High Speed Dual MOSFET Driver

Features

- 6ns rise and fall time with 1000 pF load
- 2.0A peak output source/sink current
- 1.2 V to 5 V input CMOS compatible
- 4.5 V to 13 V total supply voltage
- Smart Logic threshold
- Low jitter design
- Two matched channels
- Outputs can swing below ground
- Low inductance package
- Thermally-enhanced package

Applications

- Medical ultrasound imaging
- Piezoelectric transducer drivers
- Nondestructive evaluation
- PIN diode driver
- CCD Clock driver/buffer
- High speed level translator

General Description

The Supertex MD1210 is a high speed, dual MOSFET driver. It is designed to drive high voltage P and N -channel MOSFET transistors for medical ultrasound and other applications requiring a high output current for a capacitive load. The high-speed input stage of the MD1210 can operate from 1.2 V to 5.0 V logic interface with an optimum operating input signal range of 1.8 V to 3.3 V . An adaptive threshold circuit is used to set the level translator switch threshold to the average of the input logic 0 and logic 1 levels. The input logic levels may be ground referenced, even though the driver is putting out bipolar signals. The level translator uses a proprietary circuit, which provides DC coupling together with high-speed operation.
$\mathrm{V}_{\mathrm{DD} 1}, \mathrm{~V}_{\mathrm{DD} 2}$, and V_{H} should be connected to the positive supply voltage, and $V_{S S 1}, V_{S S 2}$, and V_{L} should be connected to 0 V or to Ground. The GND pin is the logic control input signal digital ground. The output stage is capable of peak currents of up to $\pm 2.0 \mathrm{~A}$, depending on the supply voltages used and load capacitance present.

The OE pin serves a dual purpose. First, its logic H level is used to compute the threshold voltage level for the channel input level translators. Secondly, when OE is low, the outputs are disabled, with the A output high and the B output low. This assists in properly pre-charging the AC coupling capacitors that may be used in series in the gate drive circuit of an external PMOS and NMOS transistor pair.

Typical Application Circuit

Ordering Information

DEVICE	Package Option
	12-Lead $4 \times 4 \times 0.8 p i t c h ~ Q F N ~$
MD1210	MD1210K6-G

-G indicates package is RoHS compliant ('Green')

Pin Configuration

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Continuous operation of the device at the absolute rating level may affect device reliability. All voltages are referenced to device ground.

Absolute Maximum Ratings

Parameter	Value
$\mathrm{V}_{\mathrm{DD} 1}, \mathrm{~V}_{\mathrm{DD} 2}, \mathrm{~V}_{\mathrm{H}}$-supply voltage	-0.5 V to +13.5 V
$\mathrm{~V}_{\mathrm{SS} 1}, \mathrm{~V}_{\mathrm{SS} 2}, \mathrm{~V}_{\mathrm{L}}$-supply voltage	0 V
Logic input levels	-0.5 V to 7.0 V
Maximum junction temperature	$+125^{\circ} \mathrm{C}$
Storage temperature	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Operating temperature	$-20^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Outputs $\left(V_{H}=V_{\text {DO1 }}=V_{\text {DO2 }}=12 \mathrm{~V}, V_{L}=V_{S S 1}=V_{S S 2}=0 \mathrm{~V}, V_{O E}=3.3 \mathrm{~V}, T_{J}=25^{\circ} \mathrm{C}\right)$

Sym	Parameter	Min	Typ	Max	Units	Conditions
$R_{\text {SINK }}$	Output sink resistance	-	-	12.5	Ω	$\mathrm{I}_{\text {SINK }}=50 \mathrm{~mA}$
$\mathrm{R}_{\text {SOURCE }}$	Output source resistance	-	-	12.5	Ω	$\mathrm{I}_{\text {SOURCE }}=50 \mathrm{~mA}$
$\mathrm{I}_{\text {SINK }}$	Peak output sink current	-	2.0	-	A	---
$\mathrm{I}_{\text {SOURCE }}$	Peak output source current	-	2.0	-	A	---

AC Electrical Characteristics $\left(V_{H}=v_{D 01}=v_{\text {DO2 }}=12 \mathrm{~V}, V_{L}=v_{S S 1}=v_{\text {SS2 }}=0 V_{, ~}, V_{O E}=3.3 \mathrm{~V}, T_{J}=25^{\circ} \mathrm{C}\right)$

Sym	Parameter	Min	Typ	Max	Units	Conditions
$\mathrm{t}_{\mathrm{irf}}$	Inputs or OE rise \& fall time	-	-	10	ns	Logic input edge speed requirement
$\mathrm{t}_{\text {PLH }}$	Propagation delay when output is from low to high	-	7.0	-	ns	$\mathrm{C}_{\text {LOAD }}=1000 \mathrm{pF},$ see timing diagram Input signal rise/fall time of 2 ns
$\mathrm{t}_{\text {PHL }}$	Propagation delay when output is from high to low	-	7.0	-	ns	
$t_{\text {POE }}$	Propagation delay OE to outputs	-	9.0	-	ns	
t_{r}	Output rise time	-	6.0	-	ns	
t_{f}	Output fall time	-	6.0	-	ns	
$\left\|t_{r}-t_{f}\right\|$	Rise and fall time matching	-	1.0	-	ns	For each channel
$1 t_{\text {PLH }}{ }^{-t_{\text {PHL }}}$ l	Propagation low to high and high to low matching	-	1.0	-	ns	
$\Delta \mathrm{t}_{\mathrm{dm}}$	Propagation delay match	-	± 2.0	-	ns	Device to device delay match

Logic Truth Table

Logic Inputs			Output	
OE	INA	INB	OUTA	OUTB
H	L	L	$\mathrm{~V}_{\mathrm{H}}$	V_{H}
H	L	H	V_{H}	V_{L}
H	H	L	V_{L}	V_{H}
H	H	H	V_{L}	V_{L}
L	X	X	V_{H}	V_{L}

Timing Diagram

Simplified Block Diagram

Propagation Delay

Logic Input Threshold

Detailed Block Diagram

Application Information

For proper operation of the MD1210, low inductance bypass capacitors should be used on the various supply pins. The GND input pin should be connected to the digital ground. The $\mathrm{IN}_{\mathrm{A}}, \mathrm{IN}_{\mathrm{B}}$, and OE pins should be connected to their logic source with a swing of GND to logic level high, which is 1.2 V to 5.0 V . Good trace practices should be followed corresponding to the desired operating speed. The internal circuitry of the MD1210 is capable of operating up to 100 MHz , with the primary speed limitation being the loading effects of the load capacitance. Because of this speed and the high transient currents that result with capacitive loads, the bypass capacitors should be as close to the chip pins as possible. The $\mathrm{V}_{\text {SS1 }}$, $\mathrm{V}_{\mathrm{SS} 2}$, and V_{L} pins should have low inductance feed-through connections directly to a ground plane. The power connections $\mathrm{V}_{\mathrm{DD} 1}$ and $\mathrm{V}_{\mathrm{DD} 2}$ should have a ceramic bypass capacitor to the ground plane with short leads and decoupling components to prevent resonance in the power leads. A common capacitor and voltage source may be used for these two pins, which should always have the same DC voltage applied. For applications sensitive to jitter and noise, separate decoupling networks may be used for $\mathrm{V}_{\mathrm{DD} 1}$ and $\mathrm{V}_{\mathrm{DD} 2}$.

The V_{H} and V_{L} pins can draw fast transient currents of up to 2.0A, so they should be provided with an appropriate bypass capacitor located next to the chip pins. A ceramic capacitor of up to $1.0 \mu \mathrm{~F}$ may be appropriate, with a series ferrite bead to prevent resonance in the power supply lead coming to the capacitor. Pay particular attention to minimizing trace lengths and using sufficient trace width to reduce inductance. Surface mount components are highly recommended. Since the output impedance of this driver is very low, in some cases it may be desirable to add a small series resistor in series with the output signal to obtain better waveform integrity at the load terminals. This will of course reduce the output voltage slew rate at the terminals of a capacitive load.

Pay particular attention to the parasitic coupling from the driver output to the input signal terminals. This feedback may cause oscillations or spurious waveform shapes on the edges of signal transitions. Since the input operates with signals down to 1.2 V even small coupled voltages may cause problems. Use of a solid ground plane and good power and signal layout practices will prevent this problem. Be careful that the circulating ground return current from a capacitive load cannot react with common inductance to cause noise voltages in the input logic circuitry.

Pin Description

Pin \#	Name	Description
1	IN_{A}	Logic input. Controls $\mathrm{OUT}_{\mathrm{A}}$ when OE is high. Input logic high will cause the output to swing to V_{L}. Input logic low will cause the output to swing to V_{H}.
2	$\mathrm{~V}_{\mathrm{L}}$	Supply voltage for N-channel output stage.
3	IN_{B}	Logic input. Controls $\mathrm{OUT}_{\mathrm{B}}$ when OE is high. Input logic high will cause the output to swing to V_{L}. Input logic low will cause the output to swing to V_{H}.
4	$\mathrm{GND}^{\text {GND }}$	Logic input ground reference.

Note: 1.Thermal Pad and Pin\#5 ($V_{\text {ssi }}$) must be connected externally.
2. Index Pad and Thermal Pad are connected internally

12-Lead 4x4x0.8pitch QFN Package Outline (K6)

TOP VIEW

12-Lead 4x4x0.8pitch QFN Package Outline (K6)

Symbol	Height Dimensions		
	Min	Nom	Max
D BSC	4.0		
E BSC	4.0		
e	0.80		
D2	2.0	2.15	2.25
E2	2.0	2.15	2.25
b	0.25	0.30	0.35
I	0.45	0.55	0.65
A	0.80	0.90	1.0
A1	0.00	0.02	0.05
A3	--	0.20 ref	---
L1	0.03	---	0.15
Issue	A		

Bottom ID Dimensions			
AA	BB	CC	DD
.434	.434	.181	.181

 Position	
aaa	0.15
bbb	0.10
ccc	0.10
ddd	0.05
Issue	A

Notes:

1. Dimensioning and tolerancing conform to ASME Y14.5m-1994.
2. All dimensions are in millimeters, all angles are in degrees $\left(^{\circ}\right)$.
3. The terminal \#1 identifier and terminal numbering convention shall conform to JEDEC publication 95, SPP-002. Details of terminal \#1 identifier are optional, but must be located within the zone indicated. The terminal \#1 identifier may be either a mold or marked feature.
4. Depending on the method of lead termination at the edge of the package, pull back (L1) may be present. L minus L1 to be equal to or greater than 0.33 mm .
5. Dimension B applies to metallized terminal and is measured between 0.15 mm and 0.30 mm from the terminal tip. If the terminal has the optional radius on the other end of the terminal, the dimension B should not be measured in that radius area.
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to http://www.supertex.com/packaging.html.)
[^0]
[^0]:

 product specifications, refer to the Supertex website: http//www.supertex.com.

