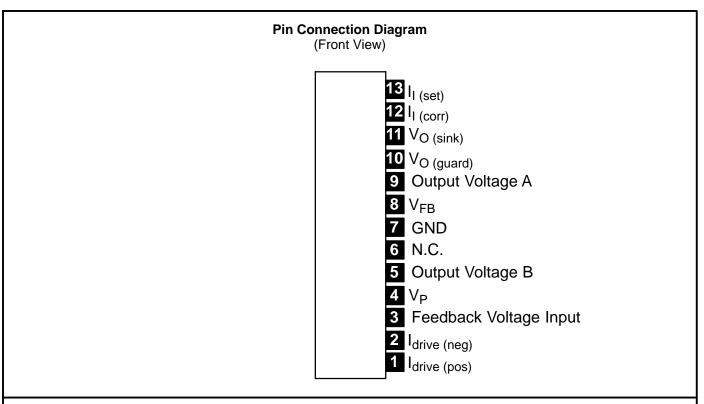
$$LEAB = \frac{a_k - a_{(k+1)}}{a_{avg}} ; LENAB = \frac{a_{max} - a_{min}}{a_{avg}}$$

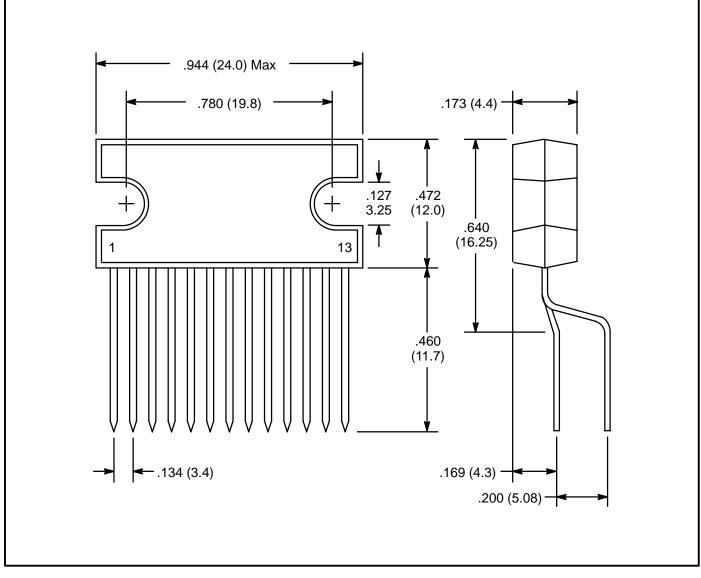
- Note 6. Referenced to V_P.
- Note 7. The V values within formulae relate to voltages at or across the relative pin numbers, i.e. V_{9-5}/V_{1-2} = voltage value across Pin9 and Pin5 divided by voltage value across Pin1 and Pin2.
- Note 8. V₃₋₅ AC short-circuited.

$(V_P = 17.5V, V_{FB} = 45V, V_{O(sink)} = 20V, f_i = 50Hz, I_{I(sb)} = 400\mu A,$ **Electrical Characteristics Cont'd):** $T_A = +25^{\circ}C$ unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Voltage Ratio V ₁₋₂ /V ₃₋₅	V_{R}		_	0	_	dB
Frequency Response (-3dB)	f _{res}	Note 9	-	40	_	Hz
Current Gain (I _O /I _{diff})	G _I		-	5000	_	
Current Gain as a Function of Temperature	∆G _I T		_	-	10 ⁻⁴	/K
Signal Bias Current	I _{I(sb)}		50	400	500	μΑ
Flyback Supply Current	I _{FB}	During Scan	-	_	100	μΑ
Power Supply Ripple Rejection	PSRR	Note 10	_	80	-	dB
DC Voltage at the Input	V _{I(DC)}		-	2.7	-	V
Common Mode Input Voltage	V _{I(CM)}	$I_{I(sb)} = 0$	0	_	1.6	V
Input Bias Current	I _{bias}	$I_{I(sb)} = 0$	-	0.1	0.5	μΑ
Common Mode Output Current	I _{O(CM)}	$\Delta I_{I(sb)} = 300 \mu A$ (Peak-to-Peak), $f_i = 50 Hz$, $I_{diff} = 0$	_	0.2	-	mA
East-West Amplifier	•					
Saturation Voltage	V _{O(sink)}	$I_{O(sink)} = 500$ mA, $I_{I(corr)} = 0$ μ A, Note 11	_	2.0	2.5	V
Open Loop Voltage Gain (V ₁₁ /V ₁₂)	G_V		_	47	_	dB
Frequency Response (-3dB)	f _{res}		_	4000	-	Hz
Linearity Error	LE	$V_{O(sink)} = 3V$	_	_	1	%
		$V_{O(sink)} = 10V$, Note 5	_	_	0.5	%
Input Bias Current (Pin12)	I _{bias}		_	_	2	μΑ
DC Input Voltage	V _{I(DC)}		_	1	_	V
Offset Voltage Set Current	I _{set}		_	1	_	mΑ
Maximum Allowed Voltage at Pin13	V ₁₃₋₇		-	_	0.3	V
Guard Circuit		•				
Output Current	Io	Not Active, V _{O(guard)} = 0V	_	_	50	μΑ
		Active, V _{O(guard)} = 3.6V	1.0	-	2.5	mΑ
Output Voltage	V _{O(guard)}	I _O = 100μA	4.6	_	5.5	V
Allowable Voltage on Pin10		Maximum Leakage Current = 10μA	_	_	40	V

Note 5. The linearity error is measured without S-correction and based on the same measurement priinciple as performed on the screen. The measuring method is as follows: Divide the output signal $I_5 - I_9$ (V_{RM}) into 22 equal parts ranging from 1 to 22 inclusive. measure the value of two succeeding parts called one block starting with 2 and 3 (block 1) and ending with 20 an 21 (block 10). Thus part 1 and 22 are unused. The equations for lineariy


error for adjacent blocks (LEAB) and linearity error for not adjacent blocks (LENAB) are given


below:

$$\label{eq:LEAB} \begin{split} \text{LEAB} = \frac{a_k - a_{(k+1)}}{a_{avg}} \; ; \\ \text{LENAB} = \frac{a_{max} - a_{min}}{a_{avg}} \end{split}$$
 Note 9. Frequency response V_{9-5}/V_{3-5} is equal to frequency response V_{9-5}/V_{1-2} .

Note 10. At $V_{(ripple)} = 500 \text{mV}$ eff; measured across R_M ; $f_i = 50 \text{Hz}$.

Note 11. The output Pin11 requires a capacitor with a minimum value of 68nF.

